
On Decision Procedures for Collections,

Cardinalities, and Relations
LARA-REPORT-2009-004, August 2009

Kuat Yessenov1⋆, Ruzica Piskac2, and Viktor Kuncak2⋆⋆

1 MIT Computer Science and Artificial Intelligence Lab, Cambridge, USA
kuat@csail.mit.edu

2 EPFL School of Computer and Communication Sciences, Lausanne, Switzerland
firstname.lastname@epfl.ch

Abstract. Logics that involve collections (sets, multisets), and cardinal-
ity constraints are useful for reasoning about unbounded data structures
and concurrent processes. To make such logics more useful in verification
this paper extends them with the ability to compute direct and inverse
relation and function images. We establish decidability and complexity
bounds for the extended logics.

1 Introduction and Background

Deductive verification of software often involves proving the validity of formu-
las in expressive logics. Verification condition generation produces such formulas
directly from annotated source code [2, 4], whereas predicate abstraction tech-
niques [3] generate many formulas during fixpoint computation. Abstract inter-
pretation [5] precomputes parameterized transfer functions; the automation of
this process [24] also reduces to proving formula validity.

As the starting point of this paper we consider decidable logics whose vari-
ables denote collections of objects, corresponding to, for example, dynamically al-
located objects in the heap, or concurrent processes. Our logics support standard
set algebra operations such as ∩,∪ and complement, as well as the cardinality
operator that computes the number of elements in the collection, then imposes
linear integer arithmetic constraints on the cardinalities. One such logic is QF-
BAPA (quantifier-free Boolean Algebra with Presburger Arithmetic), which was
recently proved to belong to NP [15]. The result was subsequently generalized to
multisets (bags), in which elements can optionally repeat [21,22]. The usefulness
of collections and cardinality measures on them has been illustrated by a number
of examples from software analysis and verification, including not only decision
procedures [13, 15, 28] but also static analyses that operate directly on the set
abstraction or the cardinality abstraction [10, 12, 20].

⋆ Work done while Kuat Yessenov was visiting EPFL.
⋆⋆ This research is supported in part by the Swiss National Science Foundation Grant

“Precise and Scalable Analyses for Reliable Software”.

To make the logics of collection more useful, in this paper we generalize them
in a natural direction: we introduce functions and relations and allow comput-
ing images and inverse images of sets under these functions and relations. Our
primary motivation is that in verification problems, collections such as sets and
multisets are often defined by computing an image of a more concrete data struc-
ture, often itself a set (see Section 2). The resulting logics are extensions of both
the logics with cardinalities, but also of certain previously studied constraints
(none of which include symbolic cardinality bounds): certain Tarskian set con-
straints [9], certain Description Logics [1], and set-valued field constraints [14].
Our techniques are also related to the technique of bridging functions [18]. What
distinguishes our result from previous ones is the (often optimal) complexity that
we achieve in the presence of sets, multisets, relations, and symbolic cardinality
constraints. Our NEXPTIME fragment includes images of n-ary relations and
is thus not expressible in the two-variable logic with counting [19, 23].

Contributions. We summarize the contributions of this paper as follows:

– We describe a new NEXPTIME-complete logic that includes sets, n-ary re-
lations, unary functions, and symbolic cardinality constraints.

– We sketch the extension of the logic above with cardinalities of relations and
with n-ary function symbols; we prove 2-NEXPTIME upper bound for its
satisfiability.

– We point to a few simple extensions of the above logic that lead to undecid-
ability.

– We consider an extension of QFBAPA [15] with relation image constraints
of a relation between two disjoint sorts of elements results. Using the sort
restriction, we show that the sparse model solution phenomenon applies and
prove membership in NP (and thus NP-completeness).

– We show NEXPTIME completeness (by reduction to [21]) of a logic that
allows computing multisets instead of sets as function images, preserving
the multiplicity of elements that occur in the range of the function multiple
times. This is a natural definition of the notion of multiset comprehension
and arises e.g. when using multisets to abstract the content of a Java-like
linked data structures.

2 Example

Consider a dynamically allocated data structure (such as a list or a tree) that
manipulates a set of linked nodes denoted by the variable nodes. The useful
content in the data structure is stored in the data fields of the elements of nodes.
The nodes set can be either explicitly manipulated through a library data type
or built-in type [6], or it can be verified to correspond to a set of reachable
objects using techniques such as [26]. The content of the list, stored in the
content specification variable, is then an image of nodes under the function data.
We consider two cases of specification in our example: 1) content is a set, that
is, multiple occurrences of elements are ignored and 2) content is a multiset,
preserving the counts of occurrences of each element in the data structure.

2

nodes ⊆ alloc ∧ card tmp = 1 ∧ tmp ∩ alloc = ∅ ∧ data[tmp] = e ∧
content = data[nodes] ∧ nodes1 = nodes ∪ tmp ∧ content1 = data[nodes1] →

card content1 ≤ card content + 1

Fig. 1. Verification condition for verifying that by inserting an element into a list,
the size of the list does not decrease. The variables occurring in the formula have the
following types: nodes, alloc, tmp, e, content, content1 :: Set〈E〉, data :: E → E.

nodes ⊆ alloc ∧ card tmp = 1 ∧ tmp ∩ alloc = ∅ ∧ data[tmp] = e ∧
content = data[nodes] ∧ nodes1 = nodes ∪ tmp ∧ content1 = data[nodes1] →

card content1 = card content + 1

Fig. 2. Verification condition for verifying that by inserting an element into a list, the
size of a list increases by one. The variables occurring in the formula have the following
types: nodes, alloc, tmp, e :: Set〈E〉, content, content1 :: Multiset〈E〉, data :: E → E.

