
Proving Termination via Measure Transfer in
Equivalence Checking

Dragana Milovančević1�[0009−0003−0795−881X]

dragana.milovancevic@epfl.ch, Carsten Fuhs2�[0009−0007−3697−4383]

c.fuhs@bbk.ac.uk, Mario Bucev1�mario.bucev@epfl.ch, and Viktor

Kunčak1�[0000−0001−7044−9522] viktor.kuncak@epfl.ch

1 EPFL, Station 14, CH-1015 Lausanne, Switzerland
2 Birkbeck, University of London, United Kingdom

Abstract. Program verification can benefit from proofs with varied in-
duction schemas. A natural class of induction schemas, functional in-
duction, consists of those derived from definitions of functions. For such
inductive proofs to be sound, it is necessary to establish that the func-
tions terminate, which is a challenging problem on its own. In this pa-
per, we consider termination in the context of equivalence checking of
a candidate program against a provably terminating reference program
annotated with termination measures. Using equivalence checking, our
approach automatically matches function calls in the reference and can-
didate programs and proves termination by transferring measures from
a measure-annotated program to one without annotations. We evaluate
this approach on existing and newly written termination benchmarks,
as well as on exercises in programming courses. Our evaluation corpus
comprises around 10K lines of code. We show empirically that the ter-
mination measures of reference programs often successfully prove the
termination of equivalent candidate programs, ensuring the soundness of
inductive reasoning in a fully automated manner.

Keywords: Equivalence checking · Termination analysis · Termination
measures.

1 Introduction

Termination is a prototypical liveness property of programs; verifying program
termination is a long-standing problem in computing. Termination is also an in-
teresting property for practical program verification because it is implicit, in the
sense that it does not require developers to write specifications. It is important
because non-interactive non-terminating computations fail to deliver any useful
functionality. Furthermore, programs can be used to encode proofs and proof
hints through ghost state or proof irrelevance. Termination of such programs is
crucial for the soundness of all reasoning, even when reasoning applies to safety.

2 D. Milovančević et al.

In this paper, we focus on termination analysis in the context of program
equivalence. Equivalence checking has applications in proving program optimiza-
tions [27], regression verification [9, 28], refactoring [19], and automated grad-
ing [21]. However, while termination is often a prerequisite for the soundness of an
equivalence proof, many existing approaches put termination analysis aside and
leave it as the responsibility of end users [7,9]. Approaches that omit termination
checks can result in unsound equivalence proofs, leading to incorrect conclusions.

int foo(int x) {
int r;
if (x == 1) r = 1;
else r = foo(x);
return r;

}

int foo(int x) {
int r;
if (x == 1) r = 1;
else r = 2;
return r;

}

To illustrate this problem, we tried
feeding the following (non-equivalent)
functions to the REVE equivalence
checker [9], and got the following ver-
dict: “The programs have been proved
equivalent”! As the authors of REVE
state in [9], their approach indeed proves equivalence under the assumption of
termination, which does not hold here. On the other hand, in tools that do in-
tegrate equivalence checking with termination analysis, termination checks may
fail systematically [21]. As a result, such tools often need many manual annota-
tions, reducing the opportunities for fully automated deployment.

Researchers have built dedicated tools for automated termination check-
ing [2, 6, 10, 15, 16, 30]. Termination analysis is also integrated in proof assis-
tants [13,24] and program verifiers such as Dafny [18] or Stainless [17], by means
of synthesizing and verifying termination measures, also known as ranking func-
tions. Termination checking in Stainless was in part carried over from Leon [29],
along with support for generic types and quantifiers [31]. Subsequent work in-
troduced a foundational type system that enforces termination [12].

Tools like Stainless are good at verifying that a given termination measure for
a program is a valid termination proof. However, they are less good at synthesiz-
ing termination measures. Those limitations of termination analysis in Stainless
are evidenced in recent case studies, including the LongMap proof [5], which
modifies the implementation to add loop counters to prove termination, and the
QOI proof [3], with 23 measure annotations for 313 lines of implementation.

In this paper, we consider the automatic transfer of termination measures
between potentially-equivalent programs to facilitate equivalence checking. We
extend the equivalence checking functionality of the Stainless verifier [21] to per-
form measure transfer along with its automated equivalence proof generation. We
build on Stainless for the reasons discussed above, with an eye on improving au-
tomation of its equivalence checking component. We evaluate measure transfer on
termination and equivalence checking benchmarks and on student assignments.
We find that in most cases where Stainless can prove program equivalence, mea-
sure transfer results in a successful termination proof, effectively eliminating the
need for manual annotations. In general, one should expect that equivalent pro-
grams written by different developers will require a broad selection of different
termination measures. Our insight is that, in a practical case study on student
assignments, this diversity of measures usually does not arise. This insight leads
to a simple automated termination checking approach.

