Lab for Automated Reasoning and Analysis LARA

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
sav08:interpolants_from_resolution_proofs [2008/03/18 10:49]
tatjana
sav08:interpolants_from_resolution_proofs [2008/03/26 20:26] (current)
piskac
Line 21: Line 21:
     * if $q \in FV(A) \setminus FV(B)$ then $I(C) = I(C_1) \lor I(C_2)$     * if $q \in FV(A) \setminus FV(B)$ then $I(C) = I(C_1) \lor I(C_2)$
     * if $q \in FV(B) \setminus FV(A)$ then $I(C) = I(C_1) \land I(C_2)$     * if $q \in FV(B) \setminus FV(A)$ then $I(C) = I(C_1) \land I(C_2)$
-    * if $q \in FV(A) \cap FV(B)$ then $I(C) = ite(q,I(C_2),I(C_1))$+    * if $q \in FV(A) \cap FV(B)$ then $I(C) = ite(q,I(C_1),I(C_2))$
  
 We prove that $I(C)$ has the desired property by induction on the structure of the resolution proof tree. We prove that $I(C)$ has the desired property by induction on the structure of the resolution proof tree.
 
sav08/interpolants_from_resolution_proofs.txt · Last modified: 2008/03/26 20:26 by piskac
 
© EPFL 2018 - Legal notice