
Software Synthesis Procedures ∗

Viktor Kuncak
LARA, I&C

Swiss Federal Institute of
Technology (EPFL)

Lausanne, Switzerland
viktor.kuncak@epfl.ch

Mikaël Mayer
LARA, I&C

Swiss Federal Institute of
Technology (EPFL)

Lausanne, Switzerland
mikael.mayer@epfl.ch

Ruzica Piskac
LARA, I&C

Swiss Federal Institute of
Technology (EPFL)

Lausanne, Switzerland
ruzica.piskac@epfl.ch

Philippe Suter
LARA, I&C

Swiss Federal Institute of
Technology (EPFL)

Lausanne, Switzerland
philippe.suter@epfl.ch

ABSTRACT
Automated synthesis of program fragments from specifica-
tions can make programs easier to write and easier to reason
about. To integrate synthesis into programming languages,
software synthesis algorithms should behave in a predictable
way: they should succeed for a well-defined class of spec-
ifications. We propose to systematically generalize deci-
sion procedures into synthesis procedures, and use them to
compile implicitly specified computations embedded inside
functional and imperative programs. Synthesis procedures
are predictable, because they are guaranteed to find code
that satisfies the specification whenever such code exists.
To illustrate our method, we derive synthesis procedures
by extending quantifier elimination algorithms for integer
arithmetic and set data structures. We then show that an
implementation of such synthesis procedures can extend a
compiler to support implicit value definitions and advanced
pattern matching.

1. INTRODUCTION
Synthesis of software from specifications [16, 9] promises

to make programmers more productive. Despite substantial
recent progress in techniques that generate short instruction
sequences [12] and program fragments [22, 23], synthesis is
limited to small pieces of code. We anticipate that this will
continue to be the case for some time in the future, for two
reasons: 1) synthesis is algorithmically a difficult problem,
and 2) synthesis may require detailed specifications, which
for large programs become difficult to write.

We expect that important practical applications
of synthesis lie in its integration with compilers for

∗The original version of this paper is entitled “Complete
Functional Synthesis” and was published in (Proceedings of
the 2010 ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation (PLDI), June 2010, ACM
New York, NY, USA.)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2008 ACM 0001-0782/08/0X00 ...$5.00.

general-purpose programming languages. To make
this integration feasible, we aim to identify well-defined
classes of expressions and synthesis algorithms guaranteed
to succeed for these classes of expressions, just like a compi-
lation attempt succeeds for any well-formed program. Our
starting point for such synthesis algorithms are decision pro-
cedures.

A decision procedure for satisfiability of a class of
formulas accepts a formula (constraint) in its class,
and checks if for some values of its variables the
formula evaluates to true. On top of this basic func-
tionality, many decision procedure implementations provide
the additional feature of generating a satisfying assignment
(a model), whenever the given formula is satisfiable. Such
model-generation functionality has many uses, including
better error reporting in verification and test-case genera-
tion. An important insight is that the model generation
facility of decision procedures could also be used as an ad-
vanced computation mechanism. Given a set of values for
some of the variables, a model-generating decision procedure
can at run-time find the values of the remaining variables
such that a given formula is true. Such a mechanism has
the potential to bring the algorithmic improvements of deci-
sion procedures to declarative paradigms such as Constraint
Logic Programming [11], which introduce search as an in-
trinsic aspect of program execution. Instead of changing
the entire program execution platform to support search, we
introduce a method to compile expressive declarative con-
straints while retaining the existing execution and compila-
tion technique for the remaining parts of the program.

Our method is to transform a decision procedure
into a synthesis procedure, which executes at com-
pile time with a parameterized constraint as the in-
put. The synthesis procedure generates a special-
ized code fragment that, at run-time, accepts the
values of parameters and computes the values of
variables. The computed values are guaranteed to
satisfy the specified constraint. The generated code
is thus specific to the desired constraint, and can be more
efficient. It does not require the decision procedure to be
present at run-time. This approach can also give the devel-
oper static feedback, by checking the conditions under which
the generated solution will exist and be unique. We use the



term synthesis for our approach because it starts from an
implicit specification, and involves compile-time precompu-
tation. Because it computes a function that satisfies a given
input/output relation, we call our synthesis functional, in
contrast to reactive synthesis approaches [20]. Finally, we
call our approach complete because it is guaranteed to work
for all specification expressions from a well-defined class.

The input to a synthesis procedure is only the de-
sired constraint, and not necessarily any bounds on
values or on the structure of the synthesized code
as in sketching [22] and resource-bounded synthesis
[23]. This makes a synthesis procedure highly au-
tomated, but means that its implementation cannot
rely only on searching an obviously finite state space;
it must instead use insights from the underlying de-
cision procedure. The use of decision procedures for
particular theories also differentiates our work from
the earlier work based on first-order logic [9, 12].

We demonstrate our approach by outlining synthesis al-
gorithms for two unbounded domains: linear arithmetic and
collections of objects represented as sets. We have imple-
mented and deployed these algorithms as a compiler exten-
sion for the Scala programming language [17]. The reader
can find additional details in [13]. We have found that our
extension enables developers to express a number of pro-
gram fragments more naturally. For example, one can state
the invariants that the program should satisfy, as opposed
to the computation details of establishing these invariants.
In our experience, the synthesis times were acceptable and
the running times were similar to equivalent hand-written
code.