Proving Termination via Measure Transfer in Equivalence Checking 3

def finite(s: Stream): Boolean =
s match

case SCons(_, tf, sz) if tf().rank ≥ sz ⇒
false

case SCons(_, tf, sz) ⇒ finite(tf())
case _ ⇒ true

(a) Initial implementation. Stainless fails to infer
the measure and cannot prove termination.

def finite(stream: Stream): Boolean =
stream match

case SCons(_, tfun, sz) ⇒
val tail = tfun()
tail.rank < sz && finite(tail)

case SNil() ⇒ true

(b) Refactored implementation.
Stainless fails to prove termination.

def finite(s: Stream): Boolean =
decreases(s.rank) //given
s match

case SCons(_, tf, sz) if tf().rank ≥ sz ⇒
false

case SCons(_, tf, sz) ⇒ finite(tf())
case _ ⇒ true

(c) The decreases annotation, provided by the
user, specifies the measure that decreases in each
recursive call. With the help of decreases annota-
tion, Stainless succeeds at proving termination.

def finite(stream: Stream): Boolean =
decreases(stream.rank) //inferred
stream match

case SCons(_, tfun, sz) ⇒
val tail = tfun()
tail.rank < sz && finite(tail)

case SNil() ⇒ true

(d) Automated porting of the
decreases annotation. Stainless suc-
ceeds at proving termination and
equivalence to finite from Figure 1c.

Fig. 1: Refactoring and measure transfer. Manually inserted annotations (c) are
marked in red; annotations inferred via measure transfer (d) are marked in blue.

An extended version of this paper is available as a technical report [22] under
a CC BY-NC-ND license.

2 Illustrative Example

In this section, we illustrate our approach on an example of program refactoring.
We consider functions operating on user-defined streams:

sealed abstract class Stream
def rank = {

this match
case SCons(_, _, sz) if (sz > 0) ⇒ sz
case _ ⇒BigInt(0)

} ensuring(_ ≥ 0)
case class SCons(x: BigInt, tailFun: () ⇒Stream, sz: BigInt) extends Stream
case class SNil() extends Stream

Termination analysis of a similar encoding of streams in Stainless was previously
discussed in detail [12]. Here, we consider function finite, which defines a sufficient
condition that the input stream is finite, according to the provided ranked values.

Figure 1 shows two implementations of function finite: the initial implemen-
tation (1a) and the refactored implementation (1b). We run Stainless to prove

4 D. Milovančević et al.

termination of the initial implementation (1a), and we encounter a timeout.
We thus fall back on inserting manual measure annotations (1c). The decreases
clause specifies that the function terminates because the rank of the input stream
decreases at each recursive call. To prove the equivalence of the two implemen-
tations of finite, Stainless requires that both functions terminate. However, when
running Stainless to prove termination of the refactored implementation (1b),
once again, we obtain a timeout. Rather than providing another manual measure
annotation for the refactored program, we utilize the equivalence checking com-
ponent to automatically perform measure transfer (1d). As a result, the system
is able to prove termination, which completes the equivalence proof.

We found this approach particularly useful for larger programs, to automati-
cally map and transfer measures for inner functions (Appendix A in our technical
report [22]). We identify further applications in automated grading of program-
ming assignments, with several reference programs with different termination
measures (Appendix B in our technical report [22]).

3 Measure Transfer

In this section, we explain how we use measure transfer from potentially-
equivalent programs as a heuristic to speculate termination measures.

Terminology. In our context, a measure is a lexicographic combination of func-
tion(s) from function arguments to natural numbers. A measure m proves the
termination of a recursive function F if there is a decrease of the value of m
for each recursive call. In this case, m is also called a termination measure for
F . In Stainless, measures are provided as annotations for a function using the
decreases keyword. The annotations consist of (lexicographic combinations of)
Scala expressions.

We use the term measure transfer to refer to the general process of taking
a termination measure m for a function M and conjecturing that m (or a per-
mutation of m) is also a termination measure for a function F . This transfer is
guided by a partial equivalence proof of M and F as a heuristic.

