
Proving Termination of Scala Programs
by Constrained Term Rewriting

Dragana Milovančević, Carsten Fuhs, Viktor Kunčak

July 20, 2025
WPTE’25, Birmingham, UK

Motivation: Termination Proofs for Program Equivalence

Ï Warm-Up Example: Are f and f2 equivalent?

def f(t: Formula): Boolean = t match
case True => true
case False => false
case Not(n) => if f(n) then false else true
case Imply(l, r) => f(Not(l)) || f(r)

def f2(t: Formula): Boolean = t match
case True => true
case False => false
case Not(n) => !f2(t)
case Imply(l, r) => f2(Not(l)) || f2(r)

Motivation: Termination Proofs for Program Equivalence

Ï Warm-Up Example: Are f and f2 equivalent?

def f(t: Formula): Boolean = t match
case True => true
case False => false
case Not(n) => if f(n) then false else true
case Imply(l, r) => f(Not(l)) || f(r)

def f2(t: Formula): Boolean = t match
case True => true
case False => false
case Not(n) => !f2(t)
case Imply(l, r) => f2(Not(l)) || f2(r)

No. But, without termination checks, tools can claim otherwise! ,

Motivation: Termination Proofs for Program Equivalence

Ï Warm-Up Example: Are f and f2 equivalent?

def f(t: Formula): Boolean = t match
case True => true
case False => false
case Not(n) => if f(n) then false else true
case Imply(l, r) => f(Not(l)) || f(r)

def f2(t: Formula): Boolean = t match
case True => true
case False => false
case Not(n) => !f2(t)
case Imply(l, r) => f2(Not(l)) || f2(r)

No. But, without termination checks, tools can claim otherwise! ,

Context: Stainless Scala Verifier

Ï Open-source deductive verifier for Scala programs: stainless.epfl.ch
Ï Used to verify data structures, blockchain clients, compression algorithms
Ï Bolts (Stainless Verified Scala): github.com/epfl-lara/bolts
Ï ASPLOS’22 Tutorial: epfl-lara.github.io/asplos2022tutorial

stainless.epfl.ch
https://epfl-lara.github.io/asplos2022tutorial/

Termination Proving in Stainless

Ï Termination measures (ranking functions)
Ï Not only in Stainless: also in Dafny, Why3, KeY...
Ï Manual decreases annotations (or, if we are lucky, inferred automatically)

def f(t: Formula): Boolean =
decreases(t.size) // user provides
t match

case True => true
case False => false
case Not(n) => if f(n) then false else true
case Imply(l, r) => f(Not(l)) || f(r)

This program terminates! ✓

Termination Proving in Stainless

Ï Termination measures (ranking functions)
Ï Not only in Stainless: also in Dafny, Why3, KeY...
Ï Manual decreases annotations (or, if we are lucky, inferred automatically)

def f(t: Formula): Boolean =
decreases(t.size) // user provides
t match

case True => true
case False => false
case Not(n) => if f(n) then false else true
case Imply(l, r) => f(Not(l)) || f(r)

This program terminates! ✓

How does this scale?

Ï Manual annotations: takes time
Ï Automated measure inference: also takes time, and does not always work

Bonus Background: Measure Transfer in Stainless

Ï Heuristic: Equivalent programs terminate for the same reason
Ï + Improves the scalability over measure inference
Ï – Still requires the initial measure, manual effort

Our Work: Proving Termination by Constrained Term Rewriting
Ï Goal: Use termination provers that operate on term rewrite systems
Ï Already used for proving termination of programs in Haskell, Java, Prolog, C
Ï AProVE, Cora, Ctrl: use logically constrained term rewrite systems (LCTRS)

(VAR n l r tmp1 tmp2)
(RULES

f(True) -> TRUE
f(False) -> FALSE
f(Not(n)) -> f1(Not(n), f(n))
f1(Not(n), tmp1) -> FALSE :|: tmp1
f1(Not(n), tmp1) -> TRUE :|: !tmp1
f(Imply (l,r)) -> f2(Imply (l,r), f(Not(l)))
f2(Imply (l,r), tmp2) -> TRUE :|: tmp2
f2(Imply (l,r), tmp2) -> f(r) :|: !tmp2