2. EXAMPLES
We first illustrate the use of a synthesis procedure for

integer linear arithmetic. Consider the following example to
break down a given number of seconds (stored in the variable
totsec) into hours, minutes, and leftover seconds. (The val

keyword introduces a new immutable “variable”with a given
value.)

val (hrs , mns, scs) = choose((h: Int , m: Int , s: Int ) ⇒
h ∗ 3600 + m ∗ 60 + s == totsec &&

0 ≤ m && m ≤ 60 &&

0 ≤ s && s ≤ 60)

Our synthesizer succeeds, because the constraint is a for-
mula belonging to integer linear arithmetic. However, the
synthesizer emits the following warning:

Synthesis predicate has multiple solutions

for variable assignment: totsec = 0

Solution 1: h = 0, m = 0, s = 0

Solution 2: h = -1, m = 59, s = 60

The reason for this warning is that the bounds on m and s
are not strict. After correcting the error in the specification,
replacing m ≤ 60 with m < 60 and s ≤ 60 with s < 60, the
synthesizer emits no warnings. The generated code corre-
sponds to the following:

val (hrs , mns, scs) = {
val loc1 = totsec div 3600

val num2 = totsec + ((−3600) ∗ loc1)

val loc2 = min(num2 div 60, 59)

val loc3 = totsec + ((−3600) ∗ loc1) + (−60 ∗ loc2)

(loc1, loc2, loc3)

}
The absence of warnings guarantees that the solution always
exists and that it is unique. By writing the code in this
style, the developer directly ensures that the key correct-
ness condition h ∗ 3600 + m ∗ 60 + s == totsec will be satis-
fied, making program understanding and verification easier.
If the developer writes the computation directly, it can be
difficult for a static analyzer or a verifier to recover the key
correctness condition.

Playing with our example further, suppose that the devel-
oper imposes the constraint

val (hrs , mns, scs) = choose((h: Int , m: Int , s: Int ) ⇒
h ∗ 3600 + m ∗ 60 + s == totsec &&

0 ≤ h < 24 &&

0 ≤ m && m < 60 &&

0 ≤ s && s < 60)

Our system then emits the following warning:

Synthesis predicate is not satisfiable

for variable assignment: totsec = 86400

pointing to the fact that the constraint has no solutions when
the totsec parameter is too large.

In addition to the choose function, programmers can use
synthesis for more flexible pattern matching on integers. In
existing deterministic programming languages, matching on
integers either tests on constant types, or, in the case of
Haskell’s (n+k) patterns, on some very special forms of pat-
terns. Our approach supports a much richer set of patterns,
as illustrated by the following fast exponentiation code that
does case analysis on whether the argument is zero, even, or
odd:

def pow(base : Int , p : Int ) = {
def fp(m : Int , b : Int , i : Int ) = i match {

case 0 ⇒ m

case 2∗j ⇒ fp(m, b∗b, j)

case 2∗j+1 ⇒ fp(m∗b, b∗b, j)

}
fp(1, base, p)

}
In this example, the system uses synthesis to, e.g., compute
j from the constraint i = 2 ∗ j + 1. The correctness of the
function follows from the observation that fp(m, b, i) = mbi,
which we can prove by induction. For the case i = 2 ∗ j + 1
we observe:

fp(m, b, i) = fp(m, b, 2j + 1) = fp(mb, b2, j)

(by induct. hypothesis) = mb(b2)j = mb2j+1 = mbi

Note how the pattern matching on integer arithmetic expres-
sions exposes the equations that make the inductive proof
clearer. To support this construct, our compiler extension
generates the code that selects the appropriate case and de-
composes i into the appropriate new exponent j. Moreover,
it checks that the pattern matching is exhaustive. The con-
struct supports arbitrary expressions of linear integer arith-
metic (it can prove, for example, that the set of patterns
2 ∗ k, 3 ∗ k, 6 ∗ k− 1, 6 ∗ k + 1 is exhaustive). The system
also accepts implicit definitions, such as

val 42 ∗ x + 5 ∗ y = z

The system ensures that the above definition matches every
integer z (because 42 and 5 are mutually prime), and emits
the code to compute x and y from z.



Our approach and implementation also work for param-
eterized integer arithmetic formulas, which become linear
only once the parameters are known. For example, our syn-
thesizer accepts the following specification that decomposes
an offset of a linear representation of a three-dimensional ar-
ray with statically unknown dimensions into indices for each
coordinate:

val (x1, y1, z1) = choose((x: Int , y: Int , z: Int ) ⇒
offset == x + dimX ∗ y + dimX ∗ dimY ∗ z &&

0 ≤ x && x < dimX &&

0 ≤ y && y < dimY &&

0 ≤ z && z < dimZ)

Here dimX, dimY, dimZ are variables whose value is unknown
until runtime. Note that the satisfiability of constraints that
contain multiplications of variables is in general undecidable.
In such parameterized case our synthesizer is complete in
the sense that it generates code that 1) always terminates,
2) detects at run-time whether a solution exists for current
parameter values, and 3) computes one solution whenever a
solution exists.

