
Software Verification and Graph Similarity for

Automated Evaluation of Students’ AssignmentsI

Milena Vujošević-Janičića,∗, Mladen Nikolića, Dušan Tošića, Viktor Kuncakb

aFaculty of Mathematics, University of Belgrade, Studentski trg 16, 11000 Belgrade,
Serbia

bSchool of Computer and Communication Sciences, EPFL, Station 14, CH-1015
Lausanne, Switzerland

Abstract

Context: The number of students enrolled in universities at standard
and on-line programming courses is rapidly increasing. This calls for auto-
mated evaluation of students assignments.

Objective: We aim to develop methods and tools for objective and reli-
able automated grading that can also provide substantial and comprehensible
feedback. Our approach targets introductory programming courses, which
have a number of specific features and goals. The benefits are twofold: re-
ducing the workload for teachers, and providing helpful feedback to students
in the process of learning.

Method: For sophisticated automated evaluation of students’ programs,
our grading framework combines results of three approaches (i) testing, (ii)
software verification, and (iii) control flow graph similarity measurement. We
present our tools for software verification and control flow graph similarity
measurement, which are publicly available and open source. The tools are
based on an intermediate code representation, so they could be applied to a
number of programming languages.

IThis work was partially supported by the Serbian Ministry of Science grant 174021, by
Swiss National Science Foundation grant SCOPES IZ73Z0 127979/1 and by COST Action
IC0901 ”Rich Model Toolkit — An Infrastructure for Reliable Computer Systems”.

∗Corresponding author. University of Belgrade, Faculty of Mathematics, Studentski
trg 16, 11000 Belgrade, Serbia. Tel.: +381-11-2027801. Fax.: +381-11-2630151

Email addresses: milena@matf.bg.ac.rs (Milena Vujošević-Janičić),
nikolic@matf.bg.ac.rs (Mladen Nikolić), dtosic@matf.bg.ac.rs (Dušan Tošić),
viktor.kuncak@epfl.ch (Viktor Kuncak)

Preprint submitted to Information and Software Technology December 12, 2012

Results: Empirical evaluation of the proposed grading framework is per-
formed on a corpus of programs written by university students in program-
ming language C within an introductory programming course. Results of
the evaluation show that the synergy of proposed approaches improves the
quality and precision of automated grading and that automatically gener-
ated grades are highly correlated with instructor-assigned grades. Also, the
results show that our approach can be trained to adapt to teacher’s grading
style.

Conclusions: In this paper we integrate several techniques for evaluation
of student’s assignments. The obtained results suggest that the presented
tools can find real-world applications in automated grading.

Keywords: automated grading, software verification, graph similarity,
computer supported education

1. Introduction

Automated evaluation of programs is beneficial for both teachers and
students [1]. For teachers, automated evaluation is helpful in grading as-
signments and it leaves more time for other activities with students. For
students, it provides immediate feedback which is very important in process
of studying, especially in computer science where students take a challenge of
making the computer follow their intentions [2]. Immediate feedback is par-
ticularly helpful in introductory programming courses, where students have
little or no knowledge of basic algorithmic and programming issues and have
frequent and deep misconceptions [3].

Benefits of automated evaluation of programs are even more significant
in the context of online learning. A number of world’s leading universities
offer numerous online courses. The number of students taking such courses
is measured in millions and is growing quickly [4]. In online courses, the
teaching process is carried out on the computer, the contact with teacher is
already minimal and, hence, the fast and substantial automatic feedback is
especially desirable.

Most of the existing tools for automated evaluation of students’ programs
are based on automated testing [5]. In these tools testing is used for check-
ing whether the student’s program exhibits the desired behavior on selected
inputs. There are also approaches for using testing for analyzing other prop-
erties of software [6]. Most interesting such properties in educational context

2

are efficiency (usually addressed by profiling on selected test cases) and the
presence of bugs that could make memory violations or raise runtime errors.
For example, in programming language C, some important bugs are buffer
overflow, null pointer dereferencing and division by zero. Note that some
of the errors are difficult to detect by tests, so they require static analysis
(analysis of the code without executing it). There is a variety of software
verification tools [7, 8, 9, 10, 11, 12, 13] that could enhance automated bug
finding in students’ programs.

Relevant aspects of program quality are also its design and modularity
(an adequate decomposition of code to functions). These aspects are often
addressed by checking similarity to teacher-provided solutions. In order to
check similarity, among the aspects that can be analyzed are frequencies
of keywords, number of lines of code, and number of variables. Recently,
a sophisticated approach of grading students’ programs by measuring the
similarity of related graphs has been proposed [14, 15]. There are recent sur-
veys of different approaches for automated evaluation of students’ programs
[16, 17].

In this paper, we propose a new grading framework for automated eval-
uation of students’ programs aiming primarily at small sized problems from
introductory programming courses, which have unique properties and which
are the most critical since there are a lot of students enrolled in such courses.
We do not propose a new submission system for automated tracking of stu-
dent’s assignments and projects, but a grading framework that could be a
part of such system. The framework is based on merging information from
three different evaluation methods:

1. Software verification (automated bug finding)

2. Control flow graph (CFG) similarity measurement

3. Automated testing

We also address the problem of choosing weights for these factors to tune au-
tomated grading to teacher’s grading style. The synergy between automated
testing, verification, and similarity measurement improves the quality and
precision of automated grading by overcoming the individual weaknesses of
these approaches. Our empirical evaluation shows that our framework can
lead to a grading model that highly correlates to manual grading and there-
fore gives promises for real-world applicability in education.

We also review our tools for software verification [13] and CFG similarity
[18], which we use for assignment evaluation. These tools, based on novel

3

methods, are publicly available and open source.1 Both tools use the low-
level intermediate code representation LLVM [19, 20]. Therefore, they could
be applied to a number of programming languages and could be comple-
mented with other existing LLVM based tools (e.g., tools for automated test
generation). Also, the tools are enhanced with support for meaningful and
comprehensible feedback to students, so they can be used both in the process
of studying and in the process of grading assignments.

Overview of the paper. Section 2 presents necessary background information.
Section 3 gives motivating examples for the synergy of the three proposed
components. Section 4 describes the grading setting and the corpus used
for evaluation. Section 5 discusses the role of the verification techniques in
automated evaluation and Section 5 discusses the role of structural similarity
measurement in automated evaluation. Section 7 presents an empirical eval-
uation of the proposed framework for automated grading. Section 8 contains
information about related work. Section 9 gives conclusions and outlines
possible directions for future work.

2. Background

This section provides an overview of intermediate languages, the LLVM
tool, software verification, the LAV tool, control flow graphs and graph sim-
ilarity measurement.

Intermediate languages and LLVM. An intermediate language separates con-
cepts and semantics of a high level programming language from low level
issues relevant for a specific machine. Examples of intermediate languages
include the ones used in LLVM and .NET frameworks. LLVM is an open
source, widely used, rich compiler framework, well suited for developing new
mid-level language-independent analyses and optimizations [19, 20]. LLVM
intermediate language is assembly-like language with simple RISC-like in-
structions. It supports easy construction of control flow graphs of program
functions and of entire programs. There is a number of tools using LLVM
for various purposes, including software verification [8, 9, 12, 21, 13]. LLVM
has front-ends for C, C++, Ada and Fortran. Moreover, there are external
projects for translating a number of other languages to LLVM intermediate

1http://argo.matf.bg.ac.rs/?content=lav

4

representation (e.g., Python [22], Ruby [23], Haskell [24], Java [25], D [26],
Pure [27], Scala [28] and Lua [29]).

Software verification and LAV. Verification of software and automated bug
finding are among the greatest challenges in computer science. Software bugs
cost the world economy billions of dollars annually [30]. Software verification
tools aim to automatically check functional correctness properties including
the absence of bugs that could make memory violations or raise runtime
errors. Different approaches to automated checking of software properties
exist, such as symbolic execution [31], model checking [32] and abstract in-
terpretation [33]. Software verification tools often use automated theorem
provers as the underlying reasoning machinery.

LAV [13] is an open-source tool for statically verifying program asser-
tions and locating bugs such as buffer overflows, pointer errors and division
by zero. LAV uses the popular LLVM infrastructure. As a result, it supports
several programming languages that compile into LLVM, and benefits from
the robust LLVM front ends. LAV is primarily aimed at programs in the C
programming language, in which the opportunities for errors are abundant.
For each safety-critical command, LAV generates a first-order logic formula
that represents its correctness condition. This formula is checked by one of
the several SMT solvers [34] used by LAV. If a command cannot be proved
safe, LAV translates a potential counterexample from the solver into a pro-
gram trace that exhibits this error. LAV also extracts the values of relevant
program variables along this trace.

Control flow graph. A control flow graph (CFG) is a graph-based represen-
tation of all paths that might be traversed through a program during its
execution [35]. Each node of CFG represents one basic block, which is a
sequence of commands without jumps, loops or conditional statements. The
control flow graphs can be produced by various tools, including LLVM. A
control flow graph clearly separates the structure of the program and its con-
tents. Therefore, it is a suitable representation for structural comparison of
programs.

Graph similarity and neighbor matching method. There are many similarity
measures for graphs and their nodes [36, 37, 38, 18]. These measures have
been successfully applied in several practical domains such as ranking of
Internet query results, synonym extraction, database structure matching,

5

construction of phylogenetic trees, and analysis of social networks. A short
overview of similarity measures for graphs can be found in [18].

A specific similarity measure for graph nodes called neighbor matching
has properties relevant for our purpose that other similar measures lack [18].
It allows similarity measure for graphs to be defined based on similarity
scores of their individual nodes. The notion of similarity of nodes is based
on the intuition that two nodes i and j of graphs A and B are considered
to be similar if neighboring nodes of i can be matched to similar neighboring
nodes of j. More precise definition is the following.

