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Techniques and tools for program verification often require a termination proof as an ingredient of
correctness proofs for other program properties (e.g., program equivalence). However, the range of
termination proof techniques is vast, so implementing them for every single programming language
anew would not be an efficient use of time for tool developers.

In this extended abstract, we propose an indirect route for proving termination of Scala pro-
grams, via a translation to constrained term rewriting systems so that termination of the rewrite
system implies termination of the Scala program. This allows for separating the language-specific
and the language-independent aspects of the analysis into different tools. We have implemented
our approach in the Stainless program verifier. Preliminary experiments with the termination prover
AProVE indicate that this approach can lead to an increased termination success rate compared to
existing approaches.

1 Introduction

One of the tasks for program analysis tools is to prove termination of their input programs. This task
matters both on its own and also as a precondition for proof techniques for other properties, such as pro-
gram equivalence [20] and properties expressed using multiple user-defined function invocations. While
implementing language-specific proof techniques is an option, it is arduous and ignores opportunities for
reuse of existing infrastructure: over the last decades, techniques and tools for push-button termination
analysis of different computational formalisms have matured, particularly so for various flavors of Term
Rewriting Systems (TRSs). This suggests a two-stage approach to termination analysis by program anal-
ysis tools with a separation of concerns: (1) extract a TRS from the input program such that termination
of the TRS implies termination of the input program, and (2) call an external termination tool for TRSs
to get a termination proof (if one can be found).

Similar two-stage approaches for analysis of properties via term rewriting have been used in the
literature for proofs of termination of programs in many languages (Haskell [[8]], Java [25]], Prolog [9,27]],
and C [6l|15]]), for proofs of equivalence (e.g., in C programs [6,/15]]), or inference of complexity bounds
(for Prolog [9], Jinja [22], and OCaml []1])).

A strength of term rewriting is that it can express inductive data types in a natural way. However,
classic term rewriting has a drawback for this use in program analysis: it does not offer a direct rep-
resentation of primitive data types, which are predefined in most programming languages (e.g., integer
numbers and their operations). As classic term rewriting is Turing-complete, it is possible to encode
these data types and their operations via terms and recursive rewrite rules. However, a lot of the available
domain knowledge baked into the programming language semantics (e.g., the meaning of the operators
such as + and x) would be “obfuscated in translation”, so the existing infrastructure for automated rea-
soning, such as SMT solvers, cannot directly benefit from this domain knowledge, e.g., in the search for
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expr = rule ::=
literal term — term
| id | term — term ( term )
| expr ~ expr
| not expr
| expr.id term =
| id(expr, ..., expr) literal
| val id = expr in expr | id
| if expr then expr else expr | id ( term*)
| if expr isInstanceOf id then expr else expr | term ~ term
| assume(expr) in expr | | term
literal ::= literal ::=
integerLiteral integerLiteral
| true | TRUE
| false | FALSE
Figure 1: Input syntax, where ~ is a symbol in Figure 2: LCTRS syntax, where ~ is a symbol
{+, — *,/, %, and, or, >, >, <, <, ==}. in {+, —, *, /, %, and, or, >, >, <, <, ==}.

a termination proof step. This is why in recent years, constrained term rewriting [4}/11}/13]] has gained
popularity for applications in program analysis. This form of term rewriting is augmented with built-in
logical constraints, which can be analyzed by SMT solvers. Kop and Nishida [13] proposed Logically
Constrained Term Rewriting Systems (LCTRSs) as an attempt at unifying different forms of constrained
term rewriting. This formalism has gained traction in the community, and several research groups have
built tools to analyze different properties of LCTRSs (e.g., Cora [16], CRaris [23]], crest [28]], Ctrl [14],
RMT [2], TcT [32]).

In this work, we propose a translation from Scala programs to LCTRSs such that termination of
the generated LCTRS implies termination of the original Scala program. We have implemented the
translation in the Stainless program verifier [17]. Stainless already contains a pipeline that successively
“desugars” Scala programs for their analysis and applies program transformations between different tree
representations of the program. Our prototype implementation enters the tool chain at a suitable level,
allowing Stainless to extract an LCTRS for delegation of the termination analysis to an external tool.

To analyze termination of the extracted LCTRSs, our implementation calls the program analysis tool
AProVE [7]. As Scala (more precisely, the language fragment that our translation supports) uses a call-
by-value evaluation strategy, a proof of innermost termination of the generated LCTRS suffices to prove
termination of the original Scala program. In this extended abstract, we present our Scala-to-LCTRS
export and a preliminary evaluation.

