LARA

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
sav08:a_simple_sound_combination_method [2009/05/12 22:52]
vkuncak
sav08:a_simple_sound_combination_method [2015/04/21 17:30] (current)
Line 16: Line 16:
  
 Improvement of precision: if $F$ is equivalent to disjunction $\vee_{j=1}^m D_j$ then to prove $F$ unsatisfiable,​ for each $1 \le j \le m$ check that $D_j$ is unsatisfiable by applying each of the provers. Improvement of precision: if $F$ is equivalent to disjunction $\vee_{j=1}^m D_j$ then to prove $F$ unsatisfiable,​ for each $1 \le j \le m$ check that $D_j$ is unsatisfiable by applying each of the provers.
- 
-===== Examples ===== 
- 
-Consider decision procedure $P_U$ for uninterpreted symbols and $P_A$ for Presburger arithmetic. ​ Let approximation $\alpha_U$ convert formula to negation normal form, and then drop all literals that contain arithmetic elements. ​ Similarly, $\alpha_A$ converts to NNF, then drops all literlas that contain symbols not presented in Presburger arithmetic (e.g. uninterpreted function symbols). 
- 
-**Example** (from [[Calculus of Computation Textbook]], page 210, Example 10.1): Let $F$ be 
-\[ 
-    1 \le x \land x \le 2 \land f(x) \neq f(1) \land f(x) \neq f(2) 
-\] 
-This formula is unsatisfiable. ​ However, 
-\[ 
-   ​\alpha_U(F) = true 
-\] 
-\[ 
-   ​\alpha_A(F) = 1 \le x \land x \le 2 
-\] 
-and both approximations are satisfiable in resulting theories. 
- 
-Instead of doing approximation directly, let us transform the original formula into formula $F'$ where function application and arithmetic are separated: 
-\[ 
-   1 \le x \land x \le 2 \land y_1=1 \land f(x) \neq f(y_1) \land y_2=2 \land f(x) \neq f(y_2) 
-\] 
-Variables $x$ and $y_1$ both appear in the formula, so let us convert $F'$ into disjunction of $(F' \land x=y_1) \lor (F' \land x \neq y_1)$. ​ We then check satisfiability for each of the disjuncts. ​ Consider, for example, $F' \land x = y_1$, which is formula $F''​$ 
-\[ 
-   1 \le x \land x \le 2 \land y_1=1 \land f(x) \neq f(y_1) \land y_2=2 \land f(x) \neq f(y_2) \land x = y_1 
-\] 
-We have 
-\[ 
-   ​\alpha_U(F''​) = f(x) \neq f(y_1) \land f(x) \neq f(y_2) \land x=y_1 
-\] 
-which is unsatisfiable. ​ Then, considering formula $F' \land x=y_1$, we can do further case analysis on equality of two variables, say $x=y_2$. ​ For $F' \land x \neq y_1 \land x = y_2$ we similarly obtain unsatisfiability of $\alpha_U$-approximation. ​ The remaining case is $F' \land x \neq y_1 \land x \neq y_2$.  For this formula, denoted $F'''​$,​ we have 
-\[ 
-   ​\alpha_A(F'''​) = 1 \le x \land x \le 2 \land y_1=1 \land y_2=2 \land x \neq y_1 \land x \neq y_2 
-\] 
-which is unsatisfiable. ​ Therefore, by transforming formula into disjunction of formulas, we were able to prove unsatisfiability. ​ Two things helped precision 
-  * separating literals into literals understood by individual theories (unlike mixed literals $f(x) \neq f(1)$) 
-  * doing case analysis on equality of variables 
-These are the key techniques that we use in methods that are complete for quantifier-free combinations of procedures that reason about disjoint function and predicate symbols. 
  