Algorithm. We consider a setting with one or more single-function reference
programs, annotated with termination measures, and one or more single-function
candidate programs, without measure annotations. For each candidate program,
our algorithm is as follows:
1. Given: Reference programs M1,M2, . . . ,Mn with their respective termina-

tion measures m1,m2, . . . ,mn, proven terminating, and a candidate program
under analysis P .

2. Check whether there exists Mi provably equivalent to P (under the assump-
tion that P is terminating) such that mi is also a termination measure for
P (proving the assumption).

Proving Termination via Measure Transfer in Equivalence Checking 5

If there are multiple reference programs that are provably equivalent to P
(modulo the termination of P), we consider them all until we find a measure mi

that proves the termination of P (or we exhaust all options). If such a measure
mi exists, this concludes the equivalence proof.

The potential equivalence of Mi and P provides the motivation for trying mi

as a candidate termination measure, but there is no guarantee that mi should be
a termination measure for P . However, our experiments (Section 4) show that
this is often the case in our benchmarks.

Auxiliary Functions. Consider next a setting where programs consist of one
or more auxiliary functions. Termination proofs in Stainless are performed sep-
arately for each function as entry point [12]. For programs comprising multiple
functions, we identify pairs of potentially-equivalent functions for measure trans-
fer. For each such pair, our algorithm is as follows:
1. Given: A reference function M with termination measure m, proven termi-

nating, and a candidate function under analysis P , proven equivalent to M
for some argument permutation under the assumption that P is terminating,

2. Check whether m is also a termination measure for P , for the same argument
permutation (proving the assumption).
Search for potentially-equivalent auxiliary functions and corresponding ar-

gument permutations is inherited from the equivalence checking component of
Stainless; it is based on type- and test-directed search [21]. For an example of
measure transfer for auxiliary functions, see Appendix A of our report [22].

4 Evaluation

We implement measure transfer as a new mode for termination proving as part
of equivalence checking in the Stainless verifier, as an alternative to existing
measure inference. We evaluate measure transfer on termination and equivalence
benchmarks, as well as on programming assignments. For each run, we set a 10s
timeout for Z3 solver queries.

Benchmarks. Table 1 presents our collection of existing and newly written
benchmarks for termination and equivalence checking. We consider programs
with state, user-defined types, type parameters, as well as helper functions and
higher-order functions. Each benchmark contains two equivalent Scala programs:
one reference program, annotated with termination measures, and one refactored
candidate program, without any measure annotations.

Table 2 describes benchmarks from programming courses [20, 21]. Each
benchmark contains one or more reference solutions annotated with termina-
tion measures, and equivalent student submissions with no measure annotations,
where automated measure inference fails.

The source code of all our benchmarks is publicly available together with our
implementation in Stainless [23].

6 D. Milovančević et al.

Table 1: Evaluation results. LOC: total num-
ber of lines of code. F and D: number of func-
tions and number of measure (decreases) an-
notations in reference program, respectively. I
and T: outcome of equivalence checking when
using measure inference and measure transfer,
respectively (3 indicates success and 7 indi-
cates failure). IT and TT: total time for equiv-
alence checking when using measure inference
and measure transfer, respectively.
Name LOC F D I IT[s] T TT[s] src

AdjList 32 2 1 3 26.12 3 23.74 New
ArrayContent 12 1 1 3 12.85 3 13.32 New
ArrayHeap 58 4 1 3 27.47 3 26.19 New
ArrayInc 15 2 1 7 N/A 3 18.12 New
Boardgame 293 8 3 7 N/A 3 1186.6 New
FiniteStreams 28 1 1 7 N/A 3 16.07 [17]
MaxHeapify 51 3 1 7 N/A 3 15.12 New
Partial 27 4 1 7 N/A 3 15.80 [17]
SortedArray 26 2 1 3 15.18 3 13.03 New
Valid2DLen 17 1 1 7 N/A 3 19.10 New

Table 2: Further evaluation re-
sults, on programming assign-
ments. LOC: average number of
lines of code per program. F and
D: average number of function
definitions and average number
of measure annotations per pro-
gram, respectively. R: number of
reference programs. S: number
of submissions. I and T: num-
ber of submissions with success-
ful equivalence proof by measure
inference and measure transfer,
respectively.

