Lab for Automated Reasoning and Analysis LARA

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
sav08:mapping_fixpoints_under_lattice_morphisms [2009/03/26 13:53]
vkuncak
sav08:mapping_fixpoints_under_lattice_morphisms [2015/04/21 17:30] (current)
Line 2: Line 2:
  
 **Definition:​** Let $(X,\le)$ and $(Y,​\sqsubseteq)$ be complete [[lattices]]. We call $F : X \to Y$ a **complete join-morphism** iff for each set $X_1 \subseteq X$ we have **Definition:​** Let $(X,\le)$ and $(Y,​\sqsubseteq)$ be complete [[lattices]]. We call $F : X \to Y$ a **complete join-morphism** iff for each set $X_1 \subseteq X$ we have
-\[+\begin{equation*}
    ​F(\sqcup X_1) = \sqcup \{ F(a).\ a \in X_1 \}    ​F(\sqcup X_1) = \sqcup \{ F(a).\ a \in X_1 \}
-\]+\end{equation*} 
 + 
 +For example, $F(a_1 \sqcup a_2 \sqcup a_3) = F(a_1) \sqcup F(a_2) \sqcup F(a_3)$.
  
-For example, $F(a_1 \sqcup a_2 \sqcup a_3) = F(a_1) \sqcup F(a_2) \sqcup F(a_3) 
  
 **Lemma:** Let $(X,\le)$ and $(Y,​\sqsubseteq)$ be complete lattices, and $F : X \to X$, $\Gamma : X \to Y$, $F^\# : Y \to Y$ be complete join-morphisms such that **Lemma:** Let $(X,\le)$ and $(Y,​\sqsubseteq)$ be complete lattices, and $F : X \to X$, $\Gamma : X \to Y$, $F^\# : Y \to Y$ be complete join-morphisms such that
-\[+\begin{equation*}
     F(\Gamma(y)) \le \Gamma(F^\#​(y))     F(\Gamma(y)) \le \Gamma(F^\#​(y))
-\]+\end{equation*}
 for all $y \in Y$.  If $lfp$ denotes least fixpoint of a function, then for all $y \in Y$.  If $lfp$ denotes least fixpoint of a function, then
-\[+\begin{equation*}
     lfp(F) \le \Gamma(lfp(F^\#​))     lfp(F) \le \Gamma(lfp(F^\#​))
-\]+\end{equation*}
  
 In other words, we can approximate $lfp(F)$ by computing $lfp(F^\#​)$. In other words, we can approximate $lfp(F)$ by computing $lfp(F^\#​)$.
  
  
 
sav08/mapping_fixpoints_under_lattice_morphisms.txt · Last modified: 2015/04/21 17:30 (external edit)
 
© EPFL 2018 - Legal notice