2 Language and Background

We use LCTRSs [13]] as an intermediate representation for proving termination of Scala [24]] programs.
This section defines the subset of Scala that we consider and gives a brief background on LCTRSs.

We consider a purely functional subset of Scala. The input to our system is an abstract syntax tree
(AST) that we extract from Stainless at the last stage of its transformation pipeline. We define the
supported AST syntax in Figure [I}
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An LCTRS is defined as a sequence of rules / — r ( C ), where [ and r are terms, and C is a
logical constraint. We define the supported LCTRS syntax in Figure[2] Termination of the LCTRSs that
we generate can be checked by external tools such as AProVE [7]], which we used in our evaluation,
Ctrl [14], or Cora [16]. Initial experimentation with the three tools indicated that AProVE was the most
successful in dealing with systems originating from automated translations, which tend to have many
more rewrite rules than a hand-optimized system, as we illustrate on an example in the next section. Our
translation from Scala to LCTRSs is inspired by the related work on converting C programs to LCTRS
in the c2lctrs tool [15]]. After illustrating our translation on an example Scala program in Section [3| we
define the translation rules in Section [4

3 Ilustrative Example: Formula Programming Assignment

This section gives an overview of our Stainless to LCTRS export on one illustrative example.

We consider the example student submission from the formula benchmark in related work on auto-
mated grading of programming assignments [|20,29]]. Specifically, we consider a minimized definition to
focus on the essence of our translation:

sealed abstract class Formula

case object True extends Formula

case object False extends Formula

case class Not(p: Formula) extends Formula

case class Imply(l: Formula, r: Formula) extends Formula

In our evaluation in Section[5] we consider the full definition from the formula benchmark, which includes
cases for boolean variables, conjunction and disjunction.

Figure [3] shows the Scala program under analysis. This example is particularly challenging for ter-
mination proving due to the recursive call f(Not(l)), whose argument does not trivially decrease over
Imply(l, r). In Stainless, measure inference for functions on algebraic data types considers the structural
size of data type arguments. In our example, the default size function defines the size of Imply(True, True)
as 1 + 0+ 0 =1, and the size of Not(True) as 1 + 0 = 1 (not decreasing). As a result, Stainless fails to
automatically infer a termination measure for this function and cannot prove termination. We thus turn
to external termination provers.

The remainder of Figure [3] shows the input of our translation (Stainless tree as defined in Figure [I)
and the output of our translation (LCTRS rules as defined in Figure [2). Our translation traverses the
input Stainless trees and iteratively constructs the corresponding LCTRS rules. To capture the semantics
of the program control flow, during the translation we keep track of conditions as constraints along
the execution path. For example, the else branch from if f(Not(s.l)) then true else f(s.r) produces the
following condition:

f16(t, Imply(s_1, s_r), tmpl) —f18(t, Imply(s_I, s _r), tmpl) ( ltmpl )

which is then preserved in the subsequent rules for this else branch (symbols f18 to f22).

The AProVE termination prover successfully proves termination of our resulting LCTRS, ensuring
termination of the original Scala program.

This simplified example already illustrates interesting aspects of our translation, such as handling of
algebraic data types (ADTs) and ADT selectors.
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// Scala source code

def f(t: Formula): Boolean = t match
case True = true
case False = false
case Not(t) = if f(t) then false else true
case Imply(l, r) = f(Not(l)) || f(r)

f(t) —f1(t, t)

f1(t, True) — f2(t, True)

(t, Not(s_p)) —f3(t, Not(s_p))

f1(t, False) — f3(t, False)

f1(t, Imply(s_1I, s_r)) = f3(t, Imply(s_I, s_r))

f2(t, True) — f22(t, True, TRUE)

f3(t, False) — f4(t, False)

f3(t, Not(s_p)) — f5(t, Not(s_p))

f3(t, True) — f5(t, True)

f3(t, Imply(s_1, s_r)) = 5(t, Imply(s_1, s_r))

f4(t, False) — f22(t, False, FALSE)

5(t, Not(s_p)) — 6(t, Not(s_p))

5(t, True) — f12(t, True)

f5(t, False) — f12(t, False)

5(t, Imply(s_1, s_r)) = f12(t, Imply(s_1, s_r))

f6(t, Not(s_p)) — f7(t, Not(s_p). s_p)

f7(t, Not(s_p)