In the neighbor matching method, if a graph contains an edge (i, j), the
node i is called an in-neighbor of node j in the graph and the node j is called
an out-neighbor of the node i in the graph. An in-degree id(i) of the node i
is the number of in-neighbors of i, and an out-degree od(i) of the node i is
the number of out-neighbors of i.

If A and B are two finite sets of arbitrary elements, a matching of elements
of sets A and B is a set of pairs M = {(i, j)|i ∈ A, j ∈ B} such that
no element of one set is paired with more than one element of the other
set. For the matching M , enumeration functions f : {1, 2, . . . k} → A and
g : {1, 2, . . . k} → B are defined such that M = {(f(l), g(l)) | l = 1, 2, . . . , k}
where k = |M |. If w(a, b) is a function assigning weights to pairs of elements
a ∈ A and b ∈ B, the weight of a matching is the sum of weights assigned
to the pairs of elements from the matching, i.e. w(M) = Σ(i,j)∈Mw(i, j). The
goal of the assignment problem is to find a matching of elements of A and B
of the highest weight (if two sets are of different cardinalities, some elements
of the larger set will not have corresponding elements in the smaller set). The
assignment problem is usually solved by the well-known Hungarian algorithm
of complexity O(mn2) where m = max(|A|, |B|) and n = min(|A|, |B|) [39],
but there are also more efficient algorithms [40, 41].2

The calculation of similarity of nodes i and j, denoted xij, is based on
iterative procedure given by the following equations:

xk+1
ij ← sk+1

in (i, j) + sk+1
out (i, j)

2

2We are not aware of the available implementations of these more efficient algorithms.
However, Hungarian algorithm performs very well in the problem we address (as can be
seen from the runtimes given in Section 6.2).

6

where

sk+1
in (i, j)← 1

min

nin∑
l=1

xkf in
ij (l)ginij (l)

sk+1
out (i, j)← 1

mout

nout∑
l=1

xkfout
ij (l)goutij (l) (1)

min = max(id(i), id(j)) mout = max(od(i), od(j))

nin = min(id(i), id(j)) nout = min(od(i), od(j))

where functions f in
ij and ginij are the enumeration functions of the optimal

matching of in-neighbors for nodes i and j with weight function w(a, b) = xkab,
and analogously for f out

ij and goutij . In the equations (1), 0
0

is defined to be
1 (used in the case when min = nin = 0 or mout = nout = 0). The initial
similarity values x0ij are set to 1 for each i and j. The termination condition is

maxij |xkij−xk−1ij | < ε for some chosen precision ε and the iterative algorithm
has been proved to converge [18].

The similarity matrix [xij] reflects the similarities of nodes of two graphs
A and B. The similarity of the graphs can be defined as the weight of the
optimal matching of nodes from A and B divided by the number of matched
nodes [18].

3. The Need for Synergy of Testing, Verification, and Similarity
Measurement

In this section we elaborate on the need for synergy of testing, verifica-
tion and similarity measurement and give motivating examples to illustrate
shortcomings if some of these components is omitted.

Automated testing of programs plays an important role in the evalua-
tion of students programs. However, the grading in this approach is directly
influenced by the choice of test cases. Whether the test cases are automat-
ically generated or manually designed, testing cannot guarantee functional
correctness of a program or the absence of bugs.

For checking functional correctness, a combination of random testing with
evaluator-supplied test cases is a common choice [42]. Randomly generated
test cases can detect most shallow bugs very efficiently, but for bugs that are
located in more convoluted paths, random tests may not succeed [43, 44]. It is
not sufficient that test cases cover all important paths through the program.
It is also important to carefully choose values of the variables for each path
— for some values along the same path a bug can be detected, while for some
other values the bug can stay undetected.

7

Manually generated test cases are designed according to the expected
solutions, while the evaluator cannot predict all the important paths through
a student’s solution. Even running a test case that hits a certain bug (for
example, a buffer overflow bug in a C program) does not necessarily lead
to any visible undesired behavior if the running is done in a normal (or
sandbox) environment. Finally, if one manages to trigger a bug by a test
case, if the bug produces the Segmentation fault message, it is not a feedback
that a student (especially novice in programming) can easily understand and
use for debugging the program. In the context of automated grading, this
feedback cannot be easily used since it may have different causes. In contrast
to program testing, software verification tools like Pex [7], Klee [8], S2E [9],
CBMC [10], ESBMC [11], LLBMC [12], and LAV [13] can give much better
explanations (e.g., the kind of bug and the program trace that introduces an
error).

0: #define max_size 50

1: void matrix_maximum(int a[][max_size], int rows, int columns, int b[])

2: {

3: int i, j, max=a[0][0]; int i, j, max;

4: for(i=0; i<rows; i++) for(i=0; i<rows; i++)

5: { {

6: max = a[i][0];

7: for(j=0; j<columns; j++) for(j=0; j<columns; j++)

8: if(max < a[i][j]) if(max < a[i][j])

9: max = a[i][j]; max = a[i][j];

10: b[i] = max; b[i] = max;

11: max=a[i+1][0];

12: } }

13: return; return;

14: }

Figure 1: Buffer overflow in the code on left-hand side (which computes maximum values
of each row in a matrix) cannot be discovered by simple testing or detected by code
similarity. Functionally equivalent solution without a memory violation bug is given on
right-hand side.

The example function shown at Figure 1 (left) is extracted from a stu-
dent’s code written on an exam. It calculates the maximum value of each row
of a matrix and writes these values into an array. This function is used in a
context where the memory for the matrix is statically allocated and numbers
of rows and columns are less or equal to the allocated sizes of the matrix.

8

However, in the line 11, there is a possible buffer overflow bug, since i+1 can
exceed the allocated number of rows for the matrix. It is possible that this
kind of a bug does not affect the output of the program or destroy any data,
but in only a slightly different context it can be harmful, so students should
be warned and the points should not be awarded in such situations. Still, the
corrected version of this function, given in Figure 1 (right) is very similar to
the incorrect student’s solution. Such bugs can be missed in testing, cannot
be detected by code similarity, but are easily discovered by verification tools
like LAV.

Functional correctness and absence of bugs are not the only important
aspects of students’ programs. Programs are often supposed to meet require-
ments concerning the structure, such as modularity (adequate decomposition
of code to functions) or simplicity. Figure 2 shows fragments of two student
solutions of different modularity and structure for two problems. Neither
testing, nor software verification can be used to assess these aspects of the
programs. This problem can be addressed by checking the similarity of stu-
dent’s solution with a teacher-provided solution, i.e., by analyzing the simi-
larity of their control-flow graphs [14, 15, 18].3

Finally, using similarity only (like in [14, 15]) or even similarity with sup-
port of a bug finding tool, could fail to detect incorrectness of program’s
behavior. Figure 3 gives a simple example program that computes the max-
imum of a sequence and that is extracted from a student’s solution. This
program is very similar to the expected solution and has no memory viola-
tions or runtime errors. However, this program is not functionally correct
and this can be easily discovered by testing.

Based on considerations and examples given above, we conclude that the
synergy of these three approaches is needed for sophisticated evaluation of
students’ assignments.

4. Grading Setting

There may be different grading settings depending on aims of the course
and goals of the teacher. The setting used at an introductory course of pro-
gramming in C (at University of Belgrade) is rather standard: taking exams

3In Figure 2, the second example could also be distinguished by profiling for large
inputs, because it is quadratic in one case and linear in the other. However, profiling
cannot be used to assess structural properties in general.

9

Problem First solution Second solution

if(a<b) n = a; n = min(a, b);

else n = b;

1. if(c<d) m = c; m = min(c, d);

else m = d;

for(i=0; i<n; i++) for(i=0; i<n; i++)

for(j=0; j<n; j++) m[i][i] = 1;

2. if(i==j)

m[i][j] = 1;

Figure 2: Examples extracted from two student solutions of the same problem, illustrating
structural differences that can be addressed by CFG similarity measurement.

max = 0; max = a[0];

for(i=0; i<n; i++) for(i=1; i<n; i++)

if(a[i] > max) if(a[i] > max)

max = a[i]; max = a[i];

Figure 3: Code extracted from a student’s solution (left-hand side) and an expected solu-
tion (right-hand side). In the student’s solution there are no verification bugs, it is very
similar to the expected solution but it does not perform the desired behavior (in the case
when all elements of the array a are negative integers). This defect can be easily discovered
by testing.

on computers and expecting from students to write working programs. In
order to help students achieve this goal, each assignment is provided with
several test cases that illustrate the desired behavior of a solution. Students
are provided with sufficient (but limited) time for developing and testing
programs. If a student fails to provide a working program that gives cor-
rect results for the given test cases, his/her solution is not further examined.
Otherwise, the program is tested by additional test cases (unknown to the
students and generated by the instructors i.e. by the teachers or the teach-
ing assistants) and a certain amount of points is given proportional to the
test cases successfully passed. Only if all these test cases pass successfully,
the program is further manually examined and additional points may be
given with respect to other features of the program (efficiency, modularity,

10

simplicity, absence of memory violations, etc).
For empirical evaluations presented in the rest of this paper, we used a

corpus of programs written by students on the exams, following the described
grading setting. The corpus consists of 266 solutions to 15 different prob-
lems. These problems include numerical calculations, manipulations with
arrays and matrices, manipulations with strings, and manipulations with
data structures.4 Only programs that passed all test cases were included in
this corpus. These programs are the main target of our automated evalua-
tion technique since the manual grading was applied only in this case and
we want to explore potentials for completely eliminating manual grading.
These programs obtained 80% of the maximal score (as they passed all test
cases) and additional 20% were given after manual inspection. The grades
are expressed at the scale from 0 to 10. The corpus, together with problem
descriptions and the assigned grades, is publicly available.5

The automated grading approach we propose is flexible and can also be
applied to different grading settings, i.e., to different distributions of grade
weights that are awarded for different aspects of program quality (as dis-
cussed in Section 7).