  
Line 70: Line 32:
 $\alpha^p(\forall x.F) = \forall x. \alpha^p(F)$ $\alpha^p(\forall x.F) = \forall x. \alpha^p(F)$
  
-$\alpha^p(\exists x.F) = \forall ​x. \alpha^p(F)$+$\alpha^p(\exists x.F) = \exists ​x. \alpha^p(F)$
  
 $\alpha^p(A) = A$ for any supported atomic formula $\alpha^p(A) = A$ for any supported atomic formula
Line 81: Line 43:
  
 What does $\alpha^1$ do on a conjunction of flat literals? What does $\alpha^1$ do on a conjunction of flat literals?
 +
 +===== Examples =====
 +
 +Consider decision procedure $P_U$ for uninterpreted symbols and $P_A$ for Presburger arithmetic. ​ Let approximation $\alpha_U$ convert formula to negation normal form, and then drop all literals that contain arithmetic elements. ​ Similarly, $\alpha_A$ converts to NNF, then drops all literlas that contain symbols not presented in Presburger arithmetic (e.g. uninterpreted function symbols).
 +
 +**Example** (from [[Calculus of Computation Textbook]], page 210, Example 10.1): Let $F$ be
 +\begin{equation*}
 +    1 \le x \land x \le 2 \land f(x) \neq f(1) \land f(x) \neq f(2)
 +\end{equation*}
 +This formula is unsatisfiable. ​ However,
 +\begin{equation*}
 +   ​\alpha_U(F) = true
 +\end{equation*}
 +\begin{equation*}
 +   ​\alpha_A(F) = 1 \le x \land x \le 2
 +\end{equation*}
 +and both approximations are satisfiable in resulting theories.
 +
 +Instead of doing approximation directly, let us transform the original formula into formula $F'$ where function application and arithmetic are separated:
 +\begin{equation*}
 +   1 \le x \land x \le 2 \land y_1=1 \land f(x) \neq f(y_1) \land y_2=2 \land f(x) \neq f(y_2)
 +\end{equation*}
 +Variables $x$ and $y_1$ both appear in the formula, so let us convert $F'$ into disjunction of $(F' \land x=y_1) \lor (F' \land x \neq y_1)$. ​ We then check satisfiability for each of the disjuncts. ​ Consider, for example, $F' \land x = y_1$, which is formula $F''​$
 +\begin{equation*}
 +   1 \le x \land x \le 2 \land y_1=1 \land f(x) \neq f(y_1) \land y_2=2 \land f(x) \neq f(y_2) \land x = y_1
 +\end{equation*}
 +We have
 +\begin{equation*}
 +   ​\alpha_U(F''​) = f(x) \neq f(y_1) \land f(x) \neq f(y_2) \land x=y_1
 +\end{equation*}
 +which is unsatisfiable. ​ Then, considering formula $F' \land x=y_1$, we can do further case analysis on equality of two variables, say $x=y_2$. ​ For $F' \land x \neq y_1 \land x = y_2$ we similarly obtain unsatisfiability of $\alpha_U$-approximation. ​ The remaining case is $F' \land x \neq y_1 \land x \neq y_2$.  For this formula, denoted $F'''​$,​ we have
 +\begin{equation*}
 +   ​\alpha_A(F'''​) = 1 \le x \land x \le 2 \land y_1=1 \land y_2=2 \land x \neq y_1 \land x \neq y_2
 +\end{equation*}
 +which is unsatisfiable. ​ Therefore, by transforming formula into disjunction of formulas, we were able to prove unsatisfiability. ​ Two things helped precision
 +  * separating literals into literals understood by individual theories (unlike mixed literals $f(x) \neq f(1)$)
 +  * doing case analysis on equality of variables
 +These are the key techniques that we use in methods that are complete for quantifier-free combinations of procedures that reason about disjoint function and predicate symbols.
  
 ===== References ===== ===== References =====
  
   * [[http://​lara.epfl.ch/​~kuncak/​papers/​ZeeETAL08FullFunctionalVerificationofLinkedDataStructures.html|Full Functional Verification of Linked Data Structures]]   * [[http://​lara.epfl.ch/​~kuncak/​papers/​ZeeETAL08FullFunctionalVerificationofLinkedDataStructures.html|Full Functional Verification of Linked Data Structures]]