The verification condition generated for the case when the image is a set is
given in Figure 1. This formula belongs to the language QFBAPA-Rel defined in
Section 3 and a decision procedure presented there checks satisfiability of such
formulas. It reduces a formula to a (exponentially larger) quantifier-free BAPA
formula [15] by introducing Venn regions [25] and cardinality constraints on
them, and eliminating the function symbols such as data. The resulting formula
can be decided using the NP algorithm in [15], giving NEXPTIME procedure
overall.

A more precise abstraction is obtained if content is viewed as a multiset.
Figure 2 shows the verification condition for this case. Section 6 describes a
decision procedure for an extension of QFBAPA with function symbols where
functions can also return a multiset, not only set. The approach also rewrites
sets as a disjoint union of Venn regions. It then constrains the cardinality of the
multiset obtained through the image to be equal to the cardinality of the original
set. This final formula is a formula in the NP-complete logic for reasoning about
multisets and cardinality constraints [21, 22].

3 QFBAPA-Rel: A Logic of Sets, Cardinalities, Relations,

and Unary Functions

This section presents a decision procedure for the language of sets, cardinalities,
n-ary relations, and unary total functions. The language we consider is denoted
QFBAPA-Rel and is defined by the grammar in Figure 3. It naturally extends
quantifier-free fragment of BAPA [15] with unary function symbols (denoted by
f, g, . . .) and relations of any arity (denoted by p, q, r, . . . to distinguish them
from functions). The expression f [B] denotes the set {y | ∃x.x ∈ B ∧ y = f(x)}.
Cardinality constraints allow us, in particular, to express whether a function
is injective on A (by |f [A]| = |A|) or surjective onto A (f [U] = A). For a
binary relation r, the expression r[A] is a relational join expression denoting
{y | ∃x.x ∈ A∧ (x, y) ∈ r}. Analogously, r−1[B] denotes {x | ∃y.y ∈ B ∧ (x, y) ∈

3

r}. We require functions to be total, whereas relations need not be left-total
or right-total. Higher-arity relations have an analogous interpretation with the
term r[B1, . . . , Bi−1, ∗, Bi+1, . . . , Bk] standing for the set

{xi | ∃x1 ∈ B1, . . . , xi−1 ∈ Bi−1, xi+1 ∈ Bi+1, . . . , xk ∈ Bk ∧ (x1, . . . , xk) ∈ r}

for a relation r of arity k.

The decision problem we are concerned with is the satisfiability problem
for QFBAPA-Rel: the question of existence of a finite interpretation α in which
formula is true.

An interpretation assigns values to set, integer, function, and relation vari-
ables. If α is an interpretation then α[x := v] is an interpration with α[x :=
v](x) = v and α[x := v](y) = α(y) for x 6= y.

F ::= L | F1 ∨ F2 | ¬F

L ::= B1 ⊆ B2 | T1 < T2 | K dvdT

B ::= x | ∅ | U | B1 ∪ B2 | Bc | f [B] | f−1[B] | r[B] | r−1[B] |
r[B1, . . . , Bi−1, ∗, Bi+1, . . . , Bk]

T ::= k | K | MAXC | T1 + T2 | |B|
K ::= · · · | −2 | −1 | 0 | 1 | 2 | · · ·

Fig. 3. Syntax of QFBAPA-Rel

3.1 Decision Procedure for QFBAPA-Rel

Our decision procedure for QFBAPA-Rel satisfiability is a reduction to the satisfi-
ability of quantifier-free Boolean algebra with Presburger arithmetic (QFBAPA).
The first step of the reduction is elimination of function inverses and functional
and relational composition from the given formula. Because all functions are to-
tal, B = f−1[A] is equivalent to f [B] ⊆ A ∧ f [Bc] ⊆ Ac. We allocate a fresh set
variable for every functional or relational join application. For example, a formula
f [r[A]] ⊆ h[B∩C] becomes E ⊆ G∧D = r[A]∧E = f [D]∧F = B∩C∧G = h[F].
This separates functional and relational terms from the rest of the formula. Us-
ing these transformations we obtain (in polynomial time) a conjunction of a
QFBAPA formula FBAPA and a conjunction of set constraints FIMAGE.

For every function term f , formula FIMAGE contains constraints of the
form Ai = f [Bi] where Ai and Bi are set variables. For every relational
term r where r is binary, FIMAGE contains constraints of the form Ai =
r[Bi] and A′

i = r−1[B′
i] where Ai, A

′
i, Bi, B

′
i are set variables. For a rela-

tion r of arity k the formula FIMAGE contains constraints of the form Aj
i =

r[Bj
i1, . . . , B

j

i(j−1), ∗, B
j

i(j+1), . . . , B
j
k] for 1 ≤ j ≤ k.

4

Eliminating function applications. Let s1, . . . , sm be the Boolean algebra
terms representing the disjoint Venn regions that are formed by taking intersec-
tion

⋂

αi∈{0,1} bαi

i of all set variables bi appearing in the entire original formula.

For a set x, x1 denotes x and x0 denotes xc. We focus on a single function symbol
f and its constraints from FIMAGE, We repeat the following algorithm for every
function symbol f that appears in FIMAGE.

Let
∧

i Ai = f [Bi] be the constraints for f . Each term Bi may be written as
a disjoint union of cubes si1 ∪ si2 ∪ . . . ∪ sik

so that f [Bi] =
⋃

f [sij
]. Because

the cubes are disjoint, we can define the values of the function on each cube
independently. Introduce set variables tj = f [sj]. Replace each term f [Bi] with
the corresponding union

⋃

tij
of a subset of cube images:

Ai =
⋃

sj⊆Bi

tj (1)

After this transformation, the set constraints are reduced to QFBAPA by in-
troducing fresh set variables ti. Moreover, we introduce the following functional
consistency axioms :

∧

|ti| ≤ |si| ∧ (|ti| = 0 ⇔ |si| = 0) (2)

Theorem 1. The projections of the set of solutions (models) for formulas (1)
∧ (2) and the formula FIMAGE onto set variables Ai, Bi are equal.

