Lab for Automated Reasoning and Analysis LARA

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
sav08:axioms_for_equality [2009/05/06 09:52]
vkuncak
sav08:axioms_for_equality [2015/04/21 17:30] (current)
Line 1: Line 1:
 ====== Axioms for Equality ====== ====== Axioms for Equality ======
  
-The following definitions are useful when axiomatizing equality in a logic that does not have equality built in. It is also useful when discussing algorithms that automate reasoning about equality.+//The following definitions are useful when axiomatizing equality in a logic that does not have equality built in. It is also useful when discussing algorithms that automate reasoning about equality.//
  
 For language ${\cal L}$ and a relation symbol $eq \notin {\cal L}$, the theory of equality, denoted AxEq, is the following set of formulas: For language ${\cal L}$ and a relation symbol $eq \notin {\cal L}$, the theory of equality, denoted AxEq, is the following set of formulas:
Line 8: Line 8:
   * Transitivity:​ ++| $\forall x. \forall y. \forall z.\ eq(x,y) \land eq(y,z) \rightarrow eq(x,z)$ ++   * Transitivity:​ ++| $\forall x. \forall y. \forall z.\ eq(x,y) \land eq(y,z) \rightarrow eq(x,z)$ ++
   * Congruence for function symbols: for $f \in {\cal L}$ function symbol with $ar(f)=n$, ++ |   * Congruence for function symbols: for $f \in {\cal L}$ function symbol with $ar(f)=n$, ++ |
-\[+\begin{equation*}
    ​\forall x_1,​\ldots,​x_n,​ y_1,​\ldots,​y_n.\ (\bigwedge_{i=1}^n eq(x_i,​y_i)) \rightarrow eq(f(x_1,​\ldots,​x_n),​f(y_1,​\ldots,​y_n))    ​\forall x_1,​\ldots,​x_n,​ y_1,​\ldots,​y_n.\ (\bigwedge_{i=1}^n eq(x_i,​y_i)) \rightarrow eq(f(x_1,​\ldots,​x_n),​f(y_1,​\ldots,​y_n))
-\]+\end{equation*}
 ++ ++
   * Congruence for relation symbols: for $R \in {\cal L}$ relation symbol with $ar(R)=n$, ++ |   * Congruence for relation symbols: for $R \in {\cal L}$ relation symbol with $ar(R)=n$, ++ |
-\[+\begin{equation*}
    ​\forall x_1,​\ldots,​x_n,​ y_1,​\ldots,​y_n.\ (\bigwedge_{i=1}^n eq(x_i,​y_i)) \rightarrow (R(x_1,​\ldots,​x_n) \leftrightarrow R(y_1,​\ldots,​y_n))    ​\forall x_1,​\ldots,​x_n,​ y_1,​\ldots,​y_n.\ (\bigwedge_{i=1}^n eq(x_i,​y_i)) \rightarrow (R(x_1,​\ldots,​x_n) \leftrightarrow R(y_1,​\ldots,​y_n))
-\]+\end{equation*}
 ++ ++
  
 
sav08/axioms_for_equality.txt · Last modified: 2015/04/21 17:30 (external edit)
 
© EPFL 2018 - Legal notice