8(t, Not(s_p), tmp0, r_f(w)) — fo(t, Not(s_ p)

fo(t, Not(s_p), tb) — f10(t, Not(s_p), th) ( tb)
) ), t

fo(t, Not(s_p), tb) — f11(t, Not(s_p), th) ( Itb )

w)

// Intermediate representation of source code
def f(t: Formula): Boolean =
val s: Formula =t
if s islnstanceOf True then true
else if s isinstanceOf False then false
else if s islnstanceOf Not then
val tb: Boolean = f(s.p)
if tb then false else true
else if s islnstanceOf Imply then f(Not(s.l)) || f(s.r)

, tmp0) — f8(t, Not(s_p), tmp0, f(tmp0))

s_r), tmp2, f(tmp2))

ply(s_I,s_r), w)

tmpl) ( tmpl )
tmpl) ( ltmpl )
TRUE) ( tmpl )
tmpl, s _r) ( ltmpl)

| s_r), tmpl, tmp3, f(tmp3)) ( 'tmpl )

Imply(s_I, s _r), w) ( ltmpl)

f10(t, Not(s_p), tb) — f22(t, Not(s_p), FALSE) ( tb )
f11(t, Not(s_p), tb) — f22(t, Not(s_p), TRUE) { 'tb )
f12(t, Imply(s_1, s_r)) = f13(t, Imply(s_1, s_r))
f12(t, Not(s_p)) — f21(t, Not(s_p))

f12(t, True) — f21(t, True)

f12(t, False) — f21(t, False)

f13(t, Imply(s_I, s_r)) —f14(t, Imply(s_I, s_r), Not(s_1I))
f14(t, Imply(s_I, s_r), tmp2) — f15(t, Imply(s_|,
f15(t, Imply(s_I, s r), tmp2, r_f(w)) — f16(t, Im
f16(t, Imply(s_1, s_r), tmpl) —f17(t, Imply(s_I, s _r),
f16(t, Imply(s_1, s_r), tmpl) —f18(t, Imply(s I, s_r),
f17(t, Imply(s_1, s_r), tmpl) —f22(t, Imply(s_ | s 1),
f18(t, Imply(s_1, s_r), tmpl) —f19(t, Imply(s I, s r),
f19(t, Imply(s_I, s_r), tmpl, tmp3) — f20(t, Imply(s
f20(t, Imply(s_I, s_r), tmpl, tmp3, r_f(w)) — f22(t,
f21(t, s) —f22(t, s, €)

f22(tmp4, tmp5, ret) —r_f(ret)

Figure 3: Input to Stainless: Scala program (top-left). Input to our translation: Stainless tree at the last
pipeline stage, after pattern matching elimination (top-right). Output of our translation: LCTRS rules
(bottom). The ( ) syntax denotes the constraints gathered along the execution path.
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4 Scala to LCTRS Translation

In this section, we present our translation from Scala to LCTRS.

We take a Scala program as an abstract syntax tree at the last stage of the Stainless pipeline (Inox
trees). Figure [T illustrates the syntax of expressions in these input trees. We then perform a series of
transformations to obtain the output trees corresponding to a LCTRS. Figure [2] illustrates the syntax of
these output trees. Our pretty-printer then exports the resulting LCTRS rules such that their termination
with regard to innermost rewriting can be analyzed by AProVE.

We define the series of transformations as follows:

1. Pre-transformation phase
2. Translation phase
3. Post-transformation phase.

The pre-transformation phase consists of let-transformations (introducing let bindings for expressions)
and short-circuiting (eliminating and/or operators by transforming them to if-then-else). For example, in
our formula submission in Section [3] the boolean expression f(Not(s.l)) || f(s.r) is transformed to:

val tmpl = f(Not(s.l))

if tmpl then true else f(s.r),
which produces rules corresponding to the symbols f14 to f22 in Figure

The post-transformation phase consists of introducing function wrappers, that is, rules that simplify
extraction of function results. For example, in our formula submission in Figure 3] the symbol r_f enables
the extraction of function f’s result.

