LARA

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Next revision Both sides next revision
sav08:interpolation_for_propositional_logic [2008/03/10 11:34]
vkuncak
sav08:interpolation_for_propositional_logic [2008/03/11 16:18]
vkuncak
Line 1: Line 1:
 ====== Interpolation for Propositional Logic ====== ====== Interpolation for Propositional Logic ======
  
 +**Definition of Interpolant:​**
 Given two propositional formulas $F$ and $G$, an interpolant for $(F,G)$ is a propositional formula $H$ such that: \\ Given two propositional formulas $F$ and $G$, an interpolant for $(F,G)$ is a propositional formula $H$ such that: \\
 1) $\models F \rightarrow H$ \\ 1) $\models F \rightarrow H$ \\
Line 6: Line 7:
 3) $FV(H)\subseteq FV(F) \cap FV(G)$ ​ 3) $FV(H)\subseteq FV(F) \cap FV(G)$ ​
  
-$FV$ denotes the set of free variables in the given propositional formula ​(see [[Propositional Logic Syntax]]).+++++What is FV?| 
 +$FV$ denotes the set of free variables in the given propositional formulasee [[Propositional Logic Syntax]]. 
 +++++
  
-Note that $F \rightarrow G$ by transitivity of $\rightarrow$. The interpolant extracts ​what makes $F$ imply $G$.+ 
 +Note that $F \rightarrow G$ by transitivity of $\rightarrow$. The interpolant extracts ​the essential part of formula $F$ which makes $F$ imply $G$.
  
 Let $elim$ denote the operator that eliminates propositional quantifiers (see [[QBF and Quantifier Elimination]]). Let $elim$ denote the operator that eliminates propositional quantifiers (see [[QBF and Quantifier Elimination]]).
  
-Here are two simple ways to construct an interpolant:​+Here are two **simple ways to construct an interpolant:​**
   * We can quantify existentially all variables in $F$ that are not in $G$.   * We can quantify existentially all variables in $F$ that are not in $G$.
  
Line 21: Line 25:
 $H_{max} \equiv elim(\forall q_1, q_2, ..., q_m.\ G)$ where $\{q_1, q_2, ..., q_m \}\ = FV(G)\backslash FV(F)$ \\ $H_{max} \equiv elim(\forall q_1, q_2, ..., q_m.\ G)$ where $\{q_1, q_2, ..., q_m \}\ = FV(G)\backslash FV(F)$ \\
  
-More precisely, let ${\cal I}(F,G)$ denote the set of all interpolants for $(F,G)$, that is,+**Definition:​** ​${\cal I}(F,G)$ denote the set of all interpolants for $(F,G)$, that is,
 \[ \[
    {\cal I}(F,G) = \{ H \mid H \mbox{ is interpolant for $(F,G)$ \}    {\cal I}(F,G) = \{ H \mid H \mbox{ is interpolant for $(F,G)$ \}
 \] \]
-Then the following properties hold:+ 
 +**Theorem:​** The following properties hold for $H_{min}$, $H_{max}$, ${\cal I}(F,G)$ defined above:
   - $H_{min} \in {\cal I}(F,G)$   - $H_{min} \in {\cal I}(F,G)$
   - $\forall H \in {\cal I}(F,G).\ \models (H_{min} \rightarrow H)$   - $\forall H \in {\cal I}(F,G).\ \models (H_{min} \rightarrow H)$