5. Assignment Evaluation and Software Verification

In this section we discuss benefits of using software verification tool in
assignment evaluation, e.g., for generating useful feedback for students and
providing improved assignment evaluation for teachers.

5.1. Software Verification for Assignment Evaluation

No software verification tool can report all the bugs in a program without
introducing false positives (due to the undecidability of the halting problem).
False positives (i.e., reported “bugs” that are not real bugs) arise as a con-
sequence of approximations that are necessary in modeling programs.

The most important approximation is concerned with dealing with loops.
Different verification approaches use various techniques for dealing with
loops. These techniques range from under-approximations of loops to over-
approximations of loops and influence the efficiency of analysis. Under-
approximation of loops, as in the bounded model checking techniques [32],

4Short descriptions of the problems are given in Appendix A.
5http://argo.matf.bg.ac.rs/?content=lav

11

uses a fixed number n for loop unwinding. In this case, if the code is ver-
ified successfully, it means that the original code has no bugs for n or less
passes through the loop. However, it may happen that some bug remains
undiscovered if the unwinding is performed an insufficient number of times.
This technique does not introduce false positives, but also does not scale
well on large programs or on programs where a big number of unwindings is
necessary. Over-approximation of loops can be made by simulation of first
n and last m passes through the loop [13] or by using abstract interpreta-
tion techniques [33]. If there are no bugs detected in the over-approximated
code, then the original code has no bugs too. However, in this case, a false
positive can appear after or inside a loop. These techniques scale well on
larger programs but with a price of introducing false positives. On the other
hand, a completely precise dealing with loops, like in the symbolic execution
techniques, can be non terminating. Therefore, for educational purposes,
an appropriate trade-off between efficiency and precision should be carefully
chosen.

False positives are highly undesirable in software development, but still
are not critical — the developer can fix the problem or confirm that the re-
ported problem is not really a bug (and both of these are situations that the
developer can expect and understand). However, false positives in assign-
ment evaluation are rather critical and have to be eliminated. For teachers,
there should be no false positives, because the evaluation process should be
as automatic and reliable as possible. For students, especially for novice pro-
grammers, there should be no false positives because they would be confused
if told that something is a bug when it is not. In order to eliminate false
positives, a system may be non-terminating or may miss to report some real
bugs. In assignment evaluation, the second choice is more reasonable — the
tool has to be terminating, must not introduce false positives, even if the
price is missing some real bugs. These requirements make applications of
software verification in education rather specific, and special care has to be
taken when these techniques are applied.

Despite the progress in software verification technology, verification tools
can still take more time than it is adequate for a comfortable interactive work.
Because of that, in real-world applications in education, time-outs have to
be used. There could be different policies for time-outs. For instance, if the
verification tool reached the time limit, no bug would be reported (in order
to avoid reporting false positives) or a program can be checked using the
same parameters, but with another underlying solver (if applicable for the

12

tool). Generally, there could be two time limits: a higher time limit for the
teacher, when doing off-line grading, and a lower time limit for interactive
work of students.

5.2. LAV for Assignment Evaluation

LAV is a general purpose verification tool and has a number of options
that can adapt its behavior to the desired context. When running LAV in
the assignment evaluation context, most of these options (e.g., the underlying
SMT solver and the corresponding theory) can be fixed to default values.

The most important choice for the user is the choice of the way in which
LAV deals with loops. LAV has support for both over-approximation of
loops and for fixed number of unwinding of loops (under-approximation), two
common techniques for dealing with loops (which are rarely together present
in a same tool). Setting up the upper loop bound (if under-approximation
is used), is problem dependent and should be done by the teacher for each
assignment.

We use LAV in the following way. LAV is first invoked with its default
parameters — over-approximation of loops. This technique is efficient, but
it can introduce false positives. Therefore, if a potential bug is found after
or inside a loop, the verification is invoked again but this time with fixed un-
winding parameter. If the bug is still present, then it is reported. Otherwise,
the previously detected potential bug is considered to be a false positive and
it is not reported.

In industry, each bug detected by software verification is important and
should be reported. However, some bugs can confuse novice programmers,
like the one shown in Figure 4. In this code, at line 11, there is a subtle
possible buffer overflow. For instance, for n = 0x80000001 only 4 bytes will
be allocated for the pointer array, because of an integer overflow. This is a
verification error, that LAV will normally report, but a teacher may decide
not to consider this kind of bugs. For this purpose, LAV can be invoked in
the mode for students (so the bugs like this one, involving an integer overflow
in memory allocation, are not reported). In the student mode, also, hints for
discovered errors are always reported.

To a limited extent, LAV was already used on students’ assignments at
an introductory programming course [13]. The corpus consisted of 157 pro-
grams with the average number of lines 42 and it included both correct and
incorrect solutions. LAV ran only with its default parameters (giving some
false positives) and it discovered 423 genuine bugs in 121 programs. Possible

13

1: unsigned i, n;

2: unsigned *arr;

3: scanf("%u", &n);

4: array = malloc(n*sizeof(unsigned));

5: if(array == NULL)

6: {

7: fprintf(stderr, "Unsuccessful allocation\n");

8: exit(EXIT_FAILURE);

9: }

10: for(i=0; i<n; i++)

11: array[i] = i;

Figure 4: Buffer overflow in this code is a verification error, but the teacher may decide
not to consider this kind of bugs.

buffer overflows were the most frequent bugs found in this corpus (240 bugs
in 111 programs). The vast majority of bugs (90%), were made following
wrong expectations — for instance, expectations that input parameters of
the program will meet certain constraints (71%), that the program will al-
ways be invoked with appropriate number of command line arguments (10%),
and that memory allocation will always succeed (8%). It was also noticed
that a single oversight was often responsible for several bugs — in 73% of
programs with bugs, omission of a necessary check produced two to ten bugs
in the rest of the program. For example, omission of a check of a number of
command line arguments introduced two to three buffer overflow errors per
solution (at each place where command line arguments were used). Another
example is omission of a check whether a memory allocation succeeded —
this one oversight led to a possible null pointer dereferencing error at each
point where the pointer was used and introduced four to ten reported bugs
per solution. Therefore, the number of bugs, as reported by a verification
tool, is not a reliable indicator of an overall program quality. This property
should be taken into account in automated grading.

5.3. Empirical Evaluation

As discussed in Section 3, programs that successfully pass a testing phase
can still contain bugs. To show that this problem is practically important,
we used LAV to analyze programs from the corpus described in Section 4.

For each problem, LAV ran with its default parameters, and programs
with potential bugs were checked with under-approximation of loops, as de-

14

scribed in Section 5.2.6 The results are shown in Table 1. On average, on a
system with Intel processor i7 with 8 GB of RAM memory, running Ubuntu,
LAV spent 2.8s for analyzing one program.

LAV discovered bugs in 35 solutions that successfully passed manually
designed test cases (following the grading setting described in Section 4).
There was one false negative of manual inspection (the bug was detected
by LAV) and one false negative of LAV (the bug was detected by manual
inspection). The false negative of manual inspection was the bug described in
Section 3 and given in Figure 1. The false negative of LAV was a consequence
of the problem formulation which was too general to allow a precise unique
upper loop unwinding parameter value for all possible solutions. There were
just two false positives produced by LAV when the default parameters were
used. These false positives were eliminated when the tool was invoked for the
second time with a specified loop unwinding parameter, and hence there were
no false positives in the final outputs. In summary, the presented results show
that a verification tool like LAV can be used as a complement to automated
testing that improves the evaluation process.

5.4. Feedback for Students and Teachers

LAV can be used to provide meaningful and comprehensible feedback
to students while they develop their programs. Generated feedback follows
directly from the detected counterexamples, which, further, follow directly
from the way LAV operates. So, the cost of feedback generation is very low.
Information such as the line number, the kind of the error, program trace
that introduces the error, and values of variables along this trace can help
the student improve the solution. This feedback can also remind the student
to add an appropriate check that is missing. The example given in Figure 5,
extracted from a student’s code written on an exam, shows the error detected
by LAV and the generated hint.

From a software verification tool, a teacher can obtain the information
if the student’s program contains a bug. The teacher can use this informa-

6When analyzing solutions of three problems (3, 5 and 8), only under-approximation
of loops was used. This was the consequence of the formulation of the problems given
to the students. Namely, the formulation of these problems contained some assumptions
on input parameters. These assumptions implied that some potential bugs should not be
considered (because these are not bugs when these additional assumptions are taken into
account).

15

problem solutions average programs programs bug-free false
number with bugs with bugs programs positives

of by manual by LAV by LAV by LAV
lines inspection def. custom def. custom

1. 44 29 0 0 44 - 0 -
2. 32 55 11 11 20 1 1 0
3. 7 30 2 2 - 5 - 0
4. 5 43 0 1 3 1 1 0
5. 12 39 3 2 - 10 - 0
6. 7 35 0 0 6 1 1 0
7. 33 14 0 0 33 - 0 -
8. 31 29 11 11 - 20 - 0
9. 10 83 6 6 4 0 0 0
10. 14 36 2 2 12 0 0 0
11. 31 13 0 0 31 - 0 -
12. 18 16 0 0 18 - 0 -
13. 3 20 0 0 3 - 0 -
14. 7 28 0 0 7 - 0 -
15. 12 21 0 0 12 - 0 -

total 266 30 35 35 193 38 2 0

Table 1: Summary of bugs in the corpus: the second column represents the number of
students’ solutions to the given problem; the third column represents the average number
of lines per solution; the fourth and the fifth column represent the number of solutions
with bugs detected by manual inspection and by LAV; the sixth column gives the number
of programs shown to be bug-free by LAV using over-approximation of loops (default pa-
rameters) and, when necessary, using under-approximation of loops (custom parameters);
the seventh column gives the number of false positives made by LAV invoked with default
parameters and, if applicable, with custom parameters.

tion in grading assignments. Alternatively, this information can be taken
into account within wider integrated framework for obtaining automatically
proposed final grade discussed in Section 7.

