LARA

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Next revision Both sides next revision
sav08:deriving_propositional_resolution [2008/03/19 17:12]
tatjana
sav08:deriving_propositional_resolution [2008/03/19 17:18]
tatjana
Line 44: Line 44:
    ​ProjectSet(S,​p) = \{ ProjectForm(F_1,​F_2,​p) \mid F_1,F_2 \in S \}    ​ProjectSet(S,​p) = \{ ProjectForm(F_1,​F_2,​p) \mid F_1,F_2 \in S \}
 \] \]
 +
  
 ==== Projection Proof Rules ==== ==== Projection Proof Rules ====
Line 54: Line 55:
 \] \]
 The soundness of projection rule follows from the fact that  The soundness of projection rule follows from the fact that 
-for every interpretation $I$, if $I \models S$, then also $I \models ​Proj(S,p)$.+for every interpretation $I$, if $I \models S$, then also $I \models ​ProjectSet(S,p)$.
  
 Applying the projection rule we obtain formulas with fewer and fewer variables. ​ We therefore also add the "​ground contradiction rule" Applying the projection rule we obtain formulas with fewer and fewer variables. ​ We therefore also add the "​ground contradiction rule"
Line 62: Line 63:
 \] \]
 where $F$ is formula that has no variables and that evaluates to //false// (ground contradictory formula). ​ This rule is trivially sound. where $F$ is formula that has no variables and that evaluates to //false// (ground contradictory formula). ​ This rule is trivially sound.
 +
  
 ==== Iterating Rule Application ==== ==== Iterating Rule Application ====
Line 68: Line 70:
 \[\begin{array}{l} \[\begin{array}{l}
    ​P_0(S) = S \\    ​P_0(S) = S \\
-   ​P_{n+1}(S) = Proj(P_n(S),​p_{n+1}) \\+   ​P_{n+1}(S) = ProjectSet(P_n(S),​p_{n+1}) \\
    ​P^*(S) = \bigcup_{n \geq 0} P_n(S)    ​P^*(S) = \bigcup_{n \geq 0} P_n(S)
 \end{array}\] \end{array}\]
 +
  
  
Line 84: Line 87:
 The first statement follows from soundness of projection rules. ​ We next prove the second statement. The first statement follows from soundness of projection rules. ​ We next prove the second statement.
  
-Suppose that it ${\it false} \notin P^*(S)$. ​ We claim that $S$ is satisfiable. ​ We show that every finite set is satisfiable,​ so the property ​follows ​from the [[Compactness Theorem]].+Suppose that it ${\it false} \notin P^*(S)$. ​ We claim that $S$ is satisfiable. ​ We show that every finite set is satisfiable,​ so the property ​will follow ​from the [[Compactness Theorem]].
  
 Consider any finite $T \subseteq S$.  We show that $T$ it is satisfiable. ​ Let $T = \{F_1,​\ldots,​F_n\}$ and let $FV(F_1) \cup \ldots \cup FV(F_n) \subseteq \{p_1,​\ldots,​p_M\}$. ​ Consider the set Consider any finite $T \subseteq S$.  We show that $T$ it is satisfiable. ​ Let $T = \{F_1,​\ldots,​F_n\}$ and let $FV(F_1) \cup \ldots \cup FV(F_n) \subseteq \{p_1,​\ldots,​p_M\}$. ​ Consider the set