The main translation phase is defined in the convert function, which takes the following input:

— f, the name of the function under conversion;

— i, the number of symbols already declared for this function;

— X =[x1,...,X,], a sequence of variables which are known at the start of the function or block;

— ¥ =[y1,...,Ym)> a sequence of locally declared variables (to be erased at the end of the function or

block);

— R: the set of rules declared so far;

— C: the constraints so far;

— S: the statement to convert.
It produces the following output:

— R’: the resulting set of rules (the original set R union rules from converting the § statement);

— j: the last index of symbols declared for the S statement.
At the end of this conversion, the resulting set R’ defines the resulting LCTRS. To translate a full program,
we convert each individual function and then take the union of the resulting sets R’ for each function.

We next consider the definition of convert for each case in Figure [Tl We use the syntax X to denote
a sequence of elements xi,...,x, and the :: symbol to denote sequence concatenation. We denote
substitution of by b in a by a [t := b ]. In each invocation of convert, Stainless expressions are highlighted
in gray.

4.1 Assume Statements

We define convert(f, i, X, 7, R, C, assume(p)ins ) := convert(f, i, X, 7, R,pANC, s).
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4.2 Constants and Variables

We define convert(f, i, X, 7, R,C, a) =(R’,i+1), where:
~R=RU{f(X,7) =fi1(X,¥,a)(C)}

4.3 Binary Operators

For each binary operator we define convert(f, i, x, 7, R,C, a~b) :=(R’,i+]), where:
- R =RU{ fi(X,¥)—=fir1(X.V.a~b)(C)}

4.4 Not

We define convert(f, i, ., Y,R,C, nota) :=(R’,i+1), where:
- R=RU{ f(%, ) =fi (¥, ¥,nota) (C)}

4.5 Function Invocations

We define convert(f, i, x, 7, R,C, gley,...,en)) =(R’,i+2), where:
— R =RU{ fi(X,) —=fi1(X, V.gle1,...,en) (C),
fi+1(7a 77 rg(t)) HfH‘Z(?’ 77 t) <C >}
Here, the term r,(¢) denotes extraction of function g’s result. This term is introduced in the post-
transformation phase, as the right-hand side of the last rule in g’s translation. For example, in the formula
submission in Figure[3] the function call f(r) evaluates to the term r_f(w) below the symbol 20.

4.6 Let Bindings

To convert a statement val b =d in e:

— Let (Ry, k) be the result of convert(f, i, , ?, {}LC, d)

— Let Ry’ be Ry [fi(e1,...,em) = fk(€1,...,€‘f‘+m,€m)]

— Let Ry be RURY’
We define convert(f, i, X, 7, R,C, valb=dine) :=convert(f, i, X, 7 2 [b], Ro, C, ).

Here, the sequence ey, ..., ez 1y, €m denotes the removal of local variables which are out of scope at
the end of a block. The same substitution takes place in the branches of the if expressions (Section
and in pattern matching cases (Section {.9).

4.7 1If Expressions

To convert a statement if ¢ then s else 7:
— Let (Ry, k) be the result of convert(f, i +1, X 7, [,{},cAC, s)
Let (R3, n) be the result of convert(f, k, X 7, [L{},lenC, t)
Let Ry’ be R [fk(el , ...,em) = fn(el , ...,e‘;|+|}~,‘,em)]
Let R3’ be R; [fn(el, ...7em) = fn(el, ...7e|;|+|y|,em)]
We define convert(f, i, x, 7, R,C, if cthenselset) :=(R’, n), where:
~ R =RU{fi(Z.7) =fin(T. F) (¢ AC). (R, F) = /i@, F) (e AC)} URy URY’

For example, a function

LAt this stage of the translation, ~ can be any of the symbols in {4, —, *, /, %, >, >, <, <, ==}. The symbols
and, or cannot appear because they get eliminated in the pre-transformation phase.
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def foo(x: BiglInt): BigInt =
if x > 0 then g(x) else h(x)

would be translated to:

foo0(x) — fool(x, x)
(x, tmp5) — foo2(x, tmp5, 0)
(x, tmp5, tmp6) — foo3(x, tmp5 > tmp6)
foo3(x, tb) — food(x, tb) ( tb )
foo3(x, th) — foob(x, tb) ( 'tb )
foo4(x, thb) — foo5(x, tb, g(x)) ( tb )
foob(x, tb, ret g(fresh0)) — foo8(x, tb, fresh0) ( tb )
foob(x, thb) — foo7(x, tb, h(x)) ( !tb )
foo7(x, tb, ret h(freshl)) — foo8(x, tb, freshl) { Itb )
foo8(tmp7, tmp8, retl) — ret foo(retl)

This example shows how the control flow of an if expression is represented with the help of different
function symbols foo4 and foob6 such that a rewrite sequence starting from foo(t) for an integer t will
result in exactly one of the branches of the if expression being evaluated.