Name LOC F D R S I T src

gcd 9 1 1 2 41 0 22 [20]
formula 59 2 1 1 37 0 27 [21]
prime 21 4 2 2 22 0 5 [20]
sigma 10 1 1 3 704 0 678 [21]

Results. Measure transfer succeeds for all benchmarks in Table 1, including
6 benchmarks where the type-based measure inference in Stainless [12] fails.
Furthermore, for benchmarks where measure inference succeeds, measure trans-
fer typically reduces the processing time. Occasionally, the overhead of measure
transfer transformations results in a slight time increase (e.g., in the smallest
ArrayContent benchmark).

Out of 3 benchmarks with multiple reference programs (Table 2), only gcd
has different termination measures (shown in Appendix B of our report [22]). In
the sigma benchmark, measure transfer succeeds for 678 submissions, out of 704
submissions that previously required manual annotations due to limitations of
measure inference [21]. The 26 submissions where measure transfer fails are due
to either equivalence proof failures (11) or due to introducing inner functions
that exist only in the candidate submission (15). In the formula benchmark, for
37 submissions where measure inference fails, the evaluation in [21] uses manual
annotations to prove termination of 25 submissions (for the remaining submis-
sions, the manual annotator did not find a termination measure). In contrast,
measure transfer automatically proves correctness of 27 submissions. In the prime
benchmark, we encounter a submission that, when manually annotated, passes
termination checks and is equivalent to one reference solution. However, the
measure transfer fails, because the inner function’s measure in the reference so-
lutions gives a negative measure when transferred to the inner function of the
submission.

Proving Termination via Measure Transfer in Equivalence Checking 7

5 Related Work

Our approach is related to ACL2’s defunT macro [14], which searches for termina-
tion measures in a database of already-proved termination theorems. Similarly,
we use reference programs to search for termination measures. Both defunT and
our work are instances of proof transfer [8] between related theorems. In our
case, the theorems have the form “function f terminates for all inputs”, and we
use equivalence as a heuristic in choosing candidate termination measures. More
generally, this line of work is in the space of proof repair [25], where work on ver-
ified programs so far seems to have focused mainly on partial correctness [11,26],
with the above exceptions.

We address the automatic synthesis of decreases annotations as termination
measures, which are also used in JML-like settings [4]. These termination mea-
sures are (lexicographic combinations of) functions to N and cover an important
class of termination proofs by ranking functions. Our work is related to the cou-
pling of the tools COSTA and KeY [1]. Given a Java program, COSTA finds a
termination measure, used by KeY to independently verify termination. How-
ever, COSTA needs to solve non-trivial constraint problems and considers only
specific shapes for the measures. Our approach uses significantly less search and
is not restricted to measures of a specific shape.

6 Conclusions

We have presented challenging examples in termination analysis in the context of
equivalence proofs, and have shown how we can address them using a technique
as simple as measure transfer. Our evaluation showed that measure transfer is
effective in practice: it provided significant improvement over the automated
measure inference in Stainless (including a speed-up in processing time), and
sometimes an improvement over manual annotations. This shows that, for ap-
plications such as automated grading, where standard classes of termination
measures may fail, measure transfer can lead to improvements for automation
and applicability. In the future, we will consider more complex measure trans-
formations, including transfer of termination lemmas.

Acknowledgments. This publication is based on collaboration within the COST
Action CA20111 - European Research Network on Formal Proofs (EuroProofNet),
supported by COST (European Cooperation in Science and Technology, www.cost.eu),
as well as the EPFL Doc.Mobility Grant “Termination Checking for Sound Equivalence
Proofs of Real-World Programs”. We thank the anonymous reviewers for their helpful
feedback. We thank Ioana Jianu for helping the development of array benchmarks.

Availability of Data and Software Stainless is under active development and is
available at [17]. The complete data set and instructions for reproducing the results
from this paper are available in an open access Zenodo repository [23].

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

8 D. Milovančević et al.

References

1. Albert, E., Bubel, R., Genaim, S., Hähnle, R., Puebla, G., Román-Díez, G.: A
formal verification framework for static analysis - as well as its instantiation to the
resource analyzer COSTA and formal verification tool KeY. Softw. Syst. Model.
15(4), 987–1012 (2016). https://doi.org/10.1007/S10270-015-0476-Y, https:
//doi.org/10.1007/s10270-015-0476-y

