LARA

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

sav08:ground_terms [2013/05/10 09:53]
vkuncak
sav08:ground_terms [2015/04/21 17:30]
Line 1: Line 1:
-====== Ground Terms as Domain of Interpretation ====== 
- 
-Recall syntax of first-order logic terms in [[First-Order Logic Syntax]]. 
- 
-//Ground term// is a term $t$ without variables, i.e. $FV(t)=\emptyset$,​ i.e. given by grammar: 
-\[ 
-    GT ::= f(GT,​\ldots,​GT) 
-\] 
-i.e. built from constants using function symbols. 
- 
-**Example**\\ 
-${\cal L}=\{a, f\}$ \\ 
-$GT=\{a, f(a), f(f(a)), f(f(f(a))), ...\}$ 
- 
-If ${\cal L}$ has no constants then $GT$ is empty. ​ In that case, we add a fresh constant $a_0$ into the language and consider ${\cal L} \cup \{a_0\}$ that has a non-empty $GT$.  We call the set $GT$ Herbrand Universe. 
- 
-Goal: show that if a formula //without equality// (for now) has a model, then it has a model whose domain is Herbrand universe, that is, a model of the form $I_H = (HU,​\alpha_H)$. 
- 
-How to define $\alpha_H$? 
- 
-===== Term Algebra Interpretation for Function Symbols ===== 
- 
-Let $ar(f)=n$. ​ Then $f : GT^n \to GT$ 
- 
-$\alpha_H(f)(t_1,​\ldots,​t_n) = f(t_1,​\ldots,​t_n)$ 
- 
-This defines $\alpha_H(f)$. ​ How to define $\alpha_H(R)$ to ensure that elements of a set are true, i.e. that $e_S(S)(I_H) = {\it true}$?\\ 
-Partition $GT^n$ in two sets, one over which $\alpha_H(R)(t_1,​...,​t_n)$ is true and the other over which it is false. 
-  * is this possible for arbitrary set? no  
- 
-**Example** 
-Consider a set that is not satisfiable : $\{P(a),\ \neg P(a)\}$ 
- 
-===== Ground Atoms ===== 
- 
-If $R \in {\cal L}$, $ar(R)=n$ and $t_1,​\ldots,​t_n \in GT$, we call $R(t_1,​\ldots,​t_n)$ an Herbrand Atom.  HA is the set of all Herbrand atoms: 
-\[ 
-    HA = \{ R(t_1,​\ldots,​t_n) \mid R \in {\cal L}\ \land \ t_1,​\ldots,​t_n \in GT \} 
-\] 
- 
-We order elements of $HA$ in sequence (e.g. sorted by length) and establish a bijection $p$ with propositional variables 
-\[ 
-   p : HA \to V 
-\] 
-We will write $p(A)$. 
- 
-**Example**\\ 
-${\cal L}=\{a, f_1, P_1, R_2\}$ \\ 
-$GT=\{a, f(a), f(f(a)), f(f(f(a))), ...\}$\\ 
-$HA=\{P(a), R(a,a), P(f(a)), R(a, f(a)), ...\}$\\ 
-$V=\{p_1, p_2, p_3, p_4, ...\}$\\ 
-We define p such that :\\ 
-$p(P(a))=p_1,​\ p(R(a,​a))=p_2,​\ p(P(f(a)))=p_3,​\ p(R(a, f(a)))=p_4,​...$