In contrast, with a translation via rules

foo(x) — myif(x > 0, fool(x), foo2(x))

fool(x) —r_g(g(x))
foo2(x) —r_h(h(x))

(x
myif(TRUE, x, y) —x
myif(FALSE, x, y) —vy

with a single function symbol myif for all if expressions, both branches would be evaluated (which is why
we avoid this alternative translation).

4.8 ADT Selectors (Field Accesses)

To convert a statement a.ey:

— LetXy" be (¥ ::: ¥)[a:=A (W)], where A is the constructor of a.e; and W fresh field variables.
We define convert(f, i, X, 7 R,C, a.e;) :=(R’,i+1), where:

R =RU{ (@) =fir1(Z, V. wp) (C))

4.9 Pattern Matching

To convert a statement if a isInstanceOf A; then s else ¢:
— Let { Ay, ..., A, } be all constructors of the supertype of A;
Let Xy1, ... , Xy be (X 2 YV)a :=A1 ()], ..., (X 22 V)[a = A, (V)] respectively
Let (R;, k) be the result of convert(f, i +1, W, [, {}.C, s)
Let (R3, n) be the result of convert(f, k, ® :: ¥, [1, {},C, t)
— Let Ry’ be Ry [fr(er,...,em) = fuleq, ...,e‘;|+|}~,‘,em)]
We define convert(f, i, ¥, 7, R, C, if aislnstanceOf A; then s else ) := (R’, n), where:
- RR=RU{
[iGyD) = filGyD) (C ) filGyi=1) — fiGyi={) (C),
F@D = fi1 () (C
S = fGi ) (C Yooy [iGIm) = fiGTm) (C)
} URy URj3
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For example, consider the following statement from the formula submission in Figure [3
if s isInstanceOf Imply then f(Not(s.l)) || f(s.r). Here, A; corresponds to Imply, the set { Ay, ..., A, } cor-
responds to the set of constructors of the type Formula, and the sequence Xy{, ... , Xy, at this point
in the translation corresponds to (s, True), (s, False), (s, Not(s_p)), (s, Imply(s_I, s_r)), resulting in the
following rules:

f12(s, True) — f21(s, True) // fi — fk

f12(s, False) — f21(s, False) // fi — fk

f12(s, Not(s_p)) — f21(s, Not(s_p)) // fi — fk

f12(s, Imply(s_1, s_r)) —f13(s, Imply(s_I, s _r)) // fi — fi+1

where 13 and 21 lead to the then and else branches, respectively.

5 [Evaluation

We next present our evaluation of termination checking techniques using our LCTRS export on existing
benchmarks drawn from programming assignments. In our evaluation, we consider AProVE’s Integer
Term Rewrite Systems format (.itrs) [4] and use AProVE to prove their terminationE]

We compare our results to two existing techniques in Stainless for proving termination: measure
inference and measure transfer. Measure inference in Stainless was partially carried over from the Leon
verifier [30], whose termination analysis was developed in the MSc thesis of Nicolas Voirol, along with
support for generic types and quantifiers [31]]. Subsequent work introduced a foundational type system
that enforces termination [[12]. Measure transfer was later introduced in [21]], providing significant au-
tomation over measure inference for batched termination proving of equivalent programs, while requiring
the original program to be annotated with a termination measure as a termination proof.

Table shows the results of our evaluation. We consider the formula and sigma assignments from [20]],
as well as the prime and gcd assignments from the experience report in [[19]. Each benchmark contains
one or more reference solutions annotated with termination measures used for measure transfer, and
equivalent student submissions with no measure annotations, where automated measure inference fails.
Columns Inference and Transfer show the number of submissions successfully proven terminating by
Stainless using measure inference and measure transfer, respectively. Column LCTRS shows number of
submissions successfully proven terminating by AProVE.