2. Brockschmidt, M., Cook, B., Ishtiaq, S., Khlaaf, H., Piterman, N.: T2: tem-
poral property verification. In: Chechik, M., Raskin, J. (eds.) Tools and Algo-
rithms for the Construction and Analysis of Systems - 22nd International Con-
ference, TACAS 2016, Held as Part of the European Joint Conferences on The-
ory and Practice of Software, ETAPS 2016, Eindhoven, The Netherlands, April
2-8, 2016, Proceedings. Lecture Notes in Computer Science, vol. 9636, pp. 387–
393. Springer (2016). https://doi.org/10.1007/978-3-662-49674-9_22, https:
//doi.org/10.1007/978-3-662-49674-9_22

3. Bucev, M., Kunčak, V.: Formally verified quite OK image format. In: Griggio,
A., Rungta, N. (eds.) 22nd Formal Methods in Computer-Aided Design, FMCAD
2022, Trento, Italy, October 17-21, 2022. pp. 343–348. IEEE (2022). https://doi.
org/10.34727/2022/ISBN.978-3-85448-053-2_41, https://doi.org/10.34727/
2022/isbn.978-3-85448-053-2_41

4. Burdy, L., Cheon, Y., Cok, D.R., Ernst, M.D., Kiniry, J.R., Leavens, G.T.,
Leino, K.R.M., Poll, E.: An overview of JML tools and applications. Int. J.
Softw. Tools Technol. Transf. 7(3), 212–232 (2005). https://doi.org/10.1007/
S10009-004-0167-4, https://doi.org/10.1007/s10009-004-0167-4

5. Chassot, S., Kunčak, V.: Verifying a realistic mutable hash table - case study (short
paper). In: Benzmüller, C., Heule, M.J.H., Schmidt, R.A. (eds.) Automated Rea-
soning - 12th International Joint Conference, IJCAR 2024, Nancy, France, July 3-6,
2024, Proceedings, Part I. Lecture Notes in Computer Science, vol. 14739, pp. 304–
314. Springer (2024). https://doi.org/10.1007/978-3-031-63498-7_18, https:
//doi.org/10.1007/978-3-031-63498-7_18

6. Chen, Y., Heizmann, M., Lengál, O., Li, Y., Tsai, M., Turrini, A., Zhang, L.:
Advanced automata-based algorithms for program termination checking. In: Foster,
J.S., Grossman, D. (eds.) Proceedings of the 39th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI 2018, Philadelphia, PA,
USA, June 18-22, 2018. pp. 135–150. ACM (2018). https://doi.org/10.1145/
3192366.3192405, https://doi.org/10.1145/3192366.3192405

7. Claessen, K., Johansson, M., Rosén, D., Smallbone, N.: Hipspec: Automating
inductive proofs of program properties. In: Fleuriot, J.D., Höfner, P., McIver,
A., Smaill, A. (eds.) ATx’12/WInG’12: Joint Proceedings of the Workshops on
Automated Theory eXploration and on Invariant Generation, Manchester, UK,
June 2012. EPiC Series in Computing, vol. 17, pp. 16–25. EasyChair (2012).
https://doi.org/10.29007/3qwr

8. Cohen, C., Crance, E., Mahboubi, A.: Trocq: Proof transfer for free, with or without
univalence. In: Weirich, S. (ed.) Programming Languages and Systems - 33rd Euro-
pean Symposium on Programming, ESOP 2024, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2024, Luxembourg City,
Luxembourg, April 6-11, 2024, Proceedings, Part I. Lecture Notes in Computer
Science, vol. 14576, pp. 239–268. Springer (2024). https://doi.org/10.1007/
978-3-031-57262-3_10, https://doi.org/10.1007/978-3-031-57262-3_10

https://doi.org/10.1007/S10270-015-0476-Y
https://doi.org/10.1007/S10270-015-0476-Y
https://doi.org/10.1007/s10270-015-0476-y
https://doi.org/10.1007/s10270-015-0476-y
https://doi.org/10.1007/978-3-662-49674-9_22
https://doi.org/10.1007/978-3-662-49674-9_22
https://doi.org/10.1007/978-3-662-49674-9_22
https://doi.org/10.1007/978-3-662-49674-9_22
https://doi.org/10.34727/2022/ISBN.978-3-85448-053-2_41
https://doi.org/10.34727/2022/ISBN.978-3-85448-053-2_41
https://doi.org/10.34727/2022/ISBN.978-3-85448-053-2_41
https://doi.org/10.34727/2022/ISBN.978-3-85448-053-2_41
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_41
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_41
https://doi.org/10.1007/S10009-004-0167-4
https://doi.org/10.1007/S10009-004-0167-4
https://doi.org/10.1007/S10009-004-0167-4
https://doi.org/10.1007/S10009-004-0167-4
https://doi.org/10.1007/s10009-004-0167-4
https://doi.org/10.1007/978-3-031-63498-7_18
https://doi.org/10.1007/978-3-031-63498-7_18
https://doi.org/10.1007/978-3-031-63498-7_18
https://doi.org/10.1007/978-3-031-63498-7_18
https://doi.org/10.1145/3192366.3192405
https://doi.org/10.1145/3192366.3192405
https://doi.org/10.1145/3192366.3192405
https://doi.org/10.1145/3192366.3192405
https://doi.org/10.1145/3192366.3192405
https://doi.org/10.29007/3qwr
https://doi.org/10.29007/3qwr
https://doi.org/10.1007/978-3-031-57262-3_10
https://doi.org/10.1007/978-3-031-57262-3_10
https://doi.org/10.1007/978-3-031-57262-3_10
https://doi.org/10.1007/978-3-031-57262-3_10
https://doi.org/10.1007/978-3-031-57262-3_10