)

Termination was proven ✓

From Scala to LCTRS

Ï Input: Stainless (Inox) trees
Ï Output: LCTRS rules

Ï Currently, AProVE’s Integer Term Rewrite System syntax
Ï Goal: LCTRS termination implies Scala program termination

Stainless Pipeline, Including Our Modifications (in red)

Example: Translating Specifications
def gcd(a: Int, b: Int): Int = {

require(a >= 0 && b >= 0)
if b == 0 then a else gcd(b, a%b)

} ensuring(true)

gcd(a,b) -> gcd0(a,b)
gcd0(a,b) -> gcd1(a,b,b = 0) :|: a >= 0 /\ b >= 0
gcd1(a,b,tb) -> gcd2(a,b,tb) :|: tb /\ a >= 0 /\ b >= 0
gcd1(a,b,tb) -> gcd3(a,b,tb) :|: !tb /\ a >= 0 /\ b >= 0
gcd2(a,b,tb) -> gcd6(a,b,a) :|: tb /\ a >= 0 /\ b >= 0
gcd3(a,b,tb) -> gcd4(a,b,tb,a % b) :|: !tb /\ a >= 0 /\ b >= 0
gcd4(a,b,tb,tmp0) -> gcd5(a,b,tb,tmp0,gcd(b,tmp0)) :|: !tb /\ a >= 0 /\ b >= 0
gcd5(a,b,tb,tmp0,ret_gcd(fresh)) -> gcd6(a,b,fresh) :|: !tb /\ a >= 0 /\ b >= 0
gcd6(a,b,res) -> gcd7(a,b,res,res) :|: TRUE /\ a >= 0 /\ b >= 0
gcd7(tmp1,tmp2,tmp3,ret0) -> ret_gcd(ret0)

Evaluation on Programming Assignments

Discussion
Ï Unbounded vs bounded Scala integers

def overflow_fun(i: Int, n: Int): Int =
if i <= n then overflow_fun(i + 1, n) else i

Ï Limited support for laziness (e.g. short-circuit evaluation); no lazy vals
Ï Analysis for arbitrary terms; requires termination of all functions

def main(x: BigInt, y: BigInt): BigInt =
require(x > y)
helper(x, y)

def helper(x: BigInt, y: BigInt): BigInt =
if x <= 0 then y - x
else if 2 * x > y then x - y
else 1 + helper(x, y)

This program does not terminate (!) ✗

Discussion
Ï Unbounded vs bounded Scala integers

def overflow_fun(i: Int, n: Int): Int =
if i <= n then overflow_fun(i + 1, n) else i

Ï Limited support for laziness (e.g. short-circuit evaluation); no lazy vals

Ï Analysis for arbitrary terms; requires termination of all functions
def main(x: BigInt, y: BigInt): BigInt =

require(x > y)
helper(x, y)

def helper(x: BigInt, y: BigInt): BigInt =
if x <= 0 then y - x
else if 2 * x > y then x - y
else 1 + helper(x, y)

This program does not terminate (!) ✗

Discussion
Ï Unbounded vs bounded Scala integers

def overflow_fun(i: Int, n: Int): Int =
if i <= n then overflow_fun(i + 1, n) else i

Ï Limited support for laziness (e.g. short-circuit evaluation); no lazy vals
Ï Analysis for arbitrary terms; requires termination of all functions

def main(x: BigInt, y: BigInt): BigInt =
require(x > y)
helper(x, y)

def helper(x: BigInt, y: BigInt): BigInt =
if x <= 0 then y - x
else if 2 * x > y then x - y
else 1 + helper(x, y)

This program does not terminate (!) ✗

Conclusions

Ï Automated approach for termination analysis of Scala programs via a
translation to LCTRSs

Ï Integrated into the transformation pipeline of the Stainless Scala verifier
Ï Preliminary experiments show an improvement over existing techniques in

Stainless
Ï Potential for a hybrid approach combined with measure transfer

Future Work

Ï Add support for more Scala features (primarily higher-order functions)
Ï Add support for more tools as an alternative to AProVE
Ï Prove correctness of Scala to LCTRS translation
Ï Propagate information from the termination analysis to Scala

