LARA

This is an old revision of the document!


Mapping Fixpoints Under Lattice Morphisms

Lemma: Let $(X,\le)$ and $(Y,\sqsubseteq)$ be complete lattices, and $F : X \to X$, $\Gamma : X \to Y$, $F^\# : Y \to Y$ be complete morphisms (they distribute through arbitrary least upper bound) such that \[

  F(\Gamma(y)) \le \Gamma(F^\#(y))

\] for all $y \in Y$. If $lfp$ denotes least fixpoint of a function, then \[

  lfp(F) \le \Gamma(lfp(F^\#))

\]

In other words, we can approximate $lfp(F)$ by computing $lfp(F^\#)$.