
From Verified Scala to STIX File System
Embedded Code using Stainless⋆

Jad Hamza1, Simon Felix2[0000−0002−3979−128X],
Viktor Kunčak1[0000−0001−7044−9522], Ivo Nussbaumer2, and Filip Schramka2

1 EPFL IC LARA, Lausanne, Switzerland
jad.hamza@epfl.ch viktor.kuncak@epfl.ch

2 Ateleris GmbH, Brugg, Switzerland
simon.felix@ateleris.ch ivo.nussbaumer@ateleris.ch

filip.schramka@ateleris.ch

Abstract. We present an approach for using formal methods in embed-
ded systems and its evaluation on a case study. In our approach, the
developers describe the system in a restricted subset of the high-level
programming language Scala. We then use 1) a verification system to
formally prove properties of such Scala program, and 2) a source-to-
source translator to map Scala to C code. We have adapted the Stainless
verification system to support constructs for describing embedded soft-
ware (more machine integer types and early returns) and to support
verification patterns needed for embedded systems code (array swap op-
eration, pre-allocated and initialized memory, constant-length arrays).
The implemented C code translator generates code that can be compiled
with compilers such as GCC and integrated into larger C applications.
We evaluate our approach on a case study of a file system of an instru-
ment on the Solar Orbiter satellite. We have ported around a thousand
lines of C code to Scala. We wrote specification and proof hints to make
the code verify. Stainless verified the absence of run-time errors, as well
as function preconditions, postconditions, and data structure invariants.
The generated C code was integrated into the existing code base and
exhibits very similar code size, memory use, and performance. In this
process we identified multiple bugs in the well-tested code base, which
were fixed in-orbit.

Keywords: formal verification · embedded system · file system · flight
software · Scala · Stainless

1 Introduction

This paper includes our experience in using and adapting Stainless, a verifier for
the Scala programming language [18], for a software component of a mission-
critical system. Mission- and safety-critical systems such as trains, cars, aircraft,

⋆ Work financially supported by the Swiss Space Center project Embedded Flight
Software Verification (ESOVER).

2 J. Hamza, S. Felix, V. Kunčak, I. Nussbaumer, F. Schramka

satellites and space probes contain embedded software that must be at all cost
free of bugs. While extensive testing prevents many bugs, we aim to raise the
correctness standard by additionally leveraging formal verification in the devel-
opment process. With formal verification, we model the behavior of a program
and prove that, under well-defined assumptions, the program behaves as ex-
pected in all executions.

Our use of Stainless is motivated by the knowledge of the tool by some of us,
as well by our desire to make the experience appealing from both software devel-
opment and verification experience point of view. Whereas our target application
is a component of a custom file system, we choose to use a general-purpose tool,
instead of a specialized one that may achieve higher automation [1,8,11,12,23], in
part because we aim to arrive at conclusions and methodologies that generalize
to other pieces of embedded software and because we wish to make assumptions
of formal proof more explicit. Furthermore, formal verification tools may take
several decades to become mature and develop a user community [21,30,32], an
effort that is amortized over more use cases with general-purpose techniques.
On the extreme end of this spectrum, interactive theorem provers have had long
continued history of use and have high degree of trustworthiness. At the same
time, they may appear unusual to developers accustomed to widely used pro-
gramming languages. It is therefore natural to try and use a general-purpose and
relatively mature verification tool while still remaining close to project source
code. We found that Stainless enabled us to pursue this approach. While the
original target of Stainless is (sequential) functional code, it has gained several
features along the years, including support for imperative code. We show in this
case study how Stainless can be used to verify real-world embedded code.