In addition to integer arithmetic, other theories are
amenable to synthesis and provide similar benefits. Con-
sider the problem of splitting a set collection in a balanced
way. The following code attempts to do that:

val (a1,a2) = choose((a1:Set, a2:Set) ⇒
a1 union a2 == s && a1 intersect a2 == empty &&

a1.size == a2.size)

It turns out that for the above code our synthesizer emits a
warning indicating that there are cases where the constraint
has no solutions. Indeed, there are no solutions when the
set s is of odd size. If we weaken the specification to

val (a1,a2) = choose((a1:Set, a2:Set) ⇒
a1 union a2 == s && a1 intersect a2 == empty &&

a1.size − a2.size ≤ 1 &&

a2.size − a1.size ≤ 1)

then our synthesizer can prove that the code has a solution
for all possible input sets s. The synthesizer emits code that,
for each input, computes one such solution. The nature of
constraints on sets is such that if there is one solution, then
there are many solutions. Our synthesizer resolves these
choices at compile time. The resulting generated code is
therefore deterministic.

3. IMPLICIT COMPUTATIONS
We next present programming language constructs that

embed implicit computations into a general purpose pro-
gramming language. Our constructs and algorithms are
parametrized by a syntactically defined set Formulas. For-
mulas denote truth values, and we represent them as a well-
defined subset of boolean-typed programming language ex-
pressions. Formulas are built from terms, denoted Terms,
which are programming language expressions denoting val-
ues of certain types, such as integers or sets.

3.1 The “choose” Construct
As the basic form of supporting implicit computation, we
integrate into a programming language a construct of the
form

~r = choose(~x ⇒ F ) (1)

Here F is a formula (not containing choose) and ~x ⇒ F
denotes the anonymous function from ~x to the boolean value

of F (that is, λ~x.F ). When we use a symbol such as ~x to
denote a variable, we assume it could stand for a tuple of
zero, one, or more actual variables. Two kinds of variables
can appear within F : output variables ~x and (distinct from
~x) parameters ~a. The parameters ~a are program variables
that are in scope at the point where choose occurs; their val-
ues will be known when the statement is executed. Output
variables ~x denote values that need to be computed so that
F becomes true, and they will be assigned to ~r as a result
of the invocation of choose.

One of the benefits of implicit computations is that they
explicitly identify the properties that the developers are al-
lowed to assume. In particular, if ~r are variables distinct
from ~x and ~a, we can approximate the above choose invoca-
tion with the following sequence of commands in a guarded
command language [5]:

assert (∃~x.F );

havoc (~r);

assume (F [~x := ~r]);

Here, F [~x := ~r] denotes the result of simultaneously substi-
tuting variables ~x with the terms ~r in formula F , whereas
havoc denotes a non-deterministic change of given variables.
The simplicity of the above translation indicates that it is
natural to represent choose within existing verification sys-
tems (e.g. [7, 25]). The above approximation allows different
results at different invocations. A more accurate description
of our implementation, which preserves determinism, can be
based on Hilbert’s epsilon term notation [1].

3.2 Generalized Conditionals
Our next construct enables the developer to specify how

to react to the absence of solutions to a constraint. As a
concrete example, consider

given x ⇒ a = 2 ∗ x+ 1 have x+ 10 else a+ 1

If a has value 7, then x is bound to 3 and the result is 13. If
a is 10, the result is 11. The general form is the following:

given x ⇒ F have T else E

x is a bound variable, which may appear in both F and
T . The boolean expression F belongs to Formulas, whereas
T and E are any programming language expressions. The
construct checks if there exists a value x satisfying F , and if
so, computes T with x bound to one such value. If no such
value exists, it computes E (which does not refer to x). The
translation to guarded commands is again straightforward.

3.3 Expressive Pattern Matching
We can use the generalized conditionals to define an ad-

vanced form of pattern matching. Consider a pattern match-
ing expression similar in structure to the example we have
seen previously.

i match {
case j : 0 ⇒ m
case j : 2∗j if j > 0 ⇒ fp(m, b∗b, j)
case j : 2∗j+1 if j < 0 ⇒ fp(m∗b, b∗b, j)
}

We named the bound pattern variable j explicitly, instead
of relying on syntactic conventions to infer it. Moreover, we
have added guards to make the expression more interesting.
We can translate the above pattern matching into:



given j ⇒ i == 0 have m else
given j ⇒ i == 2∗j && j > 0 have fp(m, b∗b, j) else
given j ⇒ i == 2∗j+1 && j < 0 have fp(m∗b, b∗b, j) else
assert (false ) // Match failure

Expressions such as 2*j belong to Terms, whereas conditions
such as j > 0 belong to Formulas. The above translation
generalizes to the case of arbitrary Terms of a decidable logic
used within patterns, and arbitrary Formulas in the logic as
the conditions.

In the sequel we focus on the choose construct, keeping in
mind that the conditional and pattern matching constructs
can be synthesized similarly.

4. DERIVING SYNTHESIS PROCEDURES
We next define precisely the notion of a synthesis pro-

cedure and describe a methodology for deriving synthesis
procedures from decision procedures.

We denote the set of variables by Vars. FV(q) denotes
the set of free variables in a formula or a term q. If
~x = (x1, . . . , xn) then we also use ~x to denote the set of vari-
ables {x1, . . . , xn}. If q is a term or formula, ~x = (x1, . . . , xn)
a vector of variables and ~t = (t1, . . . , tn) a vector of terms,
then q[~x := ~t] denotes the result of simultaneously substitut-
ing in q the free variables x1, . . . , xn with terms t1, . . . , tn,
respectively. Given a substitution σ : FV(F ) → Terms, we
write Fσ for the result of substituting each x ∈ FV(F ) with
σ(x).