5.5. Limitations of Random Testing Compared to Software Verification

Different sorts of test cases can be used in evaluation of students’ assess-
ments: manually designed test cases and test cases automatically generated
by static or dynamic analysis, or some combination of these. As already said,
manually designed test cases check if the code exhibits desired behavior on
a range of selected inputs and are usually used in assessment of students’
programs. Tools that generate test cases based on static analysis use soft-
ware verification techniques that we also use. Dynamic analysis tools based
on random testing are often used in educational context [42] and they target
similar classes of programming defects as verification tools. Therefore, we

16

verification failed:

1: #include<stdio.h> line 7: UNSAFE

2: #include<stdlib.h>

3: int get_digit(int n, int d); function: main

4: int main(int argc, char** argv) error: buffer_overflow

5: { in line 7: counterexample:

6: int n, d; argc == 1, argv == 1

7: n = atoi(argv[1]);

8: d = atoi(argv[2]); HINT:

9: printf("%d\n", get_digit(n, d)); A buffer overflow error occurs when

10: return 0; trying to read or write outside the

11: } reserved memory for a buffer/array.

Check the boundaries of the array!

Figure 5: Listing extracted from student’s code written on an exam (left-hand side) and
LAV’s output (right-hand side)

briefly discuss if verification tools can add new value to what random testing
tools can provide in this context. For illustration, we confront the described
verification tool LAV with one random testing tool, on the corpus described
in Section 4.

Dynamic analysis of code based on random testing, also known as fuzzing
or fuzz testing, is a black-box technique which attempts to discover security
vulnerabilities by sending random inputs to a program [45]. It is used to
detect vulnerabilities that can cause the program to crash, hang or lead to
an exception (and cannot be used to detect other kinds of vulnerabilities).
The main challenge for random testing tools is to achieve high code coverage
and there are different strategies for accomplishing this goal. These tools
are widely used [46], but they still have some weaknesses. For instance,
they can generate many test cases that hit the same bug, but following
different paths through the program. Although fuzzers execute program to be
examined, they can still introduce false positives, for example, by concluding
that the program is stuck, although it only waits for an input. There are
some variations of fuzzing techniques and tools [47, 48, 49].

Bunny [50] is an open source, high-performance, general purpose protocol-
blind black-box fuzzer for C programs. It injects instrumentation hooks into
the traced program which allow it to receive real-time feedback on trace
changes caused by variations on input data. This further allows getting high
code coverage of the testing process.

17

We ran Bunny on the corpus described in Section 4 and then manually
analyzed all the test cases it produced. LAV found 35 bugs in the corpus,
while test cases generated by Bunny point to 12 of these bugs. Bunny did
not discover 16 bugs (including one given in Figure 1) that result in buffer
overflows (usually off-by-one errors). Since these bugs do not cause programs
to crash, note that they cannot be discovered by other black-box fuzzers too.7

The remaining 7 bugs are not shallow and Bunny did not manage to produce
test cases that would trigger these bugs, which is a common problem with
this sort of tools [44]. On the other hand, for all 49 solutions of the problems
3, 5 and 8, Bunny produced test cases which trigger bugs not relevant in this
context due to assumptions given in the problems’ formulations (but that
could not be handled by Bunny, because it is a protocol-blind fuzzer). For
another 31 programs from the corpus, Bunny generated false positives. For
most of them (for 26 programs) Bunny reported they got stalled while they
were only printing large amounts of correct data. Other false positives (for
5 programs) are not valid input data (for instance, the first input number
determines the number of the input data that the program should read,
while the test case does not supply enough input data). As for software
verification tools, the number of test cases generated by a tool such as Bunny
cannot be used for measuring the quality of the program examined because:
(i) the numbers of generated test cases can drastically differ for programs
representing solutions of the same problem and containing same bugs (for
example, these numbers vary from 1 to 228 for solutions of one problem
from the corpus); (ii) many test cases generated for one program may hit the
same bug; (iii) some test cases can be false positives. Taking only the first
generated test case (as we use only the first bug that LAV reports) is not a
good solution neither since the first test case may be false positive. Finally,
for analyzing the corpus, Bunny took significantly more time than LAV.

We believe that we would obtain similar results if some other black-box
fuzzer was used instead of Bunny, since black-box fuzzers do not detect bugs
that do not cause crashes and are not good in finding bugs that are not
shallow. Therefore, we conclude that random testing can complement and

7In order to find bugs like these, it is necessary to use techniques that precisely track
memory contents. For example, tools CRED [51], CCured [52] and Valgrind [53] do a
detailed instrumentation of C code in order to detect buffer overflows. However, these
tools introduce significant overhead on testing performance [54, 51] and do not generate
test cases automatically.

18

improve manual testing in educational context, but it still has weaknesses
(concerning missed bugs, false positives and time efficiency) compared to
appropriate tools that use static analysis of code, including verification tools.

6. Assignment Evaluation and Structural Similarity of Programs

In this section we propose a similarity measure for programs based on
their control flow graphs, perform its empirical evaluation, and point to ways
it can be used to provide feedback for students and teachers.

6.1. Similarity of CFGs for Assignment Evaluation

To evaluate structural properties of programs, we take the approach of
comparing students’ programs to solutions provided by the teacher. A stu-
dent’s program is considered to be good if it is similar to some of the programs
provided by the teacher [55, 14, 15]. This assumption cannot be made for
large size students’ projects where may be many different ways of solving a
problem that cannot be predicted in advance. However, for programs written
within introductory programming courses, there are no many sensible but
substantially different solutions (or with substantially different structure).
Innovative and good solutions are always possible, but in this context are
rare. Therefore, the real risk is that students produce programs more com-
plex than needed and our system aims at detecting this. This assumption
is reasonable and is justified by good results of empirical evaluation given in
Section 7.

In order to perform a comparison, a suitable program representation and
a similarity measure are needed. As already discussed in Section 2, our
system generates a control flow graph (CFG) corresponding to each program.
The CFG reflects the structure of the program. Also, there is a linear code
sequence attributed to each node of the CFG which we call the node content.
We assume that the code is in the intermediate LLVM language [19, 20].
In order to measure similarity of programs, both the similarity of graph
structures and the similarity of node contents should be considered. We take
the approach of combining the similarity of node contents with topological
similarity of graph nodes described in Section 2.

Similarity of node contents. The node content is a sequence of LLVM in-
structions. A simple way of measuring the similarity of two sequences of
instructions s1 and s2 is using the edit distance between them d(s1, s2) —

19

the minimal number of insertion, deletion and substitution operations over
the elements of the sequence by which one sequence can be transformed into
another [56]. In order for edit distance to be computed, the cost of each inser-
tion, deletion and substitution operation has to be defined. We define the cost
of insertion and deletion of an instruction to be 1. Next, we define the cost
of substitution of instruction i1 by instruction i2. Let opcode be a function
that maps an instruction to its opcode (a part of instruction that specifies
the operation to be performed). Let opcode(i1) and opcode(i2) be function
calls. Then, the cost of substitution is 1 if i1 and i2 call different functions,
and 0 if they call the same function. If either opcode(i1) or opcode(i2) is not
a function call, the cost of substitution is 1 if opcode(i1) 6= opcode(i2), and 0
otherwise. Let n1 = |s1|, n2 = |s2|, and let M be the maximal edit distance
over two sequences of length n1 and n2. Then, the similarity of sequences s1
and s2 is defined as 1− d(s1, s2)/M .

Although it could be argued that the proposed similarity measure is rough
since it does not account for differences of instruction arguments, it is simple,
easily implemented, and intuitive.

Full similarity of nodes and similarity of CFGs. The topological similarity
of nodes can be computed by the method described in Section 2. However,
purely topological similarity does not account for differences of the node con-
tent. Hence, we modify the computation of topological similarity to include
the apriori similarity of nodes. The modified update rule is:

xk+1
ij ←

√
yij ·

sk+1
in (i, j) + sk+1

out (i, j)

2

where yij are the similarities of contents of nodes i and j and sk+1
in (i, j) and

sk+1
out (i, j) are defined by Equations 1. Also, we set x0ij = yij. This way, both

content similarity and topological similarity of nodes are taken into account.
The similarity of CFGs can be defined based on the node similarity matrix
as described in Section 2. Note that both the similarity of nodes and the
similarity of CFGs take values in the interval [0, 1].

It should be noted that our approach provides both the similarity measure
for CFGs and the similarity measure for their nodes (xij). In addition to
evaluating similarity of programs, this approach enables matching of related
parts of the programs by matching the most similar nodes of CFGs. This
could serve as a basis of a method for suggesting which parts of the student’s
program could be further improved.

20

6.2. Empirical Evaluation

In order to show that the proposed program similarity measure corre-
sponds to some intuitive notion of program similarity, we performed the
following evaluation. For each program from the corpus described in Section
4, we found the most similar program from the rest of the corpus and counted
how often these programs are the solutions for the same problem. That was
the case for 90% of all programs. This shows that our similarity measure per-
forms well, since with high probability, for each program, the program that
is the most similar to it, corresponds to the same problem. The inspection
suggests that in most cases, where the programs do not correspond to the
same problem, student took an innovative approach for solving the problem.

The average size of CFGs of the programs from the corpus is 15 nodes.
The average similarity computation time was 0.12s (on a system with Intel
processor i7 with 8 GB of RAM memory, running Ubuntu).