Proof. Given a solution of FIMAGE, define the value of tj as the value of f [sj].
The result is a model satisfying (1) ∧ (2). Conversely, consider a model α of
(1) ∧ (2); we construct a model α′ that agrees with α on Ai, Bi and has the
value α′(f) such that α′(f [sj] = tj) holds. For different sj such definitions are
independent. For α(sj) = ∅ also α(sj) = ∅, so condition α′(f [sj] = tj) holds.
Otherwise, 0 < |α(tj)| ≤ |α(sj)| by (2). Then there is a surjective function
h : sj → tj . Pick any such h and define restriction of α′(f) on sj to be h.

Eliminating binary relations. Previous procedure does not apply in a
straightforward way to relations partly because we do not have a way to ex-
press directly inverses for relations that are not total. We instead apply the
algorithm in Figure 4 for each relation r. The motivation for this algorithm is
as follows.

Let Ai = r[Bi] and A′
i = r−1[B′

i] be the constraints from FIMAGE for r. Simi-
larly to the above, let bj be Venn regions over Bi. Introduce fresh set variables
cj that are constrained by cj = r[bj]. Because relational join commutes with set
union, Ai = r[Bi] is equivalent to Ai =

⋃

bj⊆Bi
cj . Repeat this procedure for B′

i

using b′k as Venn regions over B′
i. We obtain constraints of the form cj = r[bj]

and c′k = r−1[b′k].
Next, introduce new relation variables rjk meant to denote the restriction

{(x, y) | x ∈ bj ∧ y ∈ b′k ∧ (x, y) ∈ r} of the relation r to bj in the domain and
b′k in the codomain. Then r is the disjoint union of rjk over all pairs of j and k.

5

INPUT: contrains
V

i
Ai = r[Bi] ∧

V

i
A′

i = r−1[B′
i]

OUTPUT: an equisatisfiable QFBAPA formula

1. define Boolean algebra terms bj for Venn regions over Bi

2. define Boolean algebra terms b′k for Venn regions over B′
i

3. introduce fresh set variables Ljk, Rjk for every pair bj and b′k
4. introduce constraints Ljk ⊆ bj ∧ Rjk ⊆ b′k ∧ (Ljk = ∅ ⇐⇒ Rjk = ∅)
5. replace each set constraint Ai = r[Bi] with Ai =

S

bj⊆Bi

S

k
Rjk

6. replace each set constraint A′
i = r−1[Bi] with A′

i =
S

b′
k
⊆Bi

S

j
Ljk

7. take conjunction of all set constraints from steps 4,5,6

Fig. 4. Algorithm for eliminating relations from QFBAPA-Rel

We rewrite the constraints on cj , c
′
k as:

∧

j

(

cj =
⋃

k

rjk [bj]

)

∧
∧

k

(

c′k =
⋃

j

r−1
jk [b′k]

)

The behavior of each relation rjk is unrestricted by any other constraints as long
as it is a relation from domain bj to codomain b′k. That means that the relation
rjk is determined for our purposes by its domain and range rjk[bj] and r−1

jk [b′k].
We introduce two set variables to encode these as Rjk and Ljk, respectively. We
rewrite the relation constraints as cj =

⋃

k Rjk and c′k =
⋃

j Ljk.
The relational consistency condition amounts to the following axioms:

∧

j,k

Ljk ⊆ bj ∧ Rjk ⊆ b′k ∧ (Ljk = ∅ ⇐⇒ Rjk = ∅)

Because both j and k range over singly exponentially many variables, there are
singly exponentially many fresh variables and constraints introduced.

Theorem 2. The algorithm in Figure 4 produces a QFBAPA formula of singly
exponential size with the same set of solutions for Ai, Bi, A

′
i, B

′
i.

Proof. Because we only made sound syntactic transformations and introduced
variables defined by existing terms, it suffices to show that a model of the gen-
erated QFBAPA formula extends to a model of the original formula. Assume we
are given an interpretation of the QFBAPA formula, that is values of Ljk and
Rjk and the set variables from the original formula Ai, Bi, A

′
i, B

′
i. Relation con-

sistency axioms allow us to define total relations rjk by mapping every element
from Ljk to every element from Rjk. An interpretation of r is then the union of
all these pairwise non-intersecting relations rjk. To see that we satisfied the set
constraints, consider, for example, constraint Ai = r[Bi]:

r[Bi] =
⋃

bj⊆Bi

r[bj] =
⋃

bj⊆Bi

⋃

j′,k

rj′k[bj] =
⋃

bj⊆Bi

⋃

k

rjk[bj] =

=
⋃

bj⊆Bi

⋃

k

rjk [Ljk] =
⋃

bj⊆Bi

⋃

k

Rjk = Ai

6

Eliminating higher-arity relations. The algorithm for binary relations
extends naturally to higher-arity relations. We sketch the construction in this
section. We focus on a single k-arity relation r with set constraints Aj

i =

r[Bj
i1, . . . , B

j

i(j−1), ∗, B
j

i(j+1), . . . , B
j
k] for j = 1, . . . , k. Similar to above, we in-

troduce Venn regions bj
l over j-th coordinate set variables Bij . For a k-tuple of

Venn regions v = (b1
l1

, b2
l2

, . . . , bk
lk

), we consider the restriction rv of the relation

r to bj
lj

on every coordinate.

