Proving Termination of Scala Programs
by Constrained Term Rewriting

Dragana Milovancevi¢, Carsten Fuhs, Viktor Kuncéak

July 20, 2025
WPTE'25, Birmingham, UK

Motivation: Termination Proofs for Program Equivalence

» Warm-Up Example: Are f and f2 equivalent?

def f(t: Formula): Boolean = t match
case True => true
case False => false
case Not(n) => if f(n) then false else true
case Imply(l, r) => £(Not(1)) || £(r)

def f2(t: Formula): Boolean = t match
case True => true
case False => false
case Not(n) => !f2(t)
case Imply(l, r) => f2(Not(1)) || f2(r)

Motivation: Termination Proofs for Program Equivalence

» Warm-Up Example: Are f and f2 equivalent?

def f(t: Formula): Boolean = t match
case True => true
case False => false
case Not(n) => if f(n) then false else true
case Imply(l, r) => £(Not(1)) || £(r)

def f2(t: Formula): Boolean = t match
case True => true
case False => false
case Not(n) => !f2(t)
case Imply(l, r) => f2(Not(1)) || f2(r)

N2
No. But, without termination checks, tools can claim otherwise! ‘

Motivation: Termination Proofs for Program Equivalence

» Warm-Up Example: Are f and f2 equivalent?

def f2(t: Formula): Boolean =
1£2(t)

N2
No. But, without termination checks, tools can claim otherwise! ‘

Context: Stainless Scala Verifier

» Open-source deductive verifier for Scala programs: stainless.epfl.ch

> Used to verify data structures, blockchain clients, compression algorithms
> Bolts (Stainless Verified Scala): github.com/epfl-lara/bolts

» ASPLOS'22 Tutorial: epfl-lara.github.io/asplos2022tutorial

stainless.epfl.ch
https://epfl-lara.github.io/asplos2022tutorial/

Termination Proving in Stainless

» Termination measures (ranking functions)
» Not only in Stainless: also in Dafny, Why3, KeY...

> Manual decreases annotations (or, if we are lucky, inferred automatically)

Termination Proving in Stainless

» Termination measures (ranking functions)
» Not only in Stainless: also in Dafny, Why3, KeY...

> Manual decreases annotations (or, if we are lucky, inferred automatically)

def f(t: Formula): Boolean =
decreases(t.size) // user provides
t match
case True => true
case False => false
case Not(n) => if f(n) then false else true
case Imply(l, r) => f(Not(1)) || £(x)

This program terminates!

How does this scale?

> Manual annotations: takes time

> Automated measure inference: also takes time, and does not always work

Bonus Background: Measure Transfer in Stainless

» Heuristic: Equivalent programs terminate for the same reason
» + Improves the scalability over measure inference

» — Still requires the initial measure, manual effort

Our Work: Proving Termination by Constrained Term Rewriting

» Goal: Use termination provers that operate on term rewrite systems
> Already used for proving termination of programs in Haskell, Java, Prolog, C

> AProVE, Cora, Ctrl: use logically constrained term rewrite systems (LCTRS)

(VAR n 1 r tmpl tmp2)

(RULES
f(True) -> TRUE
f(False) -> FALSE
f(Not(n)) -> f1(Mot(n), £(n))
f1(Not(n), tmpl) -> FALSE :|: tmpl
f1(Not(n), tmpl) -> TRUE :|: !tmpl
f(Imply (1,r)) -> f2(Imply (1,r), £(Not(1)))
£f2(Imply (1,r), tmp2) -> TRUE :|: tmp2
£f2(Imply (1,r), tmp2) -> f£(r) :|: !tmp2

Termination was proven

From Scala to LCTRS

> Input: Stainless (Inox) trees
» Output: LCTRS rules
» Currently, AProVE's Integer Term Rewrite System syntax

» Goal: LCTRS termination implies Scala program termination

Stainless Pipeline, Including Our Modifications (in red)

Scala Program
(with contracts)

Stainless
R (peeeeseemssssssssssssseseeoonnieeeoonne e 1
i Transformations | AProVE
¢ Method lifting & Inner function lifting f 4
+ Effects elimination e Measure inference |
' e Imperative elimination e ..
""""""""""""""""" v | LCTRS
Inox Program
‘ Inox
Verification ! | Properties s
[Dependent Type Checking }v——b Property 1 SMT
| | prereg Solvers
S

Example: Translating Specifications

def gcd(a: Int, b: Int): Int = {
require(a >= 0 && b >= 0)
if b == 0 then a else gcd(b, a¥%b)
} ensuring(true)

ged(a,b) -> gcdO(a,b)

gcdO(a,b) -> gedi(a,b,b =0) :|: a> 0 /\ b >0

gedl(a,b,tb) -> gcd2(a,b,tb) :|: tb /\ a>= 0 /\ b >= 0

gedi(a,b,tb) -> gcd3(a,b,tb) :|: 'tb /\ a >0 /\ b > 0

gcd2(a,b,tb) -> gcd6(a,b,a) :|: tb /\ a >0 /\ b >=0

gcd3(a,b,tb) -> gcdd(a,b,tb,a % b) :|: !'tb /\ a>= 0 /\ b >= 0
gcd4(a,b,tb,tmp0) -> gcd5(a,b,tb,tmp0,gcd(b,tmp0)) :|: !'tb /\ a >= 0 /\ b >= 0
gcd5(a,b,tb,tmp0,ret_gcd(fresh)) -> gcd6(a,b,fresh) :|: !'tb /\ a > 0 /\ b >= 0
gcd6(a,b,res) -> gcd7(a,b,res,res) :|: TRUE /\ a >= 0 /\ b >= 0

gcd7 (tmpl,tmp2,tmp3,ret0d) -> ret_gcd(ret0)

Evaluation on Programming Assignments

Name LOC F D R S Inference Transfer LCTRS Total Proven
formula 50 2 1 1 37 0 27 24 28
sigma 10 1 1 3 704 0 678 0 678
prime 21 4 2 2 22 0 5 14 14
gcd 9 1 1 2 41 0 22 15 27

Discussion

» Unbounded vs bounded Scala integers

def overflow_fun(i: Int, n: Int): Int =
if i <= n then overflow_fun(i + 1, n) else i

Discussion

» Unbounded vs bounded Scala integers

def overflow_fun(i: Int, n: Int): Int =
if i <= n then overflow_fun(i + 1, n) else i

> Limited support for laziness (e.g. short-circuit evaluation); no lazy vals

Discussion

» Unbounded vs bounded Scala integers

def overflow_fun(i: Int, n: Int): Int =
if i <= n then overflow_fun(i + 1, n) else i

> Limited support for laziness (e.g. short-circuit evaluation); no lazy vals

» Analysis for arbitrary terms; requires termination of all functions
def main(x: Biglnt, y: Biglnt): Biglnt =
require(x > y)
helper(x, y)

def helper(x: Biglnt, y: BigInt): Biglnt =
if x <=0 then y - x
else if 2 * x > y then x - y
else 1 + helper(x, y)

This program does not terminate (!)

Conclusions

> Automated approach for termination analysis of Scala programs via a
translation to LCTRSs

> Integrated into the transformation pipeline of the Stainless Scala verifier

» Preliminary experiments show an improvement over existing techniques in
Stainless

> Potential for a hybrid approach combined with measure transfer

Future Work

» Add support for more Scala features (primarily higher-order functions)
» Add support for more tools as an alternative to AProVE
» Prove correctness of Scala to LCTRS translation

> Propagate information from the termination analysis to Scala