6.3. Feedback for Students and Teachers

The students can benefit from program similarity evaluation while learn-
ing and exercising, assuming that the teacher provided a valid solution or
a set of solutions to the evaluation system. In introductory programming
courses, most often a student’s solution can be considered as better if it is
more similar to one of the teacher’s solutions, as discussed in Section 6.1.
In Section 7 we show that the similarity measure can be used for automatic
calculation of a grade (a feedback that students easily understand). More-
over, we show that there is a significant linear dependence of the grade on
the similarity value. Due to that linearity, the similarity value can be con-
sidered as an intuitive feedback, but also it can be translated into descriptive
estimate. For example, the feedback could be that the solution is dissimilar
(0-0.5), roughly similar (0.5-0.7), similar (0.7-0.9) or very similar (0.9-1) to
one of the desired solutions.

Teachers can use the similarity information in automated grading, as
discussed in Section 7.

7. Automated Grading

In this section we explore the potential of automated grading based on
the synergy of the evaluation techniques that have been discussed so far.
For this, relatively simple correlational study suffices. We train a prediction
model based on a set of instructor graded solutions, and then check the

21

correlation of the model’s predictions with instructor-provided grades on a
separate set of solutions to different assignment problems. We also discuss
the threats to validity of our research.

7.1. Predictive Model and Its Evaluation

We believe that automated grading can be performed by calculating a
linear combination of different scores measured for the student’s solution.
We propose a linear model for prediction of the teacher-provided grade of
the following form:

ŷ = α1 · x1 + α2 · x2 + α3 · x3
where

• ŷ is the automatically predicted grade,

• x1 is a result obtained by automated testing expressed in the interval
[0, 1],

• x2 is 1 if the student’s solution is reported to be correct by the software
verification tool, and 0 otherwise,

• x3 is the maximal value of similarity between the student’s solution
and each of the teacher provided solutions (its range is [0, 1]).

It should be noted that we do not use bug count as a parameter, as discussed
in Section 5.2. Different choices for the coefficients αi, for i = 1, 2, 3 could
be proposed. In our case, one simple way could be α1 = 8, α2 = 1, and
α3 = 1 since all programs in our training set won 80% of the full grade
due to the success in the testing phase. However, it is not always clear how
the teacher’s intuitive grading criterion can be factored to automatically
measurable quantities. Teachers need not have the intuitive feeling for all
the variables involved in the grading. For instance, the behavior of any
of the proposed similarity measures including ours [14, 15, 18] is not clear
from their definitions only. So, it may be unclear how to choose weights for
different variables when combining them in the final grade or if some of the
variables should be nonlinearly transformed in order to be useful for grading.
A natural solution is to try to tune the coefficients αi, for i = 1, 2, 3, so that
the behavior of the predictive model corresponds to the teacher’s grading
style. For that purpose, coefficients can be determined automatically using

22

least squares linear regression [57] if a manually graded corpus of students’
programs is provided by the teacher.

In our evaluation, the corpus of programs was split into a training and
a test set where the training set consisted of two thirds of the corpus and
the test set consisted of one third of the corpus. The training set contained
solutions of eight different problems and the test set contained solutions of
remaining seven problems. Both the training and the test set were graded
by one of the instructors.

Due to the nature of the corpus, for all the instances it holds x1 = 1.
Therefore, while it is clear that the percentage of test cases the program
passed (x1) is useful in automated grading, this variable cannot be analyzed
based on this corpus.

The optimal values of coefficients αi, i = 1, 2, 3, with respect to the
training corpus, are determined using the least squares linear regression.
The obtained equation is

ŷ = 6.058 · x1 + 1.014 · x2 + 2.919 · x3

The formula for ŷ may seem counterintuitive. Since the minimal grade in
the corpus is 8 and x1 = 1 for all instances, one would expect that it holds
α1 ≈ 8. The discrepancy is due to the fact that for the solutions in the corpus,
the minimal value for x3 is 0.68 — since all the solutions are relatively good
(they all passed the testing) there are no programs with low similarity value.
Taking this into consideration, one can rewrite the formula for ŷ as

ŷ = 8.043 · x1 + 1.014 · x2 + 0.934 · x′3

where x′3 = x3−0.68
1−0.68 , so the variable x′3 takes values from the interval [0, 1].

This means that when the range of variability of both x2 and x3 is scaled to
the interval [0, 1], their contribution to the mark is rather similar.

Since our goal is to confirm that the combination of evaluation techniques
tuned (on a training set) to the instructor grading style is superior to the
use of individual techniques or some reasonable first-guess combination with
predetermined parameters, we compare the correlations between instructor-
provided grades and the grades provided by each of these approaches. Table
2 shows the comparison between the model ŷ and three other models. The
model ŷ1 = 8 · x1 + x2 + x3 has predetermined parameters, the model ŷ2 is
trained just with verification information x2 (without similarity measure),

23

r r2 · 100% p-value Rel. error
ŷ (all/adaptable) 0.842 71% <0.001 10.1%
ŷ1 (all/predetermined) 0.730 53.3% <0.001 12.8%
ŷ2 (no similarity/adaptable) 0.620 38.4% <0.001 16.7%
ŷ3 (no verification/adaptable) 0.457 20.9% <0.001 17.7%

Table 2: The performance of the predictive model on the training and test set. For each
model we specify if it takes into account all proposed variables or not and if the coefficients
were predetermined or adaptable. We provide correlation coefficient (r), the fraction of
variance of y accounted by the model (100 · r2), p-value as an indicator of statistical
significance, and relative error — average error divided by the length of the range in
which the grades vary (which is 8 to 10 in the case of this particular corpus).

and the model ŷ3 is trained only with similarity measure x3 (without verifi-
cation information). The results show that the performance of the model ŷ
on the test set (consisting of the problems not appearing in the training set)
is excellent — the correlation is 0.842 and the model accounts for 71% of the
variability of the instructor-provided grade. The statistical significance of our
results is confirmed by statistical test against the null hypothesis that there
is no correlation between predicted and teacher provided grades. It yielded
very small p-values which shows that our results are statistically very signif-
icant. These results indicate a strong and reliable dependence between the
instructor-provided grade and the variables xi, meaning that a grade can be
reliably predicted by ŷ. Also, ŷ is much better than other models. This shows
that the approach using both verification information and graph similarity
information is superior to approaches using only one source of information,
and also that automated tuning of coefficients of the model provides better
prediction than giving them in advance.

7.2. Threats to Validity

Internal, external, and construct validity are usually used in the analysis
of the experiments that confirm causal relationships between the considered
variables [58]. Although we performed a correlational study, it is worth
performing such analysis in our context, too.

Internal validity analysis is concerned with the extent to which the re-
lationship between the independent variables and the dependent variable is
established. For the predictive task we are addressing, the relationship that
needs to be established is a correlational one. This relationship is clearly

24

established by the large correlation coefficient between the teacher provided
grades and the predictions based on the proposed predictors.

Since our study is correlational and predictive, but not experimental,
we cannot make claims about the factors that influence human grading and
claims about causality between the variables we consider. While the expla-
nation that the human program grading is to large extent led by the presence
of bugs in the program and its similarity with the model solution may seem
reasonable, we do not claim that our results corroborate that. It is possible
that there are confounding variables that are highly correlated both with
the independent variables and with the dependent variable. To analyze such
hypothesis one would need proper experimental evaluation.

External validity analysis is concerned with the possibility of generaliz-
ing the relationship between the independent variables and the dependent
variable to other situations. To avoid threats related to external validity, we
restricted our approach to automated grading in introductory programming
courses. Also, we performed testing on a different set of problems compared
to the ones the training was performed on. Therefore, we expect that our
approach generalizes well to other contexts, as long as the programs involved
are not complex, as were the ones we used in the evaluation.

Construct validity analysis is concerned with the extent to which a mea-
sure correlates to the relevant theoretical concept. In our case, the relevant
theoretical concept is the quality of students’ solutions. Construct valid-
ity can be established by examining correlation of the measure with other
measures related to the same concept. High correlation coefficient (0.842)
between the automatically provided grades and the teacher provided grades
testifies that these measures reflect tightly related concepts. A portion of
variability (29%) of automated grades in our evaluation could not be related
to the variability of teacher provided grades. Inspection of cases that yielded
the biggest errors in the prediction suggests that the greatest source of dis-
crepancy between automatically provided and teacher provided grades are
the innovative solutions given by students and the solutions not predicted in
advance by the teacher. Although such cases are not very frequent, they are
still possible in our approach.

The construct validity could be questioned for teacher provided grades,
too, especially since it is clear that different teachers can grade the same
solutions differently. However, our approach is based on adapting to the
grading style of a teacher and therefore depends on the quality of teacher’s
judgement.

25

8. Related Work

In this Section we discuss different approaches and tools for evaluation
of student programs. We first briefly comment on manual grading, then give
a short overview of tools based on automated testing (testing is used in the
preliminary phase of our approach), and then of tools that assess design and
employ verification techniques.

We did not use the tools described below for assessing solutions from our
corpus and empirical comparison with our approach because: (i) some of the
tools employ only automated testing, so comparison would not be fair, or
even would not make much sense; (ii) most of the tools are not available,
and even fewer are open-source. Overall, we are not aware of any tool that
is publicly available, not based only on automated testing, and that can
automatically produce grades, so it could be used for a reasonable empirical
comparison with our approach.

8.1. Manual Grading

Over the decades of teaching programming languages, there have been a
wide range of teaching and grading approaches. In the grading approaches,
one of the key issues, often not formalized but followed only intuitively is
assigning weights to certain aspects of a student solution (e.g. efficiency,
design, correctness, style). For instance, Howatt proposes a grading system
in which 25% of a maximal grade goes to the design of a program, 20% goes
to program execution, and 20% goes to specification satisfactions [59]. These
distributions are often individual or course dependent, so it would be very
useful if a system can adopt grading style of a specific user. Our system allows
using given weights for certain program aspects but also allows computing
the user specific weights on the basis of a given manually graded examples.