Observe that every set constraint can be replaced with a union of application
of the relations rv to tuples of Venn regions. The key idea is that each such
application is uniquely defined by projections of rv onto every coordinate. That
is we introduce k set variables {P i

v
}i=1,...,k for every relation rv such that:

∧

j=1,...,k

P j
v
⊆ bj

ij
∧

∧

j=1,...,k

|P j
v
| = 0 ∨

∧

j=1,...,k

|P j
v
| > 0

Any model to this condition gives rise to a well-defined relation rv equal to
the Cartesian product of the sets P 1

v
× . . . × P k

v
(or empty if any of them is

empty). This way we can reconstruct the original relation r from the pairwise
disjoint interpretations of relations rv.

For instance, the following formula represents a set constraint above (after
dropping j super-script):

Ai = r[Bi1, . . . , Bi(j−1), ∗, Bi(j+1), . . . , Bk] =
⋃

cubebl⊆Bil

r[b1, . . . , bj−1, ∗, bj+1, . . . , bk]

=
⋃

bl⊆Bil,l 6=j,v=(bl)

rv[b1, . . . , bj−1, ∗, bj+1, . . . , bk] =
⋃

bl⊆Bil,l 6=j,v=(bl)

P j
v

The total number of fresh set variables and the size of the resulting formula are
still singly exponential in the size of the formula, since we consider Venn regions
for each coordinate and take k-tuples of these regions for k linear in size.

3.2 Complexity of QFBAPA-Rel

Combining results of the previous sections, we obtain a reduction from QFBAPA-

Rel to QFBAPA. This reduction produces a formula of a singly exponential size
by introducing set variables for Venn regions over set variables in the original
formula for each function and relation. Because QFBAPA is known to be NP-
complete [15], we conclude that QFBAPA-Rel is in NEXPTIME. Moreover, we
obtain EXPTIME BAPA reduction from QFBAPA-Rel to QFBAPA [27], which
means that the method can be used to combine QFBAPA-Rel with other logics,
such as the Weak Monadic Second-Order Logic over Trees.

Theorem 3. QFBAPA-Rel is NEXPTIME-complete, even with no relation sym-
bols and with only one unary function symbol.

7

Proof. The algorithm above established the NEXPTIME upper bound, we next
prove the matching lower bound. In [9], NEXPTIME lower bound for Tarskian
set constraints with constants and binary functions is shown by reduction of a
fragment of first order logic. We adapt this proof to QFBAPA-Rel. The proof
relies on the result [16] that acceptance of nondeterministic exponential-time
bounded Turing machines can be reduced to satisfiability of formulas of the
form ∃z.F1 ∧ ∀y∃x.F2 ∧ ∀y1∀y2.F3 where F1, F2, and F3 have no quantifiers
and are monadic (have only unary predicates). Given a formula of this from,
we construct an equisatisfiable QFBAPA-Rel formula as a set of constraints, as
follows. We identify monadic predicate symbols with set variables, using the
same symbols for both. After Skolemizing the formula by introducing a constant
symbol a and a monadic function symbol f , and putting F1, F2, and F3 into the
conjunctive normal form, there are three types of clauses (as remarked already
in [9]); we describe our encoding of each of these clauses.

1. monadic formulas over the constant symbol a (obtained from ∃z.F1)
We transform the conjunction of all such formula into a set constraint as
follows. For each monadic predicate P replace P (a) with P , replace ∨ with
∪, replace ¬ with c, and ∧ with ∩. Let the result of this replacement be a
set algebra expression S; then generate the QFBAPA-Rel formula S 6= ∅.

2. clauses of the form:

∀x.P1(x) ∨ P2(x) ∨ . . . ∨ Pm(x) ∨ Q1(f(x)) ∨ Q2(f(x)) ∨ . . . ∨ Qn(f(x))

For each such clause, we generate a constraint:

f (P c
1 ∩ P c

2 ∩ . . . ∩ P c
m) ⊆ Q1 ∪ Q2 ∪ . . . ∪ Qn

3. clauses of the form:

∀y1∀y2. P1(y1) ∨ P2(y1) ∨ . . . ∨ Pm(y1) ∨ Q1(y2) ∨ Q2(y2) ∨ . . . ∨ Qn(y2)

For each such clause we generate the QFBAPA-Rel formula:

(P1 ∪ P2 ∪ . . . ∪ Pm = U) ∨ (Q1 ∪ Q2 ∪ . . . ∪ Qn = U)

(This last constraint differs from the one in [9] and does not require any
binary function symbols).

The resulting QFBAPA-Rel formula is equisatisfiable with the original formula,
so NEXPTIME lower bound follows from [16].

3.3 Decidable Extensions: n-ary Functions, Relation Cardinalities

We have presented QFBAPA-Rel, as a logic with monadic functions and arbitrary
relations and shown it to be NEXPTIME-complete. We next sketch how to
extend the decidability to include also the functions of higher arity. Generalizing
the method for unary functions, we have for e.g. a binary function f [p1∪p2, q1∪

8

q2] = f [p1, q1]∪f [p1, q2]∪f [p2, q1]∪f [p2, q2]. We apply such reasoning to all Venn
regions. This creates a singly exponential blowup in formula size. Given Venn
regions p, q and image f [p, q], let their cardinalities be kp, kq, kfpq, respectively.
Then a necessary condition for a function to be definable on p×q is kfpq ≤ kpkq,
which is a non-linear constraint. In general, the satisfiability of QFBAPA-Rel

with n-ary function symbols reduces to the satisfiability of a conjunction of 1)
such non-linear constraints x ≤ y1 . . . yn and 2) linear integer constraints. Such
conjunctions are called prequadratic in [9] and their satisfiability is shown to
be in NEXPTIME. (The quadratic as opposed to higher-degree monomials on
right-hand side suffice because replacing x ≤ y1y2 . . . yn with x ≤ y1z1 ∧ z1 ≤
y2 . . . yn preserves the projection of solution set onto x, y1, . . . , yn.) The generated
prequadtratic formula is singly exponential, which gives an upper bound of 2-
NEXPTIME for QFBAPA-Rel extended with functions of arbitrary arity.