The experience that was driving our approach was formally verifying a por-
tion of the file system of Spectrometer Telescope for Imaging X-rays, used on-
board the Solar Orbiter satellite. We ported parts of the C code in this software
to Scala and verified it using Stainless. Thanks to the use of Stainless, the re-
sulting code was shown free from buffer and arithmetic overflows, two common
problems in C. Furthermore, we also verified and proved additional properties,
specified as invariants, preconditions, and postconditions.3

Using a Scala source to C source translator we incorporated into Stainless,
we mapped the verified Scala code automatically to C, and used it as a drop-in
replacement for the original C code in the existing system. Using this approach
we were able to incrementally verify increasingly large components of the existing
system, gradually replacing them with C code generated from verified Scala
source.

Making this case study possible required us to add a new execution path to
Stainless, which does not use Java Virtual Machine but C source code as target,
without using memory allocation. Using C source code allowed us to use the
gcc compiler available for a wide range of platforms, including LEON3 [15] soft

3 A repository containing an illustrative fragment of the code we ported to Scala code
and verified is https://github.com/epfl-lara/STIX-showcase.

https://github.com/epfl-lara/STIX-showcase

From Verified Scala to STIX File System Embedded Code using Stainless 3

core on which the software is deployed. Our translator generates readable code
similar in structure to the Scala input.

To accommodate the use of unsigned machine integer types of various lengths,
we extended the Scala front end of Stainless with libraries and incorporated
support into our C code generator to handle these C data types, generating
code that efficiently interacts with the surrounding embedded C code.

A design choice of Stainless is to not use global variables but instead use the
pattern of passing (possibly implicitly declared) parameters to functions, thus
documenting program side effects. This approach is a simple version of object
capability discipline, advocated as part of a type discipline for actor-based Scala
concurrency [17]. In our work, we identify a combination of source code patterns
(use of implicit parameters and initial values of default parameters) and code
generation to respect this design choice. Consequently, we were able to support
writing arguably reasonable Scala code that can be mapped to the embedded
code with statically allocated and initialized memory.

1.1 Contributions

This paper makes the following contributions:

– We present an extension of the Stainless verifier for handling embedded-style
imperative code with statically allocated memory, fixed-sized arrays, early
returns, and additional bitvector data types (Section 4).

– We show how to generate suitable embedded C code using source-to-source
translation from Scala input to C code, extending a previous code generation
approach of the Leon system [2] to recognize statically allocated memory
use as well as to systematically eliminate specification-only (ghost) code
(Section 5).

– As a case study, we present our experience in rewriting parts of the Spec-
trometer Telescope for Imaging X-rays (STIX) file system to Scala code,
proving the absence of run-time errors, memory errors, as well as invariants,
preconditions and postconditions. We have integrated the generated C code
into the original project without loss of performance (Section 6).

1.2 Related Work

Cogent [1] is a high-level language specifically designed for formal verification of
file systems. It features a compiler whose correctness is formally proven in the
Isabelle proof assistant [31]. The authors of [1] wrote a file system and proved
high-level properties. Other works strive for more automation using general tech-
niques but tuned to file system models [8], or focus on finding bugs [23] instead of
proving their absence. Interactive theorem provers have great expressive power
for checking arbitrarily complex proofs, and they contain frameworks that help
automate verification in various domains, including file systems [11,12]. In con-
trast, in our approach, we write the specification in Scala, the same language
(and in the same place) as the actual code. Dafny [27] has many similarities to

4 J. Hamza, S. Felix, V. Kunčak, I. Nussbaumer, F. Schramka

Stainless; it was used in [9] to implement and verify operational crash-consistency
file system models at a higher level of abstraction but was also used for low-level
code in other projects [20].

SPARK Ada and other tools by AdaCore are alternative single-language
options for high assurance software. Whereas Ada has the advantage of being
designed for verification, it is not a functional language and does not support
higher-order functions. We believe that functional programming is a strong basis
for formal reasoning. That said, the approach of Stainless with preconditions and
postconditions results in similar code in many cases, so it may even be possible
to perform source-to-source translation between these two languages.