Proving Termination via Measure Transfer in Equivalence Checking 9

9. Felsing, D., Grebing, S., Klebanov, V., Rümmer, P., Ulbrich, M.: Automating re-
gression verification. In: Proceedings of the 29th ACM/IEEE International Con-
ference on Automated Software Engineering. p. 349–360. ASE ’14, Association for
Computing Machinery, New York, NY, USA (2014). https://doi.org/10.1145/
2642937.2642987, https://doi.org/10.1145/2642937.2642987

10. Giesl, J., Aschermann, C., Brockschmidt, M., Emmes, F., Frohn, F., Fuhs, C.,
Hensel, J., Otto, C., Plücker, M., Schneider-Kamp, P., Ströder, T., Swiderski,
S., Thiemann, R.: Analyzing program termination and complexity automatically
with AProVE. J. Autom. Reason. 58(1), 3–31 (2017). https://doi.org/10.1007/
S10817-016-9388-Y, https://doi.org/10.1007/s10817-016-9388-y

11. Gopinathan, K., Keoliya, M., Sergey, I.: Mostly automated proof repair for verified
libraries. Proc. ACM Program. Lang. 7(PLDI), 25–49 (2023). https://doi.org/
10.1145/3591221, https://doi.org/10.1145/3591221

12. Hamza, J., Voirol, N., Kunčak, V.: System FR: Formalized foundations for the
Stainless verifier. Proc. ACM Program. Lang. 3(OOPSLA) (oct 2019). https:
//doi.org/10.1145/3360592, https://doi.org/10.1145/3360592

13. INRIA: Functional induction in coq. https://coq.inria.fr/refman/using/
libraries/funind.html (2021)

14. Kaufmann, M.: DefunT: A tool for automating termination proofs by using the
community books (extended abstract). In: Goel, S., Kaufmann, M. (eds.) Pro-
ceedings of the 15th International Workshop on the ACL2 Theorem Prover and
Its Applications, Austin, Texas, USA, November 5-6, 2018. EPTCS, vol. 280, pp.
161–163 (2018). https://doi.org/10.4204/EPTCS.280.12, https://doi.org/10.
4204/EPTCS.280.12

15. Kop, C.: WANDA - a higher order termination tool (system description). In: Ariola,
Z.M. (ed.) 5th International Conference on Formal Structures for Computation and
Deduction, FSCD 2020, June 29-July 6, 2020, Paris, France (Virtual Conference).
LIPIcs, vol. 167, pp. 36:1–36:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik
(2020). https://doi.org/10.4230/LIPICS.FSCD.2020.36, https://doi.org/10.
4230/LIPIcs.FSCD.2020.36

16. Kuwahara, T., Terauchi, T., Unno, H., Kobayashi, N.: Automatic termination ver-
ification for higher-order functional programs. In: Shao, Z. (ed.) Programming
Languages and Systems - 23rd European Symposium on Programming, ESOP
2014, Held as Part of the European Joint Conferences on Theory and Prac-
tice of Software, ETAPS 2014, Grenoble, France, April 5-13, 2014, Proceedings.
Lecture Notes in Computer Science, vol. 8410, pp. 392–411. Springer (2014).
https://doi.org/10.1007/978-3-642-54833-8_21, https://doi.org/10.1007/
978-3-642-54833-8_21

17. LARA, E.: Stainless. https://github.com/epfl-lara/stainless (2023)
18. Leino, K.R.M.: Dafny: An automatic program verifier for functional correctness.