A similar construction works for an extension of QFBAPA-Rel with the car-
dinality operator applied to relations (computing the number of related pairs of
elements). In the notation of Section 3.1, we add the prequadratic constraints
|rjk| ≤ |Ljk| |Rjk| as well as the appropriate linear constraints.

3.4 Undecidable Extensions: Injective Binary Functions, Quantifiers

Injective binary functions. If in addition to introducing binary function sym-
bols we allow stating that they are injective, then instead of prequadratic con-
straints of the previous section we obtain constraints of the form x = yz. Indeed,
|f [p, q]| = |p| |q| for an injective function f . Together with linear constraints,
these constraints can express arbitrary Diophantine equations (polynomial inte-
ger equations). The satisfiability in such language is undecidable [17] (Hilbert’s
10th problem), and thus adding an injective function symbol to QFBAPA gives
an undecidable logic.

Relation cardinality with Cartesian product. We noted that decidability
is preserved if we allow computing the cardinality of a relation. However, if we
can additionally constrain a relation to be full Cartesian product of two sets,
then we again obtain the constraint |p × q| = |p| |q|, and the undecidability
by [17].

Quantification. Note that BAPA with arbitrary set and integer quantifiers is
decidable [8,13]. On the other hand, the logic that allows quantification over sets
and one function symbols is also decidable [11, Theorem 8.3]. However, a BAPA
extension that allows quantified formulas with unary function symbol images is
undecidable. Indeed, define a function f mapping A onto B where each inverse
image has k elements: B = f [A] ∧ ∀e. e ⊆ B ∧ |e| = 1 ⇒ |f−1[e]| = k. Then
|B| = k|A| and the set of values (|B|, k, |A|) contains precisely the solutions
(x, y, z) of the equation x = yz. Recall that f−1[e] = u is expressible by f [u] ⊆
e∧f [uc] ⊆ ec, so either direct or inverse function image can be used, or a relation
restricted to be functional using a quantified formula, in each case resulting in
undecidability by [17].

9

4 NP-Complete Two-Sorted QFBAPA-Rel Fragment

In this section we identify a fragment of the QFBAPA-Rel logic in Figure 3.
Remarkably, this fragment has NP instead of NEXPTIME complexity for the
satisfiability problem. Figure 5 shows the syntax of this fragment, QFBAPA-R2,
which is an extension of QFBAPA with relation image of one two-sorted binary
relation symbol. Compared to full QFBAPA-Rel, there are no function symbols,
no inverse images, and there is only one relation symbol, denoted r, which is
binary. Moreover, each set contains only elements of sort A, or only elements
of a disjoint sort B. There are two disjoint universal sets UA and UB for the
corresponding sorts. The boolean operators ∪,∩ and complement apply only to
sets of the same sort. We require that the relation r relate sort A to sort B,
that is, the semantic condition r ⊆ UA × UB holds. An example formula in this
fragment is x = y → |r[x]| = |r[y]|. In this formula x, y have sort A and the
expressions r[x] and r[y] have sort B.

F ::= L | F1 ∨ F2 | ¬F

L ::= B1 ⊆ B2 | T1 < T2 | K dvd T

B ::= xB | ∅ | UB | B1 ∪ B2 | B
c | r[A]

A ::= xA | ∅ | UA | A1 ∪ A2 | A
c

T ::= k | K | MAXC | T1 + T2 | |B| | |A|

K ::= · · · | −2 | −1 | 0 | 1 | 2 | · · ·

Fig. 5. Syntax of QFBAPA-R2

Normal form. Consider an arbitrary QFBAPA-R2 formula F . By introducing
fresh variables for sets and integers (similarly as in [15]), we can rewrite the
formula in (with only linear increase in size) in the form

FC ∧ FB ∧ FA ∧ P (3)

where:

– FC is
∧n

i=1 Bi = r[Ai] and this is the only part of formula containing r;
– FB is of form

∧

i Li where each Li is of the form |b| = k for some integer
variable k and some set algebra expression b of sort B (it is thus a QFBAPA
formula);

– FA is analogously of form
∧

i Li where each Li is of the form |a| = k for
some integer variable k and some set algebra expression a of sort A (it is
thus also a QFBAPA formula);

– P is a quantifier-free Presburger arithmetic formula.

In the sequel we assume that QFBAPA-R2 formulas are in normal form.

10

Lemma 4 (Models Modulo Venn Regions). Let p be a Venn region over
sets Ai and q a Venn region over sets Bi. If α is a model of the QFBAPA-R2

formula F and α(r) ∩ (α(p) × α(q)) 6= ∅, then α′ given as α[r := w] is also a
model of the formula F where w = α(r) ∪ (α(p) × α(q)).

Proof. Relation r occurs only in FC , so it suffices to check that FC remains true
in the new model. Consider an arbitrary index i. Because p is a Venn region,
either p ∩ Ai = ∅ or p ⊆ Ai. In first case r[Ai] does not change and r[Ai] = Bi

remains true. Suppose therefore p ⊆ Ai. By assumption α(r)∩(α(p)×α(q)) 6= ∅,
let a ∈ α(p) and b ∈ α(q) such that (a, b) ∈ α(r). Because α(r[Ai] = Bi) holds,
b ∈ α(Bi), and as b ∈ α(q), the Venn region q is of the form s∩Bi, so q ⊆ Bi in
all models. Thus, omitting the applications of α symbol for brevity,

α′(r[Ai]) = (r ∪ (p × q))[Ai] = r[Ai] ∪ (p × q)[Ai] = Bi ∪ q = Bi = α′(Bi)

and the conjunct continues to hold.

By repeated application of the lemma it follows that it suffices to consider
completed models α, in which α(r) is a union of products of Venn regions, and
is thus given by a bipartite graph, denoted E, between Venn regions of sort A
and Venn regions of sort B.

