LARA

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

sav08:atomic_diagram_normal_form [2009/05/12 23:30]
vkuncak
sav08:atomic_diagram_normal_form [2015/04/21 17:30]
Line 1: Line 1:
-====== Atomic Diagram Normal Form ====== 
- 
-We next consider a syntactic normal form that helps us understand the decidability of the combination problem. 
- 
- 
-===== Flat Form ===== 
- 
-By introducing fresh variables, each conjunction of literals can be represented as an equisatisfiable conjunction of only "flat literals",​ which are flat atomic formulas or their negation, where flat atomic formula is 
-\[ 
-   ​R(y_1,​\ldots,​y_n) 
-\] 
-\[ 
-    x = y 
-\] 
-\[ 
-    x = f(y_1,​\ldots,​y_n) 
-\] 
-We call this "flat form" of the conjunction of literals. ​ (We can also eliminate $x \neq f(y_1,​\ldots,​y_n)$ if needed.) 
- 
-Rewrite rule that describes this transformation:​ 
-\[ 
-    C[t] \ \ \leadsto \ \ (x=t) \land C[x] 
-\] 
- 
-**Example:​** Represent ​ $f(x)+y < z$ as 
-\[ 
-    x_1 = f(x) \land s_1 = x_1 + y \land s_1 < z 
-\] 
- 
- 
- 
- 
-===== Finiteness of Flat Literals with Fixed Variables ===== 
- 
-Consider a formula in flat form.  Let language ${\cal L}$ contain only the symbols occurring in the formula. ​ For the fixed set of variables occurring there is a finite number of flat atomic formulas. 
- 
-Assume $K$ variables. ($K = |FV(C)|$) 
- 
-Number of $R(y_1,​\ldots,​y_n)$ is: $K^n$ 
- 
-Number of $x=y$ atomic formulas is: $K^2$ 
- 
-Number of $x=f(y_1,​\ldots,​y_n)$ literals is: $K^{n+1}$ 
- 
-Note: if we did **not** have only flat literals, we could have infinitely many atomic formulas, because of arbitrarily large terms. 
- 
-**Example:​** When we have relation symbols $<$ and no function symbols, and consider 3 variables $x$,​$y$,​$z$,​ possible atomic formulas are: 
-  * $x=x$, $y=y$, $z=z$, $x=y$, $y=x$, $x=z$, $z=x$, $y=z$, $z=y$ 
-  * $x<x$, $y<y$, $z<z$, $x<y$, $y<x$, $x<z$, $z<x$, $y<z$, $z<y$ 
-and there are 3^2+3^2=18 atomic formulas. 
- 
-===== Atomic Diagram Normal Form ===== 
- 
-For each flat literal $L$, $C$ is equivalent to $(C \land L) \lor (C \land \lnot L)$ and $\lnot L$ is a conjunction of flat literals. 
- 
-Let variables of $C$ be $V_C$.  ​ 
- 
-//Atomic diagram conjunction//​ is a flat form such that for each flat atomic formula $A$ in variables $V_C$ either $A$ or $\lnot A$ appears. 
- 
-Each conjunction of flat literals is equivalent to a disjunction of atomic diagram conjunctions. ​ Such form can be very large and we do not need to go that far, but we can when we need to. 
- 
-Note: if we simply guess all possible conjunctions of literals and negations, some of them will be unsatisfiable in the theory. ​ Those are useless and we should eliminate them.  For example, if we consider equality literals, then  
-\[ 
-    x \neq z \land y = z \land x = y 
-\] 
-is unsatisfiable. ​ Only those conjunctions of equality literals can be satisfiable that correspond to an equivalence relations on variables. ​ Such conjunction of literals that corresponds to an equivalence relation is called **arrangement** in the context of combination techniques. 
- 
-$C$ can be rewritten as such (notating $L_i$ the $i^{th}$ flat literal and $A_{n+i}^{\alpha^{n+i}}$ the truth value of the $i^{th}$ variable): 
- 
-$C = \bigvee_{\alpha_{n+1},​ ..., \alpha_m}L_1\land ...\land L_n\land A_{n+1}^{\alpha^{n+1}}\land ...\land A_m^{\alpha^m}$ 
- 
-Which in turn can be rewritten as (notating $Ar_i$ the $i^{th}$ possible arrangement):​ 
- 
-$C \leadsto \bigvee_i C \land Ar_i$