In: Clarke, E.M., Voronkov, A. (eds.) Logic for Programming, Artificial Intelli-
gence, and Reasoning - 16th International Conference, LPAR-16, Dakar, Sene-
gal, April 25-May 1, 2010, Revised Selected Papers. Lecture Notes in Com-
puter Science, vol. 6355, pp. 348–370. Springer (2010). https://doi.org/10.1007/
978-3-642-17511-4_20, https://doi.org/10.1007/978-3-642-17511-4_20

19. Malík, V., Vojnar, T.: Automatically checking semantic equivalence between ver-
sions of large-scale C projects. In: 2021 14th IEEE Conference on Software Test-
ing, Verification and Validation (ICST). pp. 329–339 (2021). https://doi.org/
10.1109/ICST49551.2021.00045

https://doi.org/10.1145/2642937.2642987
https://doi.org/10.1145/2642937.2642987
https://doi.org/10.1145/2642937.2642987
https://doi.org/10.1145/2642937.2642987
https://doi.org/10.1145/2642937.2642987
https://doi.org/10.1007/S10817-016-9388-Y
https://doi.org/10.1007/S10817-016-9388-Y
https://doi.org/10.1007/S10817-016-9388-Y
https://doi.org/10.1007/S10817-016-9388-Y
https://doi.org/10.1007/s10817-016-9388-y
https://doi.org/10.1145/3591221
https://doi.org/10.1145/3591221
https://doi.org/10.1145/3591221
https://doi.org/10.1145/3591221
https://doi.org/10.1145/3591221
https://doi.org/10.1145/3360592
https://doi.org/10.1145/3360592
https://doi.org/10.1145/3360592
https://doi.org/10.1145/3360592
https://doi.org/10.1145/3360592
https://coq.inria.fr/refman/using/libraries/funind.html
https://coq.inria.fr/refman/using/libraries/funind.html
https://doi.org/10.4204/EPTCS.280.12
https://doi.org/10.4204/EPTCS.280.12
https://doi.org/10.4204/EPTCS.280.12
https://doi.org/10.4204/EPTCS.280.12
https://doi.org/10.4230/LIPICS.FSCD.2020.36
https://doi.org/10.4230/LIPICS.FSCD.2020.36
https://doi.org/10.4230/LIPIcs.FSCD.2020.36
https://doi.org/10.4230/LIPIcs.FSCD.2020.36
https://doi.org/10.1007/978-3-642-54833-8_21
https://doi.org/10.1007/978-3-642-54833-8_21
https://doi.org/10.1007/978-3-642-54833-8_21
https://doi.org/10.1007/978-3-642-54833-8_21
https://github.com/epfl-lara/stainless
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1109/ICST49551.2021.00045
https://doi.org/10.1109/ICST49551.2021.00045
https://doi.org/10.1109/ICST49551.2021.00045
https://doi.org/10.1109/ICST49551.2021.00045

10 D. Milovančević et al.

20. Milovancevic, D., Bucev, M., Wojnarowski, M., Chassot, S., Kuncak, V.: For-
mal autograding in a classroom (experience report) (2024), http://infoscience.
epfl.ch/record/309386

21. Milovančević, D., Kunčak, V.: Proving and disproving equivalence of functional
programming assignments. Proc. ACM Program. Lang. 7(PLDI) (jun 2023).
https://doi.org/10.1145/3591258, https://doi.org/10.1145/3591258

22. Milovančević, D., Fuhs, C., Bucev, M., Kuncak, V.: Proving Termination via Mea-
sure Transfer in Equivalence Checking (Extended Version). Tech. rep., EPFL (sep
2024)

23. Milovančević, D., Fuhs, C., Bucev, M., Kunčak, V.: Proving Termination via Mea-
sure Transfer in Equivalence Checking (Artifact) (Sep 2024). https://doi.org/
10.5281/zenodo.13787855, https://doi.org/10.5281/zenodo.13787855

24. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: a proof assistant for higher-
order logic, vol. 2283. Springer Science & Business Media (2002), https://doi.
org/10.1007/3-540-45949-9

25. Ringer, T.: Proof Repair. Ph.D. thesis, University of Washington, USA (2021),
https://hdl.handle.net/1773/47429

26. Ringer, T., Porter, R., Yazdani, N., Leo, J., Grossman, D.: Proof repair across type
equivalences. In: Freund, S.N., Yahav, E. (eds.) PLDI ’21: 42nd ACM SIGPLAN
International Conference on Programming Language Design and Implementation,
Virtual Event, Canada, June 20-25, 2021. pp. 112–127. ACM (2021). https://doi.
org/10.1145/3453483.3454033, https://doi.org/10.1145/3453483.3454033