A parallel approach to our C code generator in Stainless (which started in its
predecessor, Leon [2]) has been the development of SLang [33], a subset of Scala
from which, among others, C code can be generated. In comparison to SLang,
Stainless uses Scala itself for contracts, supports higher-order functions, and per-
mits certain forms of subtyping. Stainless uses Scala 2 and Scala 3 compilers as
front ends, benefiting from type checks and type-informed transformations per-
formed early in the Scala compiler pipeline. Stainless itself does not use macros,
but its Scala 3 version is compatible with inline functions in the input Scala
code.

The Verified C Compiler VCC [4, 13] could be likely used to directly verify
C code and has the advantage of supporting concurrency, though it also uses a
different specification language than the implementation language. Before using
Stainless to verify STIX code, a subset of authors tested CBMC [24] and Frama-
C [14] on other parts of the code base. Both tools did not scale to the size of the
code and struggled to work with the idioms in the application code and operating
system. We suspect that both tools could have produced better results, had we
invested more time. We suspect no tool will work out of the box entirely, even if
it is designed to not require annotations as modular verification does. Because
our Stainless-based verification approach results in C code, we could use tools
like CBMC and Frama-C on the generated code to detect errors in the code
generation step. In this project we rely on a code generation facility mapping
a subset of Scala to C. Building such code generation implementation within a
foundational framework such as CompCert [28] or CakeML [26] would further
improve the confidence in the resulting generated code.

2 STIX Instrument Onboard Solar Orbiter—Background

The Spectrometer Telescope for Imaging X-rays (STIX [25]) onboard ESA’s Solar
Orbiter satellite is a hard X-ray imaging spectrometer. STIX observes hard X-
ray bremsstrahlung emissions from solar flares and provides information about
the hottest flare plasmas. The instrument and the satellite are shown in Figure 1.
The satellite was launched in early 2020; the STIX instrument was turned on a
few days later.

The STIX hardware consists of several custom application-specific integrated
circuits (ASIC) and sensors, a radiation-hardened field-programmable gate ar-

From Verified Scala to STIX File System Embedded Code using Stainless 5

Fig. 1. Left: STIX images X-ray sources using moiré patterns produced by two tungsten
grids placed in front of a sensor. Center: Solar Orbiter being prepared for launch. Right:
Solar Orbiter completed its second Venus flyby maneuver November 2021.

ray (FPGA), 128MB DRAM, 2MB SRAM, 1MB EEPROM and 16GB flash
memory. The FPGA implements logic for real-time data processing, and a
LEON3 [15] soft microprocessor. This SPARC V8-compatible soft microproces-
sor executes the flight software, which is the focus of this work. Owed to the
limited energy budget and number of logic gates, the soft microprocessor runs
at 20 MHz and is equipped with only 1 kB data and instruction caches. The
system is under soft realtime constraints – missing interrupts means losing sci-
entific data. The complete system processes up to 800’000 events per second and
outputs a telemetry data stream of at most 700 bits per second.

The flight software is a self-contained C program, which is statically linked
to the real-time operating system RTEMS [7]. To work around known bugs
in the CPU a special, patched, GCC version is used to compile the software.
The 36’418 non-comment code lines compile to 370 KB binary code. The flight
software does not perform any dynamic memory allocation to prevent memory
fragmentation. All data structures sizes are statically allocated at compile time.
During development, several techniques were used to increase the robustness of
the flight software: compiler warnings were enabled, static code analysis tools
were run regularly, manual testing, automated end-to-end test scripts and unit-
tests for certain subsystems were used.

Our verification efforts focused on the file system which manages the data
stored on the 16GB flash memory.

3 Background on Stainless Verifier

In this section, we highlight key features of Stainless verifier that we used to
perform verification and, subsequently, code generation. Stainless was derived
from Leon verification and synthesis system, which was originally designed to
verify first-order recursive purely functional programs [36]. It was subsequently
extended to support higher-order functions [37] and simple non-shared mutable
data verified via a translation to functional code [5, 6]. Foundations and sound-
ness of a substantial fragment of Stainless, including function termination, was
presented using an expressive dependent type system, whose soundness is shown

6 J. Hamza, S. Felix, V. Kunčak, I. Nussbaumer, F. Schramka

using a set-of-terms model [18]. When given Scala code, Stainless can process it
in the verification pipeline. The typical deployment of Stainless programs (until
the work in this paper) has been to compile them using Scala compiler and run
on the Java Virtual Machine.