Sparse models. We are interested in the finite satisfiability problem for
QFBAPA-R2 formulas. We show that this problem is in NP. This result is a strict
a generalization of the proof that QFBAPA is in NP [15] and similarly proceeds
by proving a sparse model property: if the formula is satisfiable, it has a model
in which only polynomially many Venn regions are non-empty. By Lemma 4,
models with sparse Venn regions can also be assumed to have polynomial repre-
sentations that have polynomial sized bipartite graphs E. By polynomial in this
section we mean polynomial in the size of formula F , where integer constants
are denoted in binary.

The following theorem builds on the sparse model property for QFBAPA [15].
QFBAPA models can be represented by introducing an integer variable for each
Venn region, and the sparse model property for QFBAPA relies on the integer
analogue of Carathéodory theorem [7].

Theorem 5. If a QFBAPA-R2 formula F has a model, then it has a sparse
model.

Proof. Let α be a completed model of formula F in form (3). Using α we
simplify FC as follows. For all sets Ai where α(Ai) = ∅, replace Ai and Bi with
∅ and remove such Ai and Bi from consideration. Let K be the number of sets
Ai remaining. For the remaining sets Ai, introduce constraint |Ai| = k′

i into FA

and constraint k′
i > 0 into P .

Next, apply the sparse model construction of QFBAPA to FB part, as follows.
Consider the result of replacing in FB each integer variable k with the constant
α(k). By [15], consider a sparse solution for the resulting QFBAPA formula
that does not introduce any new non-empty Venn regions. That is, consider the

11

Presburger arithmetic formula generated by those Venn regions q over sets Bi for
which α(q) 6= ∅, eliminating the variables corresponding to Venn regions q with
α(q) = ∅. The sparse solution of such Presburger arithmetic formula [7,15] yields
a polynomial subset of non-empty Venn regions over Bi for which the integer
values of |b| expressions in FB remain the same. We therefore obtain a set of
cubes CB = {q1, . . . , qN} and a model α1 such that 1) α1(q) 6= ∅ iff q ∈ CB , 2)
α1(FB ∧ P), and 2) variables other than Bi have same values in α1 and α.

Next, pick a set CA0 of cubes over Ai related to the chosen sparse set of cubes
CB . Let 1 ≤ j ≤ N . Let i be any index such that qj ⊆ Bi. Because α(Bi = r[Ai])
there exists some pair (a, b) ∈ α(r) ∩ α(Ai) × α(qj). Let a ∈ p where p ⊆ Ai

is the cube containing a. Denote such cube pji and repeat this process for all
1 ≤ j ≤ N and all Bi where qj ⊆ Bi and let CA0 be the resulting set of cubes
pji. The set CA0 has at most NK elements, which is polynomially many.

In this process we have also identified a bipartite graph E ⊆ CA0 × CB

E = {(pji, qj) | 1 ≤ j ≤ N, 1 ≤ i ≤ K}

Observation about E: If (p, q) ∈ E and p ⊆ Ai, then q ⊆ Bi. Proof: Let (p, q) ∈ E
and p ⊆ Ai. By construction of E, for some witness elements a ∈ α(p), b ∈ α(q)
we have (a, b) ∈ α(r). Because α(Bi = r[Ai]), we have b ∈ α(Bi). Because α(q)
and α(Bi) intersect, q ⊆ Bi, completing the proof of the observation.

We can now apply the sparse model construction of QFBAPA to the FA

part to pick a sparse set of cubes CA ⊇ CA0. Treat again the values of integer
variables in FA as constant, but then also in the resulting non-redundant integer
cone generator replace the cardinalities of variables denoting sizes of each selected
cube in p ∈ CA0 by the constant |α(p)|, thus removing these variables from the
integer equation and removing the corresponding elements from the universe UA.
Solve the remaining equations to obtain a sparse solution for the simplified FA

formula, again using the results on sparse solutions of such Presburger arithmetic
formulas [7, 15]. We obtain a sparse solution that gives a polynomial number of
non-empty cubes CA1. We use the obtained values to define α1(p) for p ∈ CA1.
We let α1(p) = α(p) for p ∈ CA0. Let CA = CA0 ∪ CA1. Define α1(p) = ∅ for
p /∈ CA. This yields the sparse interpretation α1, where only cubes in CB ∪ CA

are non-empty and where α1(FB ∧ FA ∧ P) holds.

Finally, define define α1(r) as a completed model α1 =
⋃

{p× q | (p, q) ∈ E}
where E is defined (by edges (pji, qj)) above. We claim α1(FC). Indeed, consider
a set Ai. Then Ai is union of certain cubes from CA0 and certain cubes from CA1.
Because E has no outgoing edges for CA1, we have α(r[

⋃

CA1]) = ∅. Therefore,

α1(r[Ai]) = α1(r[∪{p | p ∈ CA0, p ⊆ Ai}]) = α1(∪{q | ∃p.p ⊆ Ai ∧ (p, q) ∈ E}

By the above Observation about E, we have that for each q above (belonging
to E[{p}]) the condition q ⊆ Bi holds. Therefore α1(r[Ai]) ⊆ α(Bi). For the
converse set inclusion, let b ∈ α1(Bi) be arbitrary and let qj ∈ CB be such that
b ∈ α1(qj) and qj ⊆ Bi. Note that α1(pji) 6= ∅, so there exists a ∈ α1(pji). Then
(a, b) ∈ α1(r). Because pji ⊆ Ai, we have b ∈ α1(r[Ai]). Thus, α(Bi) ⊆ α1(r[Ai])

12

and the therefore α1(r[Ai] = Bi). Because i was arbitrary, α1 is a sparse model
for the entire formula.

Theorem 6. The satisfiability for QFBAPA-R2 is NP complete.

