LARA

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

sav08:axioms_for_equality [2009/05/05 23:16]
vkuncak
sav08:axioms_for_equality [2015/04/21 17:30]
Line 1: Line 1:
-====== Axioms for Equality ====== 
- 
-For language ${\cal L}$ and a relation symbol $eq \notin {\cal L}$, the theory of equality, denoted AxEq, is the following set of formulas: 
-  * Reflexivity:​ ++| $\forall x. eq(x,x)$ ++ 
-  * Symmetry: ++| $\forall x. \forall y.\ eq(x,y) \rightarrow eq(y,x)$ ++ 
-  * Transitivity:​ ++| $\forall x. \forall y. \forall z.\ eq(x,y) \land eq(y,z) \rightarrow eq(x,z)$ ++ 
-  * Congruence for function symbols: for $f \in {\cal L}$ function symbol with $ar(f)=n$, ++ | 
-\[ 
-   ​\forall x_1,​\ldots,​x_n,​ y_1,​\ldots,​y_n.\ (\bigwedge_{i=1}^n eq(x_i,​y_i)) \rightarrow eq(f(x_1,​\ldots,​x_n),​f(y_1,​\ldots,​y_n)) 
-\] 
-++ 
-  * Congruence for relation symbols: for $R \in {\cal L}$ relation symbol with $ar(R)=n$, ++ | 
-\[ 
-   ​\forall x_1,​\ldots,​x_n,​ y_1,​\ldots,​y_n.\ (\bigwedge_{i=1}^n eq(x_i,​y_i)) \rightarrow (R(x_1,​\ldots,​x_n) \leftrightarrow R(y_1,​\ldots,​y_n)) 
-\] 
-++ 
- 
-**Definition:​** if an interpretation $I = (D,\alpha)$ the axioms $AxEq$ are true, then we call $\alpha(eq)$ (the interpretation of eq) a //​congruence//​ relation for interpretation $I$. 
- 
-**Side remark:** Functions are relations. ​ However, the condition above for function symbols is weaker than the condition for relation symbols. ​ If $f$ is a function, then the relation $\{(x_1,​\ldots,​x_n,​f(x_1,​\ldots,​x_n)) \mid x_1,​\ldots,​x_n \in D \}$ does not satisfy the congruence condition because it only has one result, namely $f(x_1,​\ldots,​x_n)$,​ and not all the results that are in relation eq with $f(x_1,​\ldots,​x_n)$. 
- 
-===== References ===== 
-  * [[Calculus of Computation Textbook]], Section 3.1