The verification pipeline of Stainless transforms high-level abstractions in
the input program to simpler functional programming constructs which can be
handled by our internal type-checker [18]. Our type-checker is not a typical type-
checker in the sense that it not only ensures that “standard” types (such as int)
are respected, but it also supports user-annotated assertions, and function pre-
and postconditions in the form of boolean-typed expressions, which are encoded
using refinement types.

The type-checker generates verification conditions for all annotations, which
are formulas with recursive functions. All verification conditions must be checked
to be true to ensure that assertions are indeed true for all possible function inputs
respecting preconditions, and that function preconditions are respected at call-
sites in all cases. In Stainless, verification conditions are checked using Inox 4,
a solver for formulas written as functional programs with recursive functions,
and which uses function unfolding [36] and SMT solvers (Z3 [16], CVC4 [3],
Princess [34]) as backends.

4 Adapting the Verifier for Embedded Software

Despite the fact that Stainless was used to verify tens of thousands of lines
of Scala code before, it was not suitable initially for verification of imperative
embedded code.

4.1 Circumventing Stainless Aliasing Restrictions

When transforming away imperative features in the verification pipeline, Stain-
less checks that there is no aliasing, i.e. no two pointers to the same object. This
greatly simplifies the transformation into a functional program, and therefore
makes verification tractable for the solver.

The original file system code was written in a way that there could be several
pointers to the same control blocks in the file system. Stainless would detect
the aliasing and not transform the code. We made some adjustments to the
STIX code ported to Scala in order to circumvent this restriction. Namely, all
control blocks are stored in a global array, and wherever we needed to store a
control block, we stored the index in the array instead. All control blocks accesses
therefore go through the global array and there is no more aliasing.

4.2 Early Return Statements

The STIX code that we ported has early return statements in several places.
We added a phase (ReturnElimination) in the verification pipeline to trans-
form return statements into functional code. An often-used idea to translate
4 https://github.com/epfl-lara/inox

https://github.com/epfl-lara/inox

From Verified Scala to STIX File System Embedded Code using Stainless 7

imperative code into functional code is to use a form of continuation monad in
order to know, at each point of the code (e.g. after a loop iteration), whether the
code has already returned or not. To prove correctness in while loops containing
return statements, we added the ability to specify a noReturnInvariant, which
is an invariant that holds after each loop iteration except after a return.

5 Scala to C translation for Embedded Software

To enable the deployment of embedded code, we incorporated the C code gen-
erator from the Leon system [2] into Stainless and used it as the starting point
for our source-to-source generator. The code generation pipeline need not trans-
form away imperative features into functional ones. For example, assignments
and while loops remain mostly untranslated, as they can be directly mapped
to their equivalents in C. The code generation pipeline shares some of the early
phases with the verification pipeline, for example resolving method overrides and
Scala class inheritance (MethodLifting). After that, we transform the program
to an internal representation, where we perform some more transformations to
produce a C program:

– GhostElimination removes all the ghost code specific verification,
– Normalisation flattens the block structure of a program, to avoid blocks

within expressions (supported by Scala but not by C),
– Referencing adds references and dereferences where appropriate, as objects

are passed by references in Scala, without explicit references,
– IR2C transforms classes to structs and enums.

In this section, we describe improvements we made in the C code generation
pipeline [2] after porting it from the Leon system. These changes are what made
it possible to write realistic components of the file system and generate C code
with expected memory use and runtime behavior.