4.1 Model-Generating Decision Procedure
As a starting point for our synthesis algorithms for choose

invocations we consider a model-generating decision proce-
dure. Given F ∈ Formulas we expect this decision procedure
to produce either

a) a substitution σ : FV(F )→ C such that Fσ is a true,

b) or the value unsat if no such substitution exists.

We assume that the decision procedure is deterministic and
behaves as a function. We write Z(F )=σ or Z(F )=unsat to
denote the result of applying the decision procedure to F .

4.2 Interpretation Approach
Just like an interpreter can be considered as a baseline im-

plementation for a compiler, as a baseline for our approach
we consider deploying a model-generating decision proce-
dure at run-time. Consider the choose statement (1). Let
Ftree denote the syntax tree of the formula F , represented as
a value within the programming language, and accepted as
the input to the decision procedure Z. Similarly, let aname

denote the syntactic representation of the names of free pa-
rameter variables a in F .

F’ = substitute (Ftree, aname, a)
r = (Z(F’) match {
case σ ⇒ (σ(x1), . . . , σ(xn))
case unsat ⇒ assert(false) // No solution exists
}

The above code substitutes the known parameters by their
actual values (converting the values into constants of the
formula syntax tree), then invokes the decision procedure Z
to obtain the values of the remaining variables. Similarly,
we can replace (given x ⇒ F have T else E) with

F’ = substitute (Ftree, aname, a)
Z(F’) match {
case σ ⇒ Tσ // have branch
case unsat ⇒ E // else branch
}

Here Tσ denotes evaluating the term T in the environment
enriched by the returned substitution σ. Such dynamic in-
vocation approach is flexible (because F can be computed at
run-time), and immediately benefits from substantial engi-
neering effort that was put into implementing existing de-
cision procedures. However, there can be important perfor-
mance and predictability advantages of an alternative com-
pilation approach, which we explore in the rest of the paper.

4.3 Compilation: Synthesis Procedure
We consider a compilation approach where a modified de-

cision procedure is invoked at compile time, converting the
formula into a solved form.

Definition 1 (Synthesis Procedure). A synthesis
procedure takes as the input a formula F and a vector of
variables ~x. It outputs a pair of

1. a precondition formula, pre, with FV(pre) ⊆ FV(F ) \ ~x

2. a tuple of terms ~Ψ, with FV(~Ψ) ⊆ FV(F ) \ ~x

such that the following two implications are valid:

(∃~x.F ) → pre

pre → F [~x := ~Ψ]

We denote the fact that applying a synthesis procedure on ~x
and F yields pre and ~Ψ by writing (pre, ~Ψ) = J~x, F K.

Note that F [~x := ~Ψ] → ∃~x.F always holds, so the above
definition implies that the three formulas are all equivalent:
(∃~x.F ), pre, F [~x := ~Ψ]. Consequently, if we know how to

compute ~Ψ, we can define J~x, F K = (F [~x := ~Ψ], ~Ψ). In

practice it is useful to apply simplifications to F [~x := ~Ψ], so
we return pre explicitly.

Note that F , pre, ~Ψ can all refer to variables in scope
at the current program point (which we denoted ~a in Sec-
tion 3.1, but often omit for readability). The synthesizer

emits the terms ~Ψ in compiler intermediate representation;
the standard compiler then processes them along with the
rest of the code. We identify the syntax tree of ~Ψ with its
meaning as a function from the parameters ~a to the out-
put variables ~x. The overall compile-time processing of the
choose statement (1) involves the following:

1. emit a non-feasibility warning if the formula ¬pre is
satisfiable, reporting the counterexample for which the
synthesis problem has no solution;

2. emit a non-uniqueness warning if the formula

F ∧ F [~x := ~y] ∧ ~x 6= ~y

is satisfiable (where ~y are fresh variables); in such case,
report the values of all free variables as a counterex-
ample showing that there are at least two solutions;

3. as the compiled code, emit the code that behaves as

assert (pre); ~r = ~Ψ



The existence of a model-generating decision procedure
implies the existence of a“trivial”synthesis procedure, which
satisfies Definition 1 but simply invokes the decision proce-
dure at run-time. (In the realm of conventional program-
ming languages, this would be analogous to “compiling” the
code by shipping its source code bundled with an interpreter,
without any specialization.) The usefulness of the notion of
synthesis procedure therefore comes from the fact that we
can often create compiled code that avoids this trivial so-
lution. Among the potential advantages of the compilation
approach are:

• improved run-time efficiency, because part of the rea-
soning is done at compile-time;

• improved error reporting: the existence and unique-
ness of solutions can be checked at compile time;

• simpler deployment: the emitted code can be compiled
to any of the targets of the compiler, and requires no
additional run-time support.

This paper pursues the compilation approach. We are con-
fident that this approach has important role in implement-
ing implicit computations. That said, we expect that there
is also space for mixed interpretation-compilation solutions
that explore “just-in-time synthesis” and “profiling-guided
synthesis”, analogously to such solutions for more conven-
tional languages.

4.4 Quantifier Elimination versus Synthesis
The precondition computed by a synthesis procedure (pre

in Definition 1) can be viewed as a result of applying quan-
tifier elimination (see e.g. [2, Chapter 7]) to remove ~x from
F , with the following differences.

• Synthesis procedures strengthen quantifier elimination
procedures by identifying not only pre but also emit-
ting the code ~Ψ that computes a witness for ~x.