Proof. (Sketch) NP-hardness follows because QFBAPA-R2 subsumes proposi-
tional logic. To show NP membership, we use the sparse model property from the
previous theorem: we non-deterministically guess a subset of non-empty sets Ai,
then guess a polynomial subset CB of Venn regions over Bi, using the polynomial
bounds from [15]. We then guess the subset CA0 bounded by K|CB| and guess
CA1 conservatively bounded by the same bound as in [15]. Finally, we guess a
graph E whose number of edges is bounded by |CB |(|CA0|+ |CA1|). Given such a
guess, we can compute a formula that describes all Boolean Algebra expressions
and all images of non-empty relations fragments under non-empty Venn regions,
and thus describes the existence of a model for this guess of Venn regions and
relation between them.

As in [15], the entire guessing process can be compiled into a polynomially
large quantifier-free formula of Presburger arithmetic with conditional expres-
sions.

4.1 Extensions with Multiple Relations and Multiple Sorts

NP extensions. Consider any finite number of sorts s1, . . . , sn related by a strict
total ordering, and any number of relations of sorts si × si+1 for 0 ≤ i < n. We
can then repeat the construction above, starting with relations of sorts sn−1×sn

and moving towards relations of sort s1 × s2. For a fixed number of sorts, we
obtain NP complexity. In fact, we can repeatedly apply the sparsity theorem
in the case of multiple sorts and multiple relations forming a directed acyclic
graph over the sorts. In that case, we start from the last sort in their topological
ordering according to the direction of the relations.

Limits of membership in NP. Note that if we consider a chain of rela-
tions whose sorts form a cycle, through repeated composition we can simulate
relations of sort s × s. In this case the above NP construction fails. Moreover,
the EXPTIME lower bound follows for such language from the lower bound on
the complexity of the ALC Description Logic with general TBox inclusion ax-
ioms [1, Theorem 3.27], where we model ∧,∨,¬ with ∩,∪, c, model ∃R.A with
r[A], and model ∀R.A with r[Ac]c. To establish the correspondence of models
of this extension and of the ALC formula, we interpret sets the same as the
corresponding ALC concepts, and interpret the relation r as the inverse of the
corresponding role R.

5 Logic of Multiset Images of Functions

In this section we illustrate that some of the techniques of the previous section
generalize from sets to multisets, which are unordered collections where elements

13

can repeat. Formally, a multiset M is a function M : E → N mapping the set of
elements into the non-negative number of their occurrences. The first NP decision
procedure for multisets with the cardinality operator was presented in [22]. In
this section we extend the logic of multisets with cardinalities to also include a
function image operator that maps a set into a multiset.

We define the function image of a set A to be a multiset f [A] : E → N such
that (f [A])(e) = |{x. x ∈ A ∧ f(x) = e}|. Alternatively, let the disjoint union
operator ⊎ be given by (M1⊎M2)(e) = M1(e)+M2(e). (For example, {a, a, b}⊎
{a, b, c} = {a, a, a, b, b, c}.) Then define f [{e1, . . . , en}] = {f(e1)}⊎ . . .⊎{f(en)}.
It is easy to see that these two definitions are equivalent. Moreover, define the set
of distinct elements occurring in a multiset by set(M) = {x. M(x) > 0}. Then
set(f [B]) is the set corresponding to the standard notion of function image used
in previous sections.

F ::= A | F ∨ F | ¬F

A ::= B ⊆ B | M ⊆ M | T ≤ T | K dvd T

B ::= x | ∅ | U | B ∪ B | B ∩ B | Bc | set(M)
M ::= m | ∅M | M ∩ M | M ∪ M | M ⊎ M | M \ M | M \\M | mset(B) | f [B]
T ::= k | K | MAXC | T1 + T2 | K · T | |B| | |M |
K ::= · · · | −2 | −1 | 0 | 1 | 2 | · · ·

Fig. 6. MAPA-Fun logic of multisets, cardinality operator, and multiset images of sets

Figure 6 shows the logic that embeds the logic of multisets [21, Figure 1], [22],
and extends it with the multiset image operator. The logic distinguishes the sorts
of sets and multisets and defines set operators on both sets and multisets. Note,
however, that the logic includes the embedding function mset(B) to view a set
as a multiset, and the abstraction function set(M) to extract the set of distinct
elements that occur in the multiset. Unlike the previous section, we do not have
disjointness of domains and ranges of functions, and, in terms of expressive
power, we effectively treat sets as a special case of multisets.

Given a formula F in the language described in Figure 6, a decision procedure
for F works as follows:

1. Apply the algorithm in Figure 7 to translate F into an equisatisfiable multiset
formula F ′ in the syntax given in Figure 1 in [21]. In this step we eliminate
function symbols in a way similar to that described in Section 3. The new
formula F ′ has size singly exponential in the size of F ;

2. invoke on the formula F ′ the decision procedure described in [22]. The deci-
sion procedure runs in NP time.

The entire procedure runs in NEXPTIME. The lower bound proof from Sec-
tion 3.2 applies in this case as well, so we conclude that our logic is NEXPTIME-
complete.

The correctness of the reduction is stated in the following theorem.