5.1 Unsigned Integers of Various Bit Lengths

The existing C code makes extensive use of several unsigned integer types (uint8,
uint16, uint32), which were not supported by Stainless at the beginning of the
project. The reason is that the Java Virtual Machine does not have support for
native unsigned integers, and therefore, neither does Scala.

On the other hand, the used SMT backends support arbitrary-length bitvec-
tors with signed and unsigned operations. We thus decided to add a Stainless
library for signed and unsigned integers of arbitrary length (1 to 256), which is
mapped in the verification pipeline to SMT bitvectors, and in the compilation
pipeline to C signed/unsigned types, for bit lengths natively supported by C.

The library supports converting between signed and unsigned types, as well
as narrowing and widening the bit length. These operations include appropriate
checks (which can be locally or globally disabled) to detect overflows.

8 J. Hamza, S. Felix, V. Kunčak, I. Nussbaumer, F. Schramka

5.2 Mutable Global State

The verification pipeline of Stainless does not support verifying code with mu-
table global variables. We used a common Scala idiom to simulate global state:
implicitly passing extra mutable objects to functions that need to read or write
the global state. We split the global state into several groups of mutable vari-
ables, and each object has its own case class definition and corresponds to one
such group. This has the benefit of explicitly showing in the function signature
which parts, if any, of the global state are accessed by this function, and could
be viewed as an effect system [22].

In the code generation pipeline, we remove these extra parameters from func-
tions, and we leave three options to the user:

a. (default) Add a global declaration in the generated C code with a default
value for each field of the case class. Additional annotations in Scala code,
e.g. static or volatile, are carried over.

b. Add a global declaration in the generated C code without an initial value
(implicitly zero-initialized), or

c. Do not add a global declaration. This is useful to refer to an existing variable
declared in the existing C code, unknown to Stainless.

To ensure that this transformation is correct, we perform the following checks
in the Scala code, for each case class S representing a global state portion. 1)
Functions can take as argument at most one parameter of type S. 2) One function
which does take such an argument is allowed to create instances of S, with default
values, and pass it to other functions. 3) Instances of S can only be read, written
to, or passed to other functions; instances cannot be copied or let-bound. These
checks ensure that it is safe to remove parameters typed S and compile their
read and write accesses to global C variables accesses.

5.3 Specifications and Ghost Elimination

We write the properties that we want to verify as preconditions (require), post-
conditions (ensuring), and code assertions (assert). Stainless is able to prove
simple properties automatically, but more complex properties (e.g. sortedness of
an array) require additional annotations in the form of:

a. functions to describe the property,
b. functions (lemmas) to prove that the property is maintained after an oper-

ation (e.g. insertion of an element in the array),
c. calls to these lemmas in the places where we need to prove the property.

During compilation, the preconditions (except in exported functions), post-
conditions, assertions, and additional annotations are eliminated in a ghost elim-
ination phase. As such, they do not incur any performance overhead in the final
executable.

In general, preconditions of exported functions are transformed into runtime
assertions in C. For specific preconditions, the user can use the require keyword

From Verified Scala to STIX File System Embedded Code using Stainless 9

from stainless.lang.StaticChecks to denote that this precondition should
not be compiled, even in an exported function. In general, this is unsafe as we
do not know whether external function calls will respect these preconditions, but
still useful for preconditions that may be too expensive to check at runtime (see
one example Section 6.1), or preconditions that use Stainless features which are
supported by the verification pipeline but not supported by the code generation
pipeline.

5.4 Declarations Followed by memset

The following is a common idiom in C to initialize structures:

myStruct s;
memset(&s, 0, sizeof(s));

In Scala, this corresponds to declaring a variable s of (case) class myStruct,
with all fields set to 0. When some fields have arrays, which themselves con-
tains structs with other arrays inside, a single statement declaration in Stain-
less of such a struct would be complex and would contain expressions such as
Array.fill that are in general not supported by our translation to C. In the
particular case where we encounter a complex declaration in Stainless that con-
tains only zeroes (or Array.fill’s with zeroes), we generate the idiom above
instead.