8.2. Tools Based on Automated Testing

Automated testing is the most common way of evaluating students’ pro-
grams [5]. In this context, test cases are usually supplied by a teacher and/or
randomly generated [42]. A number of systems use this approach (for various
programming languages), for example, PSGE [60], Automark [61] (fortran
77), Kassandra [62] (Maple or Matlab code in a scientific computing course),
Schemerobo [63] (functional programming within Scheme), TRY [64] (Pas-
cal), HoGG [65] (Java), BAGS [66], JEWL [67] (automated assessment of
GUI-based programs in JAVA), and JUnit [68] (a unit testing framework for

26

Java). One of the drawbacks is that if a student’s program does not pro-
duce the desired output in the expected format, a system may fail to give
an appropriate mark. All of the above tools employ only automated testing
and do not take into account the design of the program and the algorithm
used (unlike our system that take these issues into account, implicitly, via
similarity measures). Because of its limitations, for better performance, au-
tomated testing can be combined with manual inspection or other automated
techniques.

Automated testing is used as a component of a number of web-based sub-
mission and evaluation systems. Some of them are Online Judge, a system for
testing programs in programming contests [69], WebToTeach, a commercial
tool which is designed to support a wide variety of programming exercises
[70], Quiver, a server for building, maintaining, and administering program-
ming quizzes [71], Praktomat, a system that allows students to read, review,
and assess each others programs in order to improve quality and style [72],
Web-CAT, a system that encourage students to write their own test cases [73]
in order to experience test-first programming and understand the influence
of testing on overall software quality [74], Marmoset, a project submission
tool with support for automated testing and for collecting code snapshots
[75]. In the new, open-source system Marmoset, the feedback that students
receive is based on results obtained by testing, while final grading is done
by the instructor (after the project’s deadline). In contrast, our system aims
at automated grading which would make the final grade immediately avail-
able to students (which is essential for interactive studying). Marmoset is a
framework that deals with projects of different sizes and complexity, while
our system focuses on small sized problems typical for introductory program-
ming courses.

There are also course management tools that support instructor’s grading
by using automated testing, like Assyst [76], BOSS [77], CourseMarker [78]
and GAME [79]. BOSS, CourseMarker, and GAME, within the grading
mechanism, use efficiently calculated, general metrics that assess quality and
style of the examined program. However, these metrics typically cannot
assess the way the problem is solved, i.e. the design of the solution and the
algorithm used [14].

Our current system is not an integrated framework for submission and
testing or for course management. Instead, it should be useful component in
evaluation parts of such systems.

27

8.3. Tools Assessing the Design of Student’s Solution
To address the design of a solution, it is necessary to compare student’s

solution to some predefined solutions. The PASS tool [55], aimed for assess-
ing C programs, evaluates the design of students’ solutions by comparing it
with a solution plan provided by an instructor. A solution plan of the stu-
dent’s solution is constructed using equivalent functions which are identified
by automated testing. In contrast, our approach is based on control flow
graph similarity to identify equivalent or similar parts of code and not only
equivalent functions.

Wang et al. proposed an automated grading approach for assignments in
C based only on program similarity [14]. It is based on dependence graphs
[80] as program representation. They perform various code transformations
in order to standardize the representation of the program. In this approach,
the similarity is calculated based on comparison of structure, statement, and
size which are weighted by some predetermined coefficients. Their approach
is evaluated on 10 problems, 200 solutions each, and gave good results com-
pared to manual grading. Manual grading was performed strictly according
to the criterion that indicates how the scores are awarded for structure, state-
ments used, and size. However, it is not quite obvious that human grading is
always expressed strictly in terms of these three factors. An advantage of our
approach compared to this one is automated tuning of weights correspond-
ing to different variables used in grading, instead of using the predetermined
ones. Since teachers do not need to have an intuitive feeling for different sim-
ilarity measures, it may be unclear how the corresponding weights should be
chosen. Also, we avoid language-dependent transformations by using LLVM,
which makes our approach applicable to a large variety of programming lan-
guages. The approach by Wang et al. was extended to automated learning
and examination system AutoLEP [81]. AutoLEP provides submission sup-
port, feedback about compiler errors, failed test cases, and the similarity of
student’s and teacher’s solutions. Automated grading is also provided, but
the way it is performed is not elaborated in the paper. AutoLEP is not pub-
licly available. Very similar approach to the one of Wang et al. was presented
by Li et al. [82].

Another approach to grading assignments based only on graph similarity
measure is proposed by Naudé et al. [15]. They represent programs as depen-
dence graphs and propose directed acyclic graph (DAG) similarity measure.
In their approach, for each solution to be graded, several similar instructor-
graded solutions are considered and the grade is formed by combining grades

28

of these solutions with respect to matched portions of the similar solutions.
The approach was evaluated on one assignment problem and the correlation
between human and machine provided grades is about the same as ours. For
appropriate grading, they recommend at least 20 manually graded solutions
of various qualities for each problem to be automatically graded. In the case
of automatic grading of high-quality solutions (as is the case with our corpus),
using 20 manually graded solutions, their approach achieves 16.7% relative
error, while with 90 manually graded solutions it achieves around 10%. The
adventage that our approach provides is reflected through several indicators.
We used a heterogeneous corpus of 15 problems instead of one. Our approach
uses 1 to 3 model solutions for each problem to be graded and a training set
for weight estimation which does not need to contain the solutions for the
program to be graded. So, after the initial training has been performed, for
each new problem only few model solutions should be provided. With 1 to 3
model solutions, we achieve 10% relative error (see Table 2). Due to the use
of the LLVM platform, we do not use language-dependent transformations,
so our approach is applicable to a large number of programming languages.
The similarity measure we use, called neighbor matching, is similar to the one
of Naudé et al. but for our measure, important theoretical properties (e.g.,
convergence) are proven [18]. The neighbor matching method was already
applied to several problems but in all these applications its use was limited
to ordinary graphs with nodes without any internal structure. To apply it to
CFGs, we modifed the method to include node content similarity which was
independently defined as described in Section 6.1.

Program similarity measurement need not be based on graphs. Compari-
son of students programs with model solutions can be based on using different
metrics, like in the tool ELP [83], WAGS [84] and the system proposed by
Khirulnizam et al. [85]. In these approaches, teachers need to provide model
programs for all the possible answer variations so these systems aim at small
and “fill-in the gap” type programming exercises [81]. Aiken’s tool MOSS
[86] is based on clever substring matching between the programs. In contrast,
our system uses graph similarity measures as they reflect the way parts of
code are interconnected. So, for two programs, we take into account the
similarity of connections between their parts, not only the similarity of the
parts themselves.

We are not aware of other open source implementations of the graph
similarity based approaches, so our system is unique in this respect.

29

8.4. Software Verification Techniques in Automated Grading

Surprisingly, software verification techniques are still not commonly used
in automated evaluation of programs. There are limited experiences on using
Java PathFinder model checker for automated test case generation in educa-
tion [87]. The tool Ceasar [88] has integrated support for automated testing
and verification, but is not aimed for educational purposes. For Java projects,
Marmoset runs the FindBugs [89] tool — a static analysis tool that looks for
Java coding defects. The system does not report all warnings that Find-
Bugs generates, but can still have false positives. The tool LAV was already
used, to a limited extent, for finding bugs in students’ programs [13]. In that
work, a different sort of corpus was used, as discussed in Section 5.2. Also,
that application did not aim at automated grading, and instead was made
in a wider context of design and development of LAV as a general-purpose
SMT-based error finding platform.

9. Conclusions and Further Work

We presented two methods that can be used for improving automated
evaluation of students’ programs in introductory programming courses. The
first one is based on software verification and the second one on CFG sim-
ilarity measurement. Both techniques can be used for providing useful and
helpful feedback to students and for improving automated grading for teach-
ers. In our evaluation, against the instructor-provided grades, we show that
synergy of these methods offers more information useful for automated grad-
ing than any of them independently. Also, we obtained good results in pre-
diction of the grades for a new set of assignments. Our approach can be
trained to adapt to teacher’s grading style on several teacher graded prob-
lems and then be used on different problems using only few model solutions
per problem. An important advantage of our approach is independence of
specific programming language since LLVM platform (which we use to pro-
duce intermediate code) supports large number of programming languages.
The presented methodology is implemented in our open source tools.

In our future work we plan to make an integrated web-based system with
support for the mentioned techniques along with compiling, automated test-
ing, profiling and detection of plagiarism of students’ programs or to integrate
our techniques into an existing system. We are planning to integrate LLVM-
based open source tool KLEE [8] for automated test case generation along

30

with support for teacher supplied test cases. Also, we intend to improve feed-
back to students by indicating missing or redundant parts of code compared
to the teacher’s solution. This feature would rely on the fact that our sim-
ilarity measure provides the similarity values for nodes of CFGs, and hence
enables matching the parts of code between two solutions. If some parts of
the solutions cannot be matched or are matched with very low similarity,
this can be reported to the student. On the other hand, the similarity of the
CFG with itself could reveal the repetitions of parts of the code and suggest
that refactoring could be performed.

We also plan to explore the potential for using software verification tools
for proving functional correctness of student programs. This task would pose
new challenges. Testing, profiling, bug finding and similarity measurement
are used on original students’ programs, which makes the automation easy.
For verification of functional correctness, the teacher would have to define
correctness conditions (possibly in terms of implemented functions) and in-
sert corresponding assertions in appropriate places in students’ programs,
which should be possible to automate in some cases, but it is not trivial in
general. In addition, for some programs it is not easy to formulate correct-
ness conditions (for example, for programs that are expected only to print
some messages on standard output).

References

[1] A. Pears, S. Seidman, L. Malmi, L. Mannila, E. Adams, J. Bennedsen,
M. Devlin, J. Paterson, A Survey of Literature on the Teaching of
Introductory Programming, in: Working group reports on ITiCSE on
Innovation and technology in computer science education, ITiCSE-WGR
’07, ACM, 2007, pp. 204–223.