• Worst-case bounds on quantifier elimination algo-
rithms measure the size of the generated formula and
the time needed to generate it, but not the size of ~Ψ
or the time to evaluate ~Ψ. For some domains, it can
be computationally more difficult to compute (or even
“print”) the solution than to simply check the existence
of a solution. Moreover, an algorithm that generates a
small or simple-looking pre is not necessarily the one
that generates the fastest-to-execute pre and ~Ψ.

Despite the differences, we have found that we can natu-
rally extend existing quantifier elimination procedures with
explicit computation of witnesses that constitute the pro-
gram ~Ψ.

4.5 Elimination-Based Synthesis Toolbox
We next describe a basic domain-independent toolbox of

techniques we found useful in converting quantifier elimina-
tion procedures into synthesis procedures. The core idea is
identifying witness term functions.

Definition 2. A witness term function is a function

witness : Vars× Formulas→ Terms

such that (∃y.F )→ F [y := witness(y, F )] is a valid formula.

Note that witness(y, F ) may contain variables FV(F ) \ {y}.

4.5.1 Synthesis for Multiple Variables
We can lift witness(y, F ) to synthesis for any number of

variables using the following translation scheme:

J , K :
⋃
n

(
Varsn × Formulas→ Formulas× Termsn

)
J(), F K = (F, ())

J(x1, . . . , xn), F K =

let Ψn = witness(xn, F )

F ′ = simplify(F [xn := Ψn])

(pre, (Ψ1, . . . ,Ψn−1)) = J(x1, . . . , xn−1), F ′K
Ψ′n = Ψn[x1 := Ψ1, . . . , xn−1 := Ψn−1]

in

(pre, (Ψ1, . . . ,Ψn−1,Ψ
′
n))

The above translation has the base case, when there are no
variables to eliminate, so F becomes the precondition, and
the recursive case, which applies the witness function.

In an implementation we can avoid substitutions and sim-
ply use local variable definitions in the generated code and
use Ψi instead of Ψ′i. We generate as ~Ψ a code block

val x1 = Ψ1

. . .
val xn = Ψn

(x1, . . . , xn)

where FV(Ψi) ⊆ FV(F )\{xi, . . . , xn}. A consequence of this
recursive translation pattern is that the synthesized code
computes values in reverse order compared to the steps of a
quantifier elimination procedure.

4.5.2 One-Point Rule Synthesis
A widely applicable form of quantifier elimination, the

one-point rule, replaces ∃x.(x = t ∧ F ) with F [x := t], pro-
vided that x /∈ FV(t). This rule immediately leads to a
synthesis procedure step, by defining

witness(x, x = t ∧ F ) = t

If the formula does not already have the form x = t ∧ F ,
we can often rewrite it into this form using transformations
that preserve equivalence, or even strengthen the formula
(see “Formula Strengthening” below).

4.5.3 From Disjunctions to Conditionals
Consider a quantifier-free formula in some first-order the-

ory where the tasks is to check formula satisfiability or ap-
ply elimination of a variable. For both tasks, we can first
rewrite the formula into disjunctive normal form and then
process each disjunct independently. This allows us to focus
on handling conjunctions of literals as opposed to arbitrary
propositional combination.

We next show that we can similarly use disjunctive normal
form in synthesis. Consider a formula D1 ∨ . . . ∨ Dn in
disjunctive normal form. We can apply synthesis to each Di

yielding a precondition prei and the solved form ~Ψi. We can
then synthesize code with conditionals that select the first



~Ψi that applies:

J~x,D1 ∨ . . . ∨DnK =

let (pre1, ~Ψ1) = J~x,D1K
. . .

(pren, ~Ψn) = J~x,DnK
in
n∨

i=1

prei,


if (pre1) ~Ψ1

else if (pre2) ~Ψ2

. . .

else if (pren) ~Ψn

else assert(false)




Although the disjunctive normal form can be exponen-

tially larger than the original formula, the transformation
to disjunctive normal form is used in practice [21]. Other
quantifier elimination methods can have better worst-case
complexity [6]; these can be similarly converted into syn-
thesis procedures. Decision tree techniques can be useful in
this context. Also likely to be useful would be techniques
to partially evaluate efficient constraint solving algorithms
such as DPLL(T ) [8].

Note that many disjunctions arising in quantifier elimina-
tion have the form of quantification over a finite set. In such
cases, instead of generating a large conditional expression,
it is often possible to generate a loop that searches through
candidate solutions. This approach can dramatically reduce
synthesized code size. We have found this technique appro-
priate to generate code that handles divisibility constraints
in integer linear arithmetic.

4.5.4 Variable Transformations
When faced with a synthesis problem J~x, F K, the variable

transformation technique solves a related but simpler syn-
thesis problem J~z,GK where ~z is a fresh vector of variables.
The synthesized code then recovers the original values ~x by
letting ~x = ρ(~z) where ρ is an executable reconstruction
function.

Note that ~z may have different dimension or even range
over values of a different type than ~x. We have used the
variable transformation technique in a number of cases in
our synthesis procedures, as Section 5 will illustrate:

• efficiently processing linear integer equations;

• representing divisibility constraints;

• reducing synthesis for sets to synthesis for integers.