In the formula benchmark, for 37 submissions where measure inference fails, the evaluation in [20]
uses manual annotations to prove termination of 25 submissions (for the remaining submissions, the
manual annotator did not find a termination measure). In contrast, measure transfer automatically proves
correctness of 27 submissions (73%). The LCTRS export to AProVE proves termination of 24 submis-
sions (65%), which is a significant improvement over measure inference in Stainless. Seven submissions
could not be checked due to a limitation of our translation in handling Scala constructs. In the sigma
benchmark, measure transfer succeeds for 678 submissions (96%), out of 704 submissions that required
manual annotations in the previous evaluation in [20], due to limitations of measure inference. The 26
submissions where measure transfer fails are due to either equivalence proof failures (11) or due to in-
troducing inner functions that exist only in the candidate submission (15). We were unable to evaluate
our LCTRS export on this benchmark due to a lack of support for higher-order functions in AProVE’s
ITRSs. Our experiments show that, when removing the higher-order argument in the sigma submis-
sion, AProVE manages to prove termination, while measure inference in Stainless still fails. Since the

2Strictly speaking, ITRSs are not LCTRSs, but innermost termination of the LCTRSs when viewed as ITRSs implies
innermost termination of the LCTRS, and our LCTRS export currently does not use features that are not supported by ITRSs.
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Table 1: Evaluation results on programming assignments. Column LOC shows average number of lines
of code per program. Columns F and D indicate average number of function definitions and average
number of measure annotations per program, respectively. Columns R and S indicate the number of
reference programs and number of submissions, respectively. The last three columns show the results
of termination analysis. For each run, we set a 10 second timeout per Z3 solver query in Stainless and
a 10 minute overall timeout for AProVE. Column Total Proven shows the total number of submissions
successfully proven terminating, either using measure transfer or by AProVE.

Name LOC F D R S Inference Transfer LCTRS Total Proven
formula 59 2 1 1 37 0 27 24 28
sigma 10 1 1 3 704 0 678 0 678
prime 21 4 2 2 22 0 5 14 14
gcd 9 1 1 2 41 0 22 15 27

higher-order argument does not affect termination in this case, in the future, we will explore program
slicing techniques to remove higher-order arguments in the LCTRS export. In the prime benchmark,
we encounter submissions that, when manually annotated, pass termination checks. However, measure
transfer fails, because the inner function’s measure in the reference solutions gives a negative measure
when transferred to the inner function of the submission. LCTRS export outperforms measure transfer
in this benchmark, succeeding for 64% of purely-functional submissions (compared to 23% when using
measure transfer). Out of three benchmarks with multiple reference programs, only gcd has different
termination measures. Termination analysis via the LCTRS export to AProVE outperforms measure in-
ference in Stainless on this benchmark. However, this could be due to the use of unbounded integers
in the LCTRS export, instead of bounded integers in the original submissions. When using unbounded
integers in Stainless, measure inference succeeds for 31 submissions (out of 41 which were previously
timing out due to bounded integer arithmetic).

Overall, our evaluation suggests that our approach using LCTRS export with AProVE provides a
significant improvement over the measure inference in Stainless, but is still less effective than measure
transfer. However, unlike our approach, measure transfer requires initial manual measure annotations
in the reference program and is only useful when there is more than one program under analysis. Our
approach using LCTRS export is more general.

6 Discussion and Future Work

Our work has several limitations in its current state.

Primitive Data Types So far, the only primitive data types that our exported LCTRSs contain are
unbounded integers and booleans. The reason is that our current translation is backwards compatible to
ITRSs as an early form of constrained rewriting [4]]. This is why we currently export both unbounded and
bounded Scala integers to unbounded integers on LCTRS level. Consequently, our termination proofs
are correct only if there are no overflows in the original Scala program. To ensure correctness, Stainless
checks for overflows prior to running the LCTRS export.

To illustrate the issues with the discrepancy between bounded integers in Scala and their translation
as unbounded integers, we consider the following example program:
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def overflow fun(i: Int, n: Int): Int =
if i <n then overflow fun(i + 1, n) else i

This program does not terminate due to a possible overflow of i for n = 23! — 1. However, our translation
would result in an LCTRS which uses unbounded integers and thus terminates. Currently, our use of the
Scala-to-LCTRS translation is to prove termination of programs after having Stainless check for safety
errors such as integer overflows and division by zero. In our overflow fun example, Stainless will report
addition overflow in this program, and the analysis pipeline never runs the termination check. Similarly,
safety errors can occur in binary operations (Section 4.3). Stainless can detect such errors in an earlier
phase prior to termination checks, omitting the need for LCTRS translation and termination checks.

LCTRSs provide more generality, both in theory and in practice: for example, not only do LCTRSs
support bounded integers out of the box, but there are also dedicated termination proving techniques for
such bounded integers [18]. A natural next step would be to export bounded Scala integers to bounded
LCTRS integers.

