LARA

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision Both sides next revision
sav08:predicate_logic_informally [2008/02/20 15:39]
vkuncak
sav08:predicate_logic_informally [2008/02/20 15:41]
vkuncak
Line 53: Line 53:
 In general all quantifiers range over some universal domain $D$.  To restrict them to subsets of $D$, we can use bounded quantifiers:​ In general all quantifiers range over some universal domain $D$.  To restrict them to subsets of $D$, we can use bounded quantifiers:​
  
-  * $\exists x \in S. P(x)$ means $\exists x. x \in S \and P(x)$ +  * $\exists x \in S. P(x)$ means $\exists x. (x \in S \land P(x))$ 
-  * $\forall x \in S. P(x)$ means $\forall x. x \in S \rightarrow P(x)$ (note implication instead of conjunction)+  * $\forall x \in S. P(x)$ means $\forall x. (x \in S \rightarrow P(x))$ (note implication instead of conjunction)
  
 More generally, if $\rho$ is some binary relation written in infix form, such as $<, \le, >, \ge$ we write More generally, if $\rho$ is some binary relation written in infix form, such as $<, \le, >, \ge$ we write
-  * $\exists x \rho t. P(x)$ meaning $\exists x. x \rho t \and P(x)$ +  * $\exists x \mathop{\rhot. P(x)$ meaning $\exists x. (\mathop{\rhot \land P(x))$ 
-  * $\forall x \rho t. P(x)$ means $\forall x. x \rho t \rightarrow P(x)$ (note implication instead of conjunction)+  * $\forall x \mathop{\rhot. P(x)$ means $\forall x. (\mathop{\rhot \rightarrow P(x))$ (note implication instead of conjunction)
  
 ===== Evaluating First-Order Logic Formulas ===== ===== Evaluating First-Order Logic Formulas =====