In general, for correctness of synthesized values, we re-
quire a semantic condition corresponding to

G→ F [~x := ρ(~z)] (2)

That is, we require that ρ maps the values of ~z satisfying
G to values of ~x satisfying F . This condition implies the
validity of (∃~z.G) → (∃~x.F ). Note that if we can express ρ
as a term in our logic, then we may choose G to be identical
to F [~x := ρ(~z)], immediately ensuring (2).

For completeness of synthesis, we additionally require the
validity of the formula

(∃~x.F )→ (∃~z.G) (3)

This completeness condition ensures that the new synthesis
problem does not eliminate any solution.

Conditions (2) and (3) together imply that the synthesis
preconditions of J~x, F K and J~z,GK are the same. Given these
two conditions we apply variable transformation by defining:

J~x, F K = (pre, ρ(~Ψz)) where (pre, ~Ψz) = J~z,GK (4)

Formula Strengthening.
A special case of variable transformation is formula

strengthening, where we let ρ be the identity function. The
transformation reduces to finding a formula G that entails
F but where (∃~x.F ) → (∃~x.G) is valid. Thus G may re-
duce the number of solutions, but not from non-zero to zero.
Formula strengthening is a natural correctness condition for
simple transformation of synthesis problems. It is more gen-
eral than equivalence between F and G. Moreover, the even
weaker condition (∃~x.F )↔ (∃~x.G) alone is not sufficient to
guarantee that the code synthesized from G is correct with
respect to F . We can use strengthening to, for example,
replace a relation between variables with a stronger formula
that contains a top-level equality, enabling one-point rule
synthesis of Section 4.5.2, possibly after a DNF transforma-
tion of Section 4.5.3.

Pulling Out Existential Quantifiers.
Another special case is pulling out an existential quanti-

fier. Here we assume that F is of the form ∃~y.G. The idea is
to synthesize the value of both ~x and ~y in G and then ignore
the value of ~y. We thus let ~z = (~x, ~y) and define ρ(~x, ~y) = ~x.
With this choice, both (2) and (3) are guaranteed to hold.

5. SYNTHESIS PROCEDURE FOR INTE-
GER ARITHMETIC AND SETS

We used the general techniques described in the previ-
ous section to design synthesis procedures for integer linear
arithmetic [2, Chapter 8], as well as its extension support-
ing sets with cardinality constraints [14]. These techniques
enabled the compilation of implicit computations such as
the ones given as examples in sections 2 and 3. We next
illustrate the key steps of the algorithm through a simple
example, omitting many of the more subtle cases [13].

5.1 Integer Linear Arithmetic
Consider the following synthesis problem:

J(a, b, d), a+ b = s ∧ a+ 5d = 2b ∧ a ≥ 0 ∧ b ≥ 0 ∧ d 6= 0K

where s is the parameter and a, b, d are the unknown vari-
ables. Rewrite the inequality d 6= 0 into (d ≤ −1∨d ≥ 1) and
transform the formula into DNF. In the sequel we illustrate
synthesis for one disjunct:

a+ b = s ∧ a+ 5d = 2b ∧ a ≥ 0 ∧ b ≥ 0 ∧ d ≥ 1

Variable Transformation for Linear Equations.
We first consider the integer equation a + b = s. After

rewriting it as a = s− b and eliminating a, we obtain s− b
as a witness term for a and, as the remaining constraint af-
ter simplification, 3b− 5d = s ∧ s− b ≥ 0 ∧ b ≥ 0 ∧ d ≥ 1.
We then process the equation 3b− 5d = s, where we cannot
directly express one of the unknowns. We instead compute
gcd(3, 5) = 1 using Euclid’s algorithm. In this process we
find one solution for 3b − 5d = 1, say b = 2, d = 1. Multi-
plying the last condition by s we obtain b = 2s, d = s as a



solution for 3b − 5d = s. The general solution in paramet-
ric form is then b = 2s + 5α, d = s + 3α, where α denotes
an arbitrary integer parameter. We have thereby computed
a variable transformation (Section 4.5.4) that maps α into
(b, d) and preserves the set of solutions. The resulting trans-
formed synthesis problem contains only α as the unknown
and no more equations:

Jα, 5α ≤ −s ∧ −2s ≤ 5α ∧ 1− s ≤ 3αK (5)

These two equations did not produce preconditions on s.
To see why a precondition can be generated, consider a dif-
ferent constraint, 6b − 10d = s. Computing gcd(6, 10) = 2
yields a precondition “s is even” and values b = 2, d = 1
that generate this gcd, with a general parametric solution
b = 2s+ 10α, d = s+ 6α.

More generally, let M~x = ~p be a conjunction of linear
equations, where ~p has only parameters and no variables.
We can view the first part of processing equalities as finding
a unimodular transformation matrix U such that H = M ·
U is the Hermite normal form of M [3]. We then use as
the variable transformation ~z = ρ(~x) = U~x and reduce the
constraint to H~z = ~p ∧Q[~x := U~x]. Note that H~z = ~p is a
triangular matrix and is easier to solve than M . Solving it
produces divisibility preconditions on ~p.