[2] T. Nipkow, Teaching Semantics with a Proof Assistant: No More LSD
Trip Proofs, in: Verification, Model Checking, and Abstract Interpreta-
tion (VMCAI), pp. 24–38.

[3] M. Vujošević-Janičić, D. Tošić, The Role of Programming Paradigms
in the First Programming Courses, The Teaching of Mathematics XI
(2008) 63–83.

[4] I. E. Allen, J. Seaman, Learning on demand: Online education in the
United States, 2009, Technical Report, The Sloan Consortium, 2010.

31

[5] C. Douce, D. Livingstone, J. Orwell, Automatic Test-based Assessment
of Programming: A Review, Journal on Educational Resources in Com-
puting 5 (2005).

[6] W. Afzal, R. Torkar, R. Feldt, A systematic review of search-based
testing for non-functional system properties, Information and Software
Technology 51 (2009) 957–976.

[7] N. Tillmann, J. Halleux, Pex White Box Test Generation for .NET ,
in: Proceedings of TAP 2008, the 2nd International Conference on Tests
and Proofs, volume 4966 of LNCS, Springer, 2008, pp. 134–153.

[8] C. Cadar, D. Dunbar, D. Engler, KLEE: Unassisted and Automatic
Generation of High-Coverage Tests for Complex Systems Programs, in:
Proceedings of the 8th USENIX conference on Operating systems design
and implementation (OSDI), USENIX Association Berkeley, 2008, pp.
209–224.

[9] V. Chipounov, V. Kuznetsov, G. Candea, S2E: A Platform For In-vivo
Multi-path Analysis of Software Systems, ACM SIGARCH Computer
Architecture News 39 (2011) 265–278.

[10] E. Clarke, D. Kroening, F. Lerda, A Tool for Checking ANSI-C Pro-
grams, in: Tools and Algorithms for the Construction and Analysis of
Systems (TACAS), Springer, 2004, pp. 168–176.

[11] L. Cordeiro, B. Fischer, J. Marques-Silva, SMT-Based Bounded Model
Checking for Embedded ANSI-C Software, International Conference on
Automated Software Engineering (ASE) (2009) 137–148.

[12] F. Merz, S. Falke, C. Sinz, LLBMC: Bounded Model Checking of C and
C++ Programs Using a Compiler IR, in: Verified Software: Theories,
Tools and Experiments (VSTTE), LNCS, Springer, 2012, pp. 146–161.

[13] M. Vujošević-Janičić, V. Kuncak, Development and Evaluation of LAV:
An SMT-Based Error Finding Platform, in: Verified Software: Theories,
Tools and Experiments (VSTTE), LNCS, Springer, 2012, pp. 98–113.

[14] T. Wang, X. Su, Y. Wang, P. Ma, Semantic similarity-based grading
of student programs, Information and Software Technology 49 (2007)
99–107.

32

[15] K. A. Naudé, J. H. Greyling, D. Vogts, Marking Student Programs
Using Graph Similarity, Computers and Education 54 (2010) 545–561.

[16] K. M. Ala-Mutka, A Survey of Automated Assessment Approaches for
Programming Assignments, Computer Science Education 15 (2005) 83–
102.

[17] P. Ihantola, T. Ahoniemi, V. Karavirta, O. Seppälä, Review of Recent
Systems for Automatic Assessment of Programming Assignments, in:
Proceedings of the 10th Koli Calling International Conference on Com-
puting Education Research, Koli Calling ’10, ACM, 2010, pp. 86–93.

[18] M. Nikolić, Measuring Similarity of Graph Nodes by Neighbor Matching,
Intelligent Data Analysis Accepted for publication (2013).

[19] C. Lattner, V. Adve, The LLVM Instruction Set and Compilation Strat-
egy, 2002.

[20] C. Lattner, The LLVM Compiler Infrastructure, 2012. http://llvm.
org/.

[21] D. Dhurjati, S. Kowshik, V. Adve, SAFECode: enforcing alias anal-
ysis for weakly typed languages, in: Proceedings of the 2006 ACM
SIGPLAN conference on Programming Language Design and iImple-
mentation (PLDI), ACM, New York, NY, USA, 2006, pp. 144–157.

[22] M. R., Llvm-py: Python Bindings for LLVM, 2012. http://www.

mdevan.org/llvm-py/.

[23] T. Bagby, Llvm Ruby, 2012. http://llvmruby.org/.

[24] Haskell, Llvm, 2012. http://www.haskell.org/haskellwiki/LLVM.

[25] VMKit, A substrate for virtual machines, 2012. http://vmkit.llvm.
org/.

[26] D, Llvm D Compiler, 2012. http://www.ohloh.net/p/ldc.

[27] Llvm Pure, The Pure Programming Language, 2012. http://code.

google.com/p/pure-lang/.

33

[28] G. Reedy, Compiling Scala to Llvm, 2012. http://greedy.github.

com/scala-llvm/.

[29] Lua, JIT/Static compiler for Lua using LLVM on the backend, 2012.
http://code.google.com/p/llvm-lua/.

[30] G. Tassey, The Economic Impacts of Inadequate Infrastructure For Soft-
ware Testing, Technical Report, National Institute of Standards and
Technology, 2002.

[31] J. C. King, Symbolic Execution and Program Testing, Communications
of the ACM 19 (1976) 385–394.

[32] E. M. Clarke, 25 Years of Model Checking — The Birth of Model Check-
ing, LNCS, Springer, 2008.

[33] P. Cousot, R. Cousot, Abstract Interpretation: A Unified Lattice Model
for Static Analysis of Programs by Construction or Approximation of
Fixpoints, in: Symposium on Principles of Programming Languages
(POPL), ACM Press, 1977, pp. 238–252.

[34] C. Barrett, R. Sebastiani, S. A. Seshia, C. Tinelli, Satisfiability Modulo
Theories, in: Handbook of Satisfiability, volume 185 of Frontiers in
Artificial Intelligence and Applications, IOS Press, 2009, pp. 825–885.

[35] F. E. Allen, Control flow analysis, in: Proceedings of a symposium on
Compiler optimization, ACM, New York, NY, USA, 1970, pp. 1–19.

[36] J. M. Kleinberg, Authoritative Sources in a Hyperlinked Environment,
Journal of the ACM 46 (1999) 604 — 632.

[37] M. Heymans, A. Singh, Deriving Phylogenetic Trees from the Similarity
Analysis of Metabolic Pathways, Bioinformatics 19 (2003) 138—146.

[38] V. D. Blondel, A. Gajardo, M. Heymans, P. Snellart, P. van Dooren, A
Measure of Similarity between Graph Vertices: Applications to Synonym
Extraction and Web Searching, SIAM Review 46 (2004) 647—666.

[39] H. W. Kuhn, The Hungarian Method for The Assignment Problem,
Naval Research Logistics Quarterly 2 (1955) 83–97.

34

[40] J. Edmonds, R. M. Karp, Theoretical Improvements in Algorithmic
Efficiency for Network Flow Problems, Journal of the ACM 19 (1972)
248–264.

[41] M. L. Fredman, R. E. Tarjan, Fibonacci heaps and their uses in improved
network optimization algorithms, Journal of the ACM 34 (1987) 596–
615.

[42] A. K. Mandal, C. A. Mandal, C. Reade, A System for Automatic Eval-
uation of C Programs: Features and Interfaces, International Journal of
Web-Based Learning and Teaching Technologies 2 (2007) 24–39.

[43] P. Loo, W. Tsai, Random testing revisited, Information and Software
Technology 30 (1988) 402–417.

[44] P. Godefroid, M. Y. Levin, D. A. Molnar, SAGE: Whitebox Fuzzing for
Security Testing, ACM Queue 10 (2012) 20.

[45] B. P. Miller, L. Fredriksen, B. So, An Empirical Study of the Reliability
of UNIX Utilities, Communications of ACM 33 (1990) 32–44.

[46] J. W. Duran, S. C. Ntafos, An Evaluation of Random Testing, IEEE
Transactions of Software Engineering 10 (1984) 438–444.

[47] P. Godefroid, N. Klarlund, K. Sen, DART: Directed Automated Ran-
dom Testing, in: Proceedings of the 2005 ACM SIGPLAN conference
on Programming Language Design and Implementation (PLDI), ACM,
New York, NY, USA, 2005, pp. 213–223.

[48] P. Godefroid, M. Y. Levin, D. Molnar, Sage: Whitebox fuzzing for
security testing, Queue 10 (2012) 20:20–20:27.

[49] K. Sen, D. Marinov, G. Agha, CUTE: A Concolic Unit Testing Engine
for C, in: Proceedings of the 10th European software engineering confer-
ence held jointly with 13th ACM SIGSOFT international symposium on
Foundations of software engineering, ESEC/FSE-13, ACM, New York,
NY, USA, 2005, pp. 263–272.

[50] M. Zalewski, Bunny the Fuzzer, 2008. http://code.google.com/p/

bunny-the-fuzzer/.

35

[51] O. Ruwase, M. S. Lam, A Practical Dynamic Buffer Overflow Detector,
in: Proceedings of the 11th Annual Network and Distributed System
Security Symposium, pp. 159–169.

[52] J. Condit, M. Harren, S. McPeak, G. C. Necula, W. Weimer, Ccured in
the real world, in: Proceedings of the 2003 ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI), ACM,
2003, pp. 232–244.

[53] N. Nethercote, J. Seward, Valgrind: a framework for heavyweight dy-
namic binary instrumentation, SIGPLAN Not. 42 (2007) 89–100.

[54] S. H. Yong, S. Horwitz, Using static analysis to reduce dynamic analysis
overhead, Form. Methods Syst. Des. 27 (2005) 313–334.

