LARA

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
sav08:playground [2008/03/19 16:02]
vkuncak
sav08:playground [2012/07/27 12:54]
hossein
Line 1: Line 1:
 ====== Playground ====== ====== Playground ======
  
-Therefore $ subst(sigma)( x ) = x$ 
  
-$ sigma rm  {}d{}e{}fined ​ x$ 
  
-sigma rm  defined  ​x$+===== Problem 1: Linear Extension ===== 
 + 
 +Let $r\subseteq A\times A$ be an arbitrary relation and $\leq$ a partial order on $A$. 
 + 
 +a) Assume $a,b\in A$ to be incomparable:​ $a\not\leq b$ and $b\not\leq a$. Show that the transitive closure of the relation $r_{\text{ex}}$ is a partial order on $A$. 
 + 
 +$r_{\text{ex}} = \{(x,y) | x\leq y\}\cup\{(a,​b)\}$ 
 + 
 +b) Use (a) to show if $A$ is finite then every order $\leq$ on $A$ has a linear extension. 
 +A total order $\leq_{1}$ is a linear extension of a partial order $\leq$ if, whenever $x\leq y$ implies that $x\leq_{1} y$. 
 + 
 +c) Use (a) to show there is a finite number of total orders $(A,​\leq_1),​\cdots,​(A,​\leq_n)$ such that for all $a,b\in A$ we have 
 + 
 +$a\leq b \Leftrightarrow (a\leq_1b \wedge\cdots\wedge a\leq_n b)$ 
 + 
 +d) Show that $\leq_1$ is a linear extension of $\leq$ if and only if $(A,​\leq_1)$ is a total order and the identity function is a monotone function from $(A,\leq)$ to $(A,\leq_1)$