27. Sharma, R., Schkufza, E., Churchill, B., Aiken, A.: Data-driven equivalence
checking. In: Proceedings of the 2013 ACM SIGPLAN International Confer-
ence on Object Oriented Programming Systems Languages & Applications. p.
391–406. OOPSLA ’13, Association for Computing Machinery, New York, NY,
USA (2013). https://doi.org/10.1145/2509136.2509509, https://doi.org/10.
1145/2509136.2509509

28. Strichman, O., Godlin, B.: Regression verification - A practical way to ver-
ify programs. In: Meyer, B., Woodcock, J. (eds.) Verified Software: Theories,
Tools, Experiments, First IFIP TC 2/WG 2.3 Conference, VSTTE 2005, Zurich,
Switzerland, October 10-13, 2005, Revised Selected Papers and Discussions. Lec-
ture Notes in Computer Science, vol. 4171, pp. 496–501. Springer (2005). https:
//doi.org/10.1007/978-3-540-69149-5_54

29. Suter, P., Köksal, A.S., Kuncak, V.: Satisfiability modulo recursive programs.
In: Yahav, E. (ed.) Static Analysis - 18th International Symposium, SAS 2011,
Venice, Italy, September 14-16, 2011. Proceedings. Lecture Notes in Computer
Science, vol. 6887, pp. 298–315. Springer (2011). https://doi.org/10.1007/
978-3-642-23702-7_23, https://doi.org/10.1007/978-3-642-23702-7_23

30. Urban, C.: FuncTion: An abstract domain functor for termination - (competi-
tion contribution). In: Baier, C., Tinelli, C. (eds.) Tools and Algorithms for the
Construction and Analysis of Systems - 21st International Conference, TACAS
2015, Held as Part of the European Joint Conferences on Theory and Prac-
tice of Software, ETAPS 2015, London, UK, April 11-18, 2015. Proceedings.
Lecture Notes in Computer Science, vol. 9035, pp. 464–466. Springer (2015).
https://doi.org/10.1007/978-3-662-46681-0_46, https://doi.org/10.1007/
978-3-662-46681-0_46

31. Voirol, N.: Termination Analysis in a Higher-Order Functional Context. Master’s
thesis, EPFL (2023), http://infoscience.epfl.ch/record/311772

http://infoscience.epfl.ch/record/309386
http://infoscience.epfl.ch/record/309386
https://doi.org/10.1145/3591258
https://doi.org/10.1145/3591258
https://doi.org/10.1145/3591258
https://doi.org/10.5281/zenodo.13787855
https://doi.org/10.5281/zenodo.13787855
https://doi.org/10.5281/zenodo.13787855
https://doi.org/10.5281/zenodo.13787855
https://doi.org/10.5281/zenodo.13787855
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-45949-9
https://hdl.handle.net/1773/47429
https://doi.org/10.1145/3453483.3454033
https://doi.org/10.1145/3453483.3454033
https://doi.org/10.1145/3453483.3454033
https://doi.org/10.1145/3453483.3454033
https://doi.org/10.1145/3453483.3454033
https://doi.org/10.1145/2509136.2509509
https://doi.org/10.1145/2509136.2509509
https://doi.org/10.1145/2509136.2509509
https://doi.org/10.1145/2509136.2509509
https://doi.org/10.1007/978-3-540-69149-5_54
https://doi.org/10.1007/978-3-540-69149-5_54
https://doi.org/10.1007/978-3-540-69149-5_54
https://doi.org/10.1007/978-3-540-69149-5_54
https://doi.org/10.1007/978-3-642-23702-7_23
https://doi.org/10.1007/978-3-642-23702-7_23
https://doi.org/10.1007/978-3-642-23702-7_23
https://doi.org/10.1007/978-3-642-23702-7_23
https://doi.org/10.1007/978-3-642-23702-7_23
https://doi.org/10.1007/978-3-662-46681-0_46
https://doi.org/10.1007/978-3-662-46681-0_46
https://doi.org/10.1007/978-3-662-46681-0_46
https://doi.org/10.1007/978-3-662-46681-0_46
http://infoscience.epfl.ch/record/311772

	Proving Termination via Measure Transfer in Equivalence Checking