14

INPUT: formula in the syntax of Figure 6
OUTPUT: multiset formula in the syntax of Figure 1 in [21]

1. For each set variable S introduce a conjunct ∀e. S(e) = 0 ∨ S(e) = 1
2. Flatten expressions containing the operator set:

C[. . . set(M) . . .] (BF = set(M) ∧ C[. . . BF . . .])
where the occurrence of set(M) is not already in a top-level conjunct of the form
B = set(M) for some set variable B and BF is a fresh unused set variable

3. Let S be the set of variables occurring in the formula
Define the set SN = {s1, . . . , sQ} of Venn regions over elements of S

4. Rewrite each set expression as a disjoint union of the appropriate Venn regions
from SN

5. Eliminate function symbols:

C[. . . f [si1 ∪ . . . ∪ sik
] . . .] C[. . . (Mi1 ⊎ . . . ⊎ Mik

) . . .]
where each Mij

is a fresh multiset variable denotes f [sij
]

6. Add the conjuncts which states a necessary condition for Mij
= f [sij

]

F F ∧
VQ

i=1
|si| = |Mi|

Fig. 7. Algorithm for reducing a MAPA-Fun formula to a MAPA formula

Theorem 7. Given a formula F as an input to the algorithm described in Fig-
ure 7, let the formula F ′ be its output. Then formulas F and F ′ are equisatisfi-
able and their satisfying assignments have the same projections on the set and
multiset variables occurring in F .

Proof. Given a model for F , we construct a model for F ′ by interpreting Mi

as f [si]. Conversely, let α be a model for F ′. We can define f on each disjoint
set si independently. Because |si| = |Mi| holds in the model, we can enumerate
both si and Mi into sequences a1, . . . , aK and b1, . . . , bK of same length. This
enumeration defines a function assigning aj to bj for 1 ≤ j ≤ K such that
f [si] = Mi.

References

1. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider, editors.
The Description Logic Handbook: Theory, Implementation and Applications. CUP,
2003.

2. M. Barnett and K. R. M. Leino. Weakest-precondition of unstructured programs.
In PASTE, pages 82–87, 2005.

3. D. Beyer, T. A. Henzinger, R. Jhala, and R. Majumdar. The software model
checker BLAST. STTT, 9(5-6):505–525, 2007.

4. E. Cohen, M. Dahlweid, M. Hillebrand, D. Leinenbach, M. Moskal, T. Santen,
W. Schulte, and S. Tobies. VCC: A practical system for verifying concurrent c. In
Conf. Theorem Proving in Higher Order Logics (TPHOLs), volume 5674 of LNCS,
2009.

5. P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In
Proc. 6th POPL, pages 269–282, San Antonio, Texas, 1979. ACM Press, New York,
NY.

15

6. R. K. Dewar. Programming by refinement, as exemplified by the SETL represen-
tation sublanguage. ACM TOPLAS, July 1979.

7. F. Eisenbrand and G. Shmonin. Carathéodory bounds for integer cones. Operations
Research Letters, 34(5):564–568, September 2006.

8. S. Feferman and R. L. Vaught. The first order properties of products of algebraic
systems. Fundamenta Mathematicae, 47:57–103, 1959.

9. R. Givan, D. McAllester, C. Witty, and D. Kozen. Tarskian set constraints. Inf.
Comput., 174(2):105–131, 2002.

10. S. Gulwani, T. Lev-Ami, and M. Sagiv. A combination framework for tracking
partition sizes. In POPL ’09, pages 239–251, 2009.

11. Y. Gurevich and S. Shelah. Spectra of monadic second-order formulas with one
unary function. In LICS, pages 291–300, 2003.

12. V. Kuncak, P. Lam, K. Zee, and M. Rinard. Modular pluggable analyses for
data structure consistency. IEEE Transactions on Software Engineering, 32(12),
December 2006.

13. V. Kuncak, H. H. Nguyen, and M. Rinard. Deciding Boolean Algebra with Pres-
burger Arithmetic. J. of Automated Reasoning, 2006.

14. V. Kuncak and M. Rinard. Decision procedures for set-valued fields. In 1st Interna-
tional Workshop on Abstract Interpretation of Object-Oriented Languages (AIOOL
2005), 2005.

15. V. Kuncak and M. Rinard. Towards efficient satisfiability checking for Boolean
Algebra with Presburger Arithmetic. In CADE-21, 2007.

16. H. R. Lewis. Complexity results for classes of quantificational formulas. J. Comput.
Syst. Sci., 21(3):317–353, 1980.

17. Y. V. Matiyasevich. Enumerable sets are Diophantine. Soviet Math. Doklady,
11(2):354–357, 1970.

18. H. J. Ohlbach and J. Koehler. Modal logics, description logics and arithmetic
reasoning. Artificial Intelligence, 109:1–31, 1999.

19. L. Pacholski, W. Szwast, and L. Tendera. Complexity results for first-order two-
variable logic with counting. SIAM J. on Computing, 29(4):1083–1117, 2000.

20. J. A. N. Pérez, A. Rybalchenko, and A. Singh. Cardinality abstraction for declar-
ative networking applications. In CAV, pages 584–598, 2009.

21. R. Piskac and V. Kuncak. Decision procedures for multisets with cardinality con-
straints. In VMCAI, number 4905 in LNCS, 2008.

22. R. Piskac and V. Kuncak. Linear arithmetic with stars. In CAV, 2008.
23. I. Pratt-Hartmann. Complexity of the two-variable fragment with counting quan-

tifiers. Journal of Logic, Language and Information, 14(3):369–395, 2005.
24. T. Reps, M. Sagiv, and G. Yorsh. Symbolic implementation of the best transformer.

In Proc. 5th International Conference on Verification, Model Checking and Abstract
Interpretation, 2004.

25. J. Venn. On the diagrammatic and mechanical representation of propositions and
reasonings. Dublin Philosophical Magazine and Journal of Science, 9(59):1–18,
1880.

26. T. Wies, V. Kuncak, P. Lam, A. Podelski, and M. Rinard. Field constraint analysis.
In Proc. Int. Conf. Verification, Model Checking, and Abstract Interpratation, 2006.

27. T. Wies, R. Piskac, and V. Kuncak. Combining theories with shared set operations.
In FroCoS: Frontiers in Combining Systems, 2009.

28. K. Zee, V. Kuncak, and M. Rinard. Full functional verification of linked data
structures. In ACM Conf. Programming Language Design and Implementation
(PLDI), 2008.

16