Lazy Evaluation Our translation only supports a subset of Scala defined in Figure|I} Other advanced
Scala features, such as lazy vals, are out of the scope of our work. In future work, we could adapt the
approach used for proving termination of Haskell programs via term rewriting [8]. This approach uses
a form of abstract interpretation [3[] with the Haskell evaluation strategy to obtain rewrite rules whose
innermost termination implies termination of the original Haskell program with the Haskell evaluation
strategy. Alternatively/in addition, we could consider integrating lazy rewriting [26] into the target lan-
guage of our translation, although this integration would require setting up more complex termination
analysis infrastructure.

Higher-Order Functions Another limitation of the current state of our work is that our export does
not support higher-order functions, a common feature in functional programs. This matters even for
our benchmark set from a restricted application domain: recall that our translation was unable to han-
dle the sigma benchmark. However, in the meantime LCTRSs have been extended with higher-order
functions [[10,|11] to a formalism called Logically Constrained Simply-typed Term Rewriting Systems
(LCSTRSs), motivated by translation-based termination analysis for functional programs (such as the
present work). What is missing in the above work is support for techniques to simplify LCSTRSs with
many rules. Very recent work [S]] can help us overcome this limitation: in contrast to the earlier papers
on LCSTRSs, this paper targets innermost and call-by-value termination rather than termination with
regard to arbitrary rewrite strategies. This makes it possible to “chain” consecutive function calls, which
makes systems much more amenable to automated termination analysis. As this addresses the main ad-
vantage of ITRSs, we plan to target LCSTRSs with Cora [16] as termination prover to benefit from their
additional generality. Thus, an explicit removal of higher-order functions as part of the export may not
be needed.

Modular Analysis A limitation of our export is that the LCTRS does not contain information which
function symbols are allowed to occur in a start term of a possible infinite rewrite sequence. As a result,
the termination prover analyzes termination for arbitrary start terms.

For Scala programs where a helper function would be non-terminating for some inputs on which
it can never be called by the entry-point function, the resulting LCTRS would still be non-terminating
from corresponding terms. This behavior is in line with current termination analysis in Stainless, which
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def main(x: Biglnt, y: Biglnt): Biglnt =
require(x > y)
helper(x, y)

def helper(x: Biglnt, y: BigInt): Biglnt =
if x <0 theny — x
elseif 2 x x > y thenx — y
else 1 + helper(x, y)

Figure 4: The main function invokes the non-terminating helper function under the condition x > vy.

requires termination of all functions for all inputs

For example, the main function in Figure ff] invokes the helper function only when x > y holds. How-
ever, this information is not visible in the translation of the helper function. Because the helper function is
not terminating when considered in isolation (due to the recursive call helper(x, y)), the resulting LCTRS
is non-terminating.

Cora supports labeling symbols that should not be considered as possible start terms as “private” [10]].
Adding such labels in our export would provide the needed information for a more powerful analysis.

Proof of Correctness Future work may include a mechanized proof of correctness of our translation,
including formal semantics of the supported Scala subset and of LCTRS and a proof of preservation of
termination and non-termination properties between the input and the generated output.

Propagation of information from the termination analysis to Scala Currently the only information
from the termination analysis tool that reaches the user is whether termination was proved or disproved,
or no output was found. This can be accompanied by a human-readable proof on rewrite level, but
this has the downside that the user of Stainless cannot be expected to be familiar with the intricacies of
termination analysis of term rewriting.

Future work will involve extracting information from the proof that can be presented to a Scala
programmer. From a termination proof, a termination measure for a Scala function could be extracted
and added as an annotation to the Scala function. From a non-termination proof, a non-terminating term
could be extracted and translated back to Scala level. Here it would be necessary to check whether this
non-terminating term would be reachable from a valid start location of the Scala function.

7 Conclusions

We have presented an approach for termination analysis of Scala programs via a translation to LCTRSs.
Our approach allows for an automated extraction of an LCTRS such that innermost termination of the
LCTRS implies termination of the Scala program. We have integrated our approach into the transforma-
tion pipeline in the Stainless program verifier. Our experiments on benchmarks from student program-
ming assignments indicate complementarity to other approaches, such as the existing measure inference
in Stainless or the measure transfer of manual measure annotations from related functions.

3In a system like Stainless, if the intention is to have a function that only expects certain inputs, then this should be reflected
in the parameter data types and function preconditions.
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