Solving Inequations.
Consider the result (5) of processing equalities in our ex-

ample. It remains to synthesize the value of α. We can write
the constraint as a conjunction of one upper bound and two
lower bounds on α: 5α ≤ −s, −2s ≤ 5α, 1−s ≤ 3α. Taking
into account that α is an integer, we obtain

max

(⌈
−2s

5

⌉
,

⌈
1− s

3

⌉)
≤ α ≤

⌊
− s

5

⌋
where dxe denotes x rounded towards +∞, and bxc denotes
x rounded towards −∞. As the witness value for α we can
choose, for example, the upper bound and we complete the
synthesis for the first disjunct. The synthesized code is

val alpha = − s / 5
val b = 2s + 5∗alpha
val d = s + 3∗alpha
val a = s − b

As usual in quantifier elimination, the precondition pre1 is
that the lower bound is less than or equal to the upper
bound, i.e. max

(⌈
− 2s

5

⌉
,
⌈
1−s
3

⌉)
≤
⌊
− s

5

⌋
. Recall from the

beginning of this section that we had two disjuncts, arising
from (d ≥ 1 ∨ d ≤ −1). The synthesis for the second dis-
junct, containing d ≤ −1, proceeds analogously. In this case
the precondition pre2 is

⌈
− 2s

5

⌉
≤ min

(⌊−1−s
3

⌋
,
⌊
− s

5

⌋)
. The

overall generated code then uses an if-else statement, as in
Section 4.5.3.1

Although the synthesis for our example stops here, all
other cases, analogous to those in quantifier elimination, can
arise in the general algorithm. To see this, suppose that s
was not an input variable, but also needed to be synthesized.
The synthesis problem would then continue with Js, pre1K.
We then need to represent pre1 in linear arithmetic by elim-
inating division and rounding. We do so by case analysis

1In this particular case, ¬pre1 implies ¬pre2, so the second
case of if-else statement will never be executed—whenever
we can pick a solution with a negative d, we could also pick
another solution with a positive d.

on the reminders of s modulo the least common multiple of
divisors, i.e. 15. For such case, the generated code contains
a loop from 0 to 14, which can in this case be unrolled and
simplified to s = 4 as a solution guaranteed to work.

Using program specialization ideas, we also support mul-
tiplicative coefficients that are parameters instead of con-
stants. We then emit (as opposed to statically execute) code
that performs case analysis on the signs of symbolic coeffi-
cients and the appropriate computation of the least common
multiple and the greatest common divisor. Note that this
extension represents a departure from using witness terms
alone as the generated code, because it incorporates into
the synthesized code the steps of the specialized quantifier
elimination procedure itself.

5.2 Sets with Cardinality Constraints
As a step towards predictable synthesis of computations

on data structures, we illustrate how we can use our syn-
thesis procedure for integers to synthesize computations on
finite sets of objects. To express constraints on sets we use
Boolean Algebra with Presburger Arithmetic (BAPA). This
is a strict extension of integer linear arithmetic supporting
sets with the usual operations ⊆, ∪, ∩, \ as well as the cardi-
nality operator | · | computing the size of the set. A decision
procedure for (quantifier-free) BAPA works by reducing the
constraints over set variables to constraints over the sizes
of Venn regions, which are expressible in pure linear integer
arithmetic [14]. A basis of a synthesis procedure for BAPA
is that a solution to these constraints can be lifted to a solu-
tion for the original problem on sets. For example, consider
the synthesis problem of splitting a set S into partitions of
desired sizes:

J(A,B, d), A∪B = S ∧A∩B = ∅∧ |A|+ 5d = 2|B| ∧d 6= 0K

We start by labelling the sizes of Venn regions of the sets
A, B and S by variables ki, as displayed in the following
diagram:

A

B

S

k1

k2

k3

k4k5

k6
k7

We rewrite our synthesis problem using these new variables:

A ∪B = S ; k1 = k2 = k3 = k4 = 0

A ∩B = ∅ ; k3 = k7 = 0

|A|+ 5d = 2|B| ;
∑

i∈{1,3,5,7}

ki + 5d = 2 ·
∑

i∈{2,3,6,7}

ki

d 6= 0 ; d 6= 0

We additionally require ki ≥ 0 for all i. We apply the one-
point rule for the variables equal to 0. If we compute s as
|S|, then identify the variable a with k5 and b with k6, the
problem reduces to our example of Section 5.1. The syn-
thesis for integers thus yields the first part of the generated
code, which computes k5 and k6.

It remains to show how we can reconstruct a solution
for the set variables from a solution for k5 and k6 (in the
terminology of Section 4.5.4, we need to identify ρ). For
this, we rely on the existence of any computable function



pickFrom(i, T ) that computes a subset of size i of a set T
(e.g., pickFrom(i, T ) can pick the top i elements according
to some ordering [15]). We reconstruct A and B as follows:

val A = pickFrom(k5, S)
val B = pickFrom(k6, S \A)

By construction, the sets from which subsets are selected
are guaranteed to be of sufficient size.

5.3 Implementation
We have implemented our synthesis procedures as a Scala

compiler extension called Comfusy (Complete Functional
Synthesis). We used an off-the-shelf decision procedure [4]
to handle the compile-time checks. We could have also used
our synthesis procedure for compile-time checks because syn-
thesis over all free variables subsumes satisfiability checking.

Our extension supports the synthesis of integer values
through the choose function constrained by linear arithmetic
predicates (including predicates in parametrized linear arith-
metic), as well as the synthesis of set values constrained by
predicates of the logic of sets with cardinality constraints.
Additionally, it can synthesize code for a subset of pattern-
matching expressions on integers, such as the ones presented
in Section 2. Our system and examples of its use are publicly
available from the web at http://lara.epfl.ch.