[55] D. G. Thorburn, G. W. A. Rowe, PASS: An Automated System for
Program Assessment, Computers & Education 29 (1997) 195–206.

[56] V. I. Levenshtein, Binary Codes Capable of Correcting Deletions, In-
sertions, and Reversals, Soviet Physics Doklady 10 (1966) 707–710.

[57] J. Gross, Linear Regression, Springer, 2003.

[58] M. L. Mitchell, J. M. Jolley, Research Design Explained, Wadsworth
Cengage Learning, 2012.

[59] J. W. Howatt, On criteria for grading student programs, SIGCSE Bull.
26 (1994) 3–7.

[60] J. B. Hext, J. W. Winings, An automatic grading scheme for simple
programming exercises, Communications of ACM 12 (1969) 272–275.

[61] W. H. Fleming, K. A. Redish, W. F. Smyth, Comparison of manual
and automated marking of student programs, Information and Software
Technology 30 (1988) 547–552.

[62] U. V. Matt, Kassandra: The Automatic Grading System, SIGCUE
Outlook 22 (1994) 22–26.

[63] R. Saikkonen, L. Malmi, A. Korhonen, Fully Automatic Assessment of
Programming Exercises, ACM Sigcse Bulletin 33 (2001) 133–136.

36

[64] K. A. Reek, The TRY system -or- how to avoid testing student programs,
SIGCSE Bull. 21 (1989) 112–116.

[65] D. S. Morris, Automatically Grading Java Programming Assignments
Via Reflection, Inheritance, and Regular Expressions, Frontiers in Ed-
ucation Conference 1 (2002) T3G–22.

[66] D. Morris, Automatic Grading of Student’s Programming Assignments:
An Interactive Process and Suit of Programs, in: Proceedings of the
Frontiers in Education Conference 3, volume 3, pp. 1–6.

[67] J. English, Automated Assessment of GUI Programs Using JEWL,
SIGCSE Bull. 36 (2004) 137–141.

[68] M. Wick, D. Stevenson, P. Wagner, Using Testing and JUnit Across the
Curriculum, SIGCSE Bull. 37 (2005) 236–240.

[69] B. Cheang, A. Kurnia, A. Lim, W.-C. Oon, On Automated Grading of
Programming Assignments in an Academic Institution, Computers and
Education 41 (2003) 121–131.

[70] D. Arnow, O. Barshay, WebToTeach: An Interactive Focused Pro-
gramming Exercise System, Frontiers in Education, Annual 1 (1999)
12A9/39–12A9/44.

[71] C. C. Ellsworth, J. B. Fenwick, Jr., B. L. Kurtz, The Quiver System,
in: Proceedings of the 35th SIGCSE technical symposium on Computer
science education, SIGCSE ’04, ACM, 2004, pp. 205–209.

[72] A. Zeller, Making Students Read and Review Code, in: ITiCSE ’00:
Proceedings of the 5th annual SIGCSE/SIGCUE ITiCSE conference on
Innovation and technology in computer science education, ACM Press,
2000, pp. 89–92.

[73] S. H. Edwards, Rethinking Computer Science Education from a Test-
First Perspective, in: Companion of the 2003 ACM Conference on
Object-Oriented Programming, Systems, Languages, and Applications,
pp. 148–155.

[74] L. Huang, M. Holcombe, Empirical investigation towards the effective-
ness of Test First programming, Information and Software Technology
51 (2009) 182–194.

37

[75] J. Spacco, D. Hovemeyer, W. Pugh, J. Hollingsworth, N. Padua-Perez,
F. Emad, Experiences with Marmoset: Designing and Using an Ad-
vanced Submission and Testing System for Programming Courses, in:
Proceedings of the 11th annual conference on Innovation and technology
in computer science education (ITiCSE), ACM Press, 2006, pp. 13–17.

[76] D. Jackson, M. Usher, Grading student programs using ASSYST,
SIGCSE Bull. 29 (1997) 335–339.

[77] M. Joy, N. Griffiths, R. Boyatt, The BOSS online submission and as-
sessment system, Journal of Educational Resources in Computing 5
(2005).

[78] C. A. Higgins, G. Gray, P. Symeonidis, A. Tsintsifas, Automated assess-
ment and experiences of teaching programming, Journal on Educational
Resources in Computing 5 (2005).

[79] M. Blumenstein, S. Green, S. Fogelman, A. Nguyen, V. Muthukku-
marasamy, Performance analysis of GAME: A generic automated mark-
ing environment, Computers & Education 50 (2008) 1203–1216.

[80] S. Horwitz, T. Reps, The Use of Program Dependence Graphs in Soft-
ware Engineering, in: Proceedings of the 14th international conference
on Software engineering, ICSE ’92, ACM, 1992, pp. 392–411.

[81] T. Wang, X. Su, P. Ma, Y. Wang, K. Wang, Ability-training-oriented
automated assessment in introductory programming course, Computers
and Education 56 (2011) 220–226.

[82] J. Li, W. Pan, R. Zhang, F. Chen, S. Nie, X. He, Design and im-
plementation of semantic matching based automatic scoring system for
C programming language, in: Proceedings of the Entertainment for
education, and 5th international conference on E-learning and games,
Springer, 2010, pp. 247–257.

[83] N. Truong, P. Roe, P. Bancroft, Automated feedback for ”fill in the
gap” programming exercises, in: Proceedings of the 7th Australasian
conference on Computing education - Volume 42, ACE ’05, Australian
Computer Society, Inc., 2005, pp. 117–126.

38

[84] N. Zamin, E. E. Mustapha, S. K. Sugathan, M. Mehat, E. Anuar, De-
velopment of a Web-based Automated Grading System for Program-
ming Assignments using Static Analysis Approach, 2006. International
Conference on Technology and Operations Management (Institute Tech-
nology Bandung).

[85] A. R. Khirulnizam, A. Syarbaini, J. N. Md, The design of an automated
C programming assessment using pseudo-code comparison technique,
2007. National Conference on Software Engineering and Computer Sys-
tems (Pahang, Malaysia).

[86] S. Schleimer, D. S. Wilkerson, A. Aiken, Winnowing: Local algorithms
for document fingerprinting, in: Proceedings of the 2003 ACM SIGMOD
international conference on Management of data, ACM, 2003, pp. 76–85.

[87] P. Ihantola, Creating and Visualizing Test Data From Programming
Exercises, Informatics in education 6 (2007) 81–102.

[88] H. Garavel, OPEN/CÆSAR: An Open Software Architecture for Ver-
ification, Simulation, and Testing, in: Tools and Algorithms for the
Construction and Analysis of Systems (TACAS), volume 1384 of LNCS,
Springer, 1998, pp. 68–84.

[89] N. Ayewah, W. Pugh, J. D. Morgenthaler, J. Penix, Y. Zhou, Evaluating
static analysis defect warnings on production software, in: Proceedings
of the 7th ACM SIGPLAN-SIGSOFT workshop on Program analysis
for software tools and engineering, PASTE ’07, ACM, 2007, pp. 1–8.

Appendix A. Problem Descriptions

Short descriptions of 15 problems used in the empirical evaluation of the
presented grading approach (problems with minor variations in formulations
are listed as (a) and (b)):

1. (a) Write a program that checks whether the digits of a given four-
digit number are in ascending order.

(b) Write a program that computes the product of all even digits of
a four-digit number.

39

2. (a) Write a function that computes the maximal value of a given array.
Write a function that computes the mean value of a given array.
Write a program that uses these two functions and that determines
whether the maximal value is at least two times bigger than the
mean value.

(b) Write a function that computes an index of a minimal element
of a given array. Write a function that computes an index of a
maximal element of a given array. Write a program that uses
these two functions and that computes whether the index of the
maximal element is bigger than the index of the minimal element
of a given array.

3. (a) Write a function that converts all lowercase letters that are on even
positions in a given string into corresponding uppercase letters,
and all uppercase letters that are on odd positions in the given
string into corresponding lowercase letters. Write a program that
uses this function. Input strings are not longer than 20 characters.

(b) Write a function that converts all lowercase letters in a given string
that are on positions that are divisible by three into corresponding
uppercase letters, and all uppercase letters that are on positions
which when divided by three give reminder one into corresponding
lowercase letters. Write a program that uses this function. Input
strings are not longer than 20 characters.

4. Write a function that calculates an array of maximal elements of rows
of a given matrix. Write a program that uses this function.

5. (a) Write a function that deletes a character on a position k in a given
string. Write a program that uses this function. Input strings are
not longer than 20 characters.

(b) Write a function that duplicates a character on a position k in
a given string. Write a program that uses this function. Input
strings are not longer than 20 characters.

6. (a) Write a function that calculates the sum of all elements that are
above the secondary diagonal of a given matrix. Write a program
that uses this function.

(b) Write a function that calculates the sum of all elements that are
below the secondary diagonal of a given matrix. Write a program
that uses this function.

7. Write a program that calculates the maximum of two given real num-
bers.

40

8. Write a function int strcspn(char* s, char* t) that calculates a
position of the first occurrence of a character from the string t in the
string s. Write a program that uses this function. Input strings are
not longer than 20 characters.

9. Define a data structure for fraction. Write a function for comparing two
given fractions. Write a function that computes the minimal fraction
in a given array. Write a program that uses these functions.

10. Write a program that prints a bow of a size n. For example, for n = 5
the output should be
xxxxx

.xxx.

..x..

.xxx.

xxxxx

11. Write a program that calculates the determinant of a given 2×2 matrix.

12. Write a program that calculates the maximal value of three given num-
bers.

13. Write a program that prints values of the cosine function in ten equidis-
tant points from a given interval [a, b].

14. Write a program that for a given time calculates the number of seconds
until the next noon.

15. Write a program that for a number n prints the numbers from 1 to
n− 1, then from 2 to n− 2, from 3 to n− 3 and so on.

41