6. CONCLUSIONS
We have presented the general idea of turning decision

procedures into synthesis procedures. We have explored how
to do this transformation for theories admitting quantifier
elimination, in particular linear arithmetic. We have also
illustrated that synthesis procedures can be built even for
cases for which the underlying parameterized satisfiability
problem is undecidable (such as integer multiplication), as
long as the problem becomes decidable by the time the pa-
rameters are fixed. We have also transformed a BAPA de-
cision procedure into a synthesis procedure, illustrating in
the process how to layer multiple synthesis procedures one
on top of the other.

The usefulness of the proposed approach can be further
supported by incorporating synthesis procedures based on
additional decidable constraints. For example, more control
over the desired solutions for sets could be provided using
decision procedures for ordered collections that we have re-
cently identified [15]. In the example of partitioning a set,
such support would allow us to specify that all elements of
one partition are smaller than all elements of the second
partition. In addition to sets, we expect our approach to
similarly apply to multisets [19]. Another relevant class are
decidable constraints on algebraic data types [18, 24].

Quantifier elimination decision procedures di-
rectly support parameterized problems, so they
are a particularly convenient starting point for our
method. Other decision procedures are also suit-
able, but may require more design and implemen-
tation effort to be turned into interesting synthe-
sis procedures. In particular, an alternative automata-
theoretic approach to synthesis for integer arithmetic with
bitvectors was subsequently developed [10]; this approach
tends to generate larger but more efficient code.

We have pointed out that synthesis can be viewed as a
powerful programming language extension. Such an exten-
sion can be seamlessly introduced into popular programming

languages as a new kind of expression and a new pattern
matching construct. It is our hope that the availability of
synthesis constructs will shift the way we think about pro-
gram development. Program properties and assertions can
stop being part of the dreaded “annotation overhead”, but
rather become a cost-effective way to build programs with
the desired functionality.

7. REFERENCES
[1] M. Abadi, G. Gonthier, and B. Werner. Choice in

dynamic linking. In FoSSaCS, pages 12–26, 2004.

[2] A. R. Bradley and Z. Manna. The Calculus of
Computation. Springer, 2007.

[3] H. Cohen. A Course in Computational Algebraic
Number Theory. Springer, 1993.

[4] L. de Moura and N. Bjørner. Z3: An efficient SMT
solver. In TACAS, 2008.

[5] E. W. Dijkstra. A Discipline of Programming.
Prentice-Hall, Inc., 1976.

[6] J. Ferrante and C. W. Rackoff. The Computational
Complexity of Logical Theories, volume 718 of Lecture
Notes in Mathematics. Springer-Verlag, 1979.

[7] C. Flanagan, K. R. M. Leino, M. Lilibridge,
G. Nelson, J. B. Saxe, and R. Stata. Extended Static
Checking for Java. In PLDI, 2002.

[8] H. Ganzinger, G. Hagen, R. Nieuwenhuis, A. Oliveras,
and C. Tinelli. DPLL(T): Fast decision procedures. In
CAV, pages 175–188, 2004.

[9] C. C. Green. Application of theorem proving to
problem solving. In IJCAI, pages 219–240, 1969.

[10] J. Hamza, B. Jobstmann, and V. Kuncak. Synthesis
for regular specifications over unbounded domains. In
FMCAD, 2010.

[11] J. Jaffar and M. J. Maher. Constraint logic
programming: A survey. J. Log. Program.,
19/20:503–581, 1994.

[12] R. Joshi, G. Nelson, and Y. Zhou. Denali: A practical
algorithm for generating optimal code. ACM Trans.
Program. Lang. Syst., 28:967–989, 2006.

[13] V. Kuncak, M. Mayer, R. Piskac, and P. Suter.
Complete functional synthesis. In PLDI, 2010.

[14] V. Kuncak, H. H. Nguyen, and M. Rinard. Deciding
Boolean Algebra with Presburger Arithmetic. J. of
Automated Reasoning, 2006.

[15] V. Kuncak, R. Piskac, and P. Suter. Ordered sets in
the calculus of data structures. In CSL, pages 34–48,
2010.

[16] Z. Manna and R. J. Waldinger. Toward automatic
program synthesis. Commun. ACM, 14(3):151–165,
1971.

[17] M. Odersky, L. Spoon, and B. Venners. Programming
in Scala: a comprehensive step-by-step guide. Artima
Press, 2008.

[18] D. C. Oppen. Reasoning about recursively defined
data structures. In POPL, pages 151–157, 1978.

[19] R. Piskac and V. Kuncak. Linear arithmetic with
stars. In CAV, volume 5123 of LNCS, 2008.

[20] A. Pnueli and R. Rosner. On the synthesis of a
reactive module. In POPL, 1989.

[21] W. Pugh. A practical algorithm for exact array
dependence analysis. Commun. ACM, 35(8):102–114,



1992.

[22] A. Solar-Lezama, L. Tancau, R. Bod́ık, S. A. Seshia,
and V. A. Saraswat. Combinatorial sketching for finite
programs. In ASPLOS, 2006.

[23] S. Srivastava, S. Gulwani, and J. S. Foster. From
program verification to program synthesis. In POPL,
2010.

[24] P. Suter, M. Dotta, and V. Kuncak. Decision
procedures for algebraic data types with abstractions.
In POPL, 2010.

[25] K. Zee, V. Kuncak, and M. Rinard. Full functional
verification of linked data structures. In PLDI, 2008.