In Scala, we can access array lengths, which we translate to structs containing
a pointer, and an integer length (bounded pointers) in C. However, when an array
is part of a struct, this makes the memset idiom above unusable, because memset
would just set the pointer to 0 instead of setting the pointer to a preallocated
memory region. In our case study, the length of arrays contained in structs are
known at compile-time, and we compile them to fixed-length arrays, without
storing the length as an extra variable, as shown in Figure 2, so the memset
idiom is applicable.

5.5 Pure Functions

Because of the aliasing restrictions that we discussed in Section 4.1, Stainless
contains an effect analysis that is able to determine which parts of the code
mutate global state, and which parts are pure. We use this analysis during code
generation to output purity annotations in the C code. Such annotations trigger
additional optimizations in GCC, for example replacing deterministic function
calls with constant values.

6 Experience with Case Study

We next present our experience in porting parts of the file system code from C
to the subset of Scala supported by Stainless, and annotating it to prove the
absence of run-time errors that Stainless always checks for, as well as proving
additional invariants, preconditions, and postconditions.

10 J. Hamza, S. Felix, V. Kunčak, I. Nussbaumer, F. Schramka

case class MyStruct(ar: Array[Int]) {
require(ar.length == 100)

}

typedef struct {
int ∗underlying;
int length;

} array int;

typedef struct {
array int ar;

} MyStruct;

typedef struct {
int ar[100];

} MyStruct;

Fig. 2. Top: a case class in Scala containing an array whose length is specified using
a class invariant to be constant. Left: The generated C struct contains both a pointer
and an array length when the class invariant is missing. Right: When a constant array
length is specified as class invariant, the generated C struct contains a fixed-length
array member instead.

6.1 Verified Properties and Statistics

The ported parts of the file system consist of around 6’000 lines of Scala code.
This code contains 5’220 explicit and implicit verification conditions, all of which
are proven (see Table 1). Initial verification takes 2’562 seconds5, but verification
completes in 86 seconds when using cached results from previous runs.

All of our data structures are array-based. Consequently, Stainless generates
verification conditions for all array accesses and has to prove that all indices
are within array bounds. To make verification of these bound checks feasible,
we had to add invariants about the array lengths in function preconditions and
in structures containing arrays, and we added invariants on integer indices in
while loops. We show below a few examples of other higher-level properties we
verified.

Insertion into a Sorted Array The file system manages some data in a (fixed-
length) sorted array. Insertion in this array uses an insertion sort that (1) looks
for the index i where to insert an element by dichotomy, (2) shift all elements
with lower priority to make place in the array, (3) assign the element to insert
at index i.

As explained in section 4.1, the verification pipeline that we use for imperative
code only supports limited forms of aliasing. Therefore, shifting mutable elements
in an array is not possible, because an assignment of the form ar(i+1) = ar(i)

creates two aliases to the object initially stored in ar(i). This problem led to
the introduction of a new swap(ar, i, i+1) operation that swaps two mutable
elements in an array without creating aliases. We were able to prove strong

5 Measured on a MacBook Pro, Intel Core i9 2.3 GHz 8-Core, 32 GB RAM

From Verified Scala to STIX File System Embedded Code using Stainless 11

Table 1. Summary of the verification conditions.

Verification Condition #

Precondition 1546
Postcondition 1051
Array index within bounds 556
Unsigned to signed overflow 518
Class invariant 501
Subtraction overflow 284
Addition overflow 246
Match exhaustiveness 128
Body assertion 124
Signed to unsigned requires ≥ 0 74

Verification Condition #

Non-negative measure 57
Strict arithmetic on shift 52
Measure decreases 19
Multiplication overflow 18
Division by zero 15
Narrowing too large unsigned int 14
Division overflow 6
Local invariant 5
Negation overflow 3
Remainder by zero 3

enough invariants in the while loops implementing the steps (1) and (2) above
to show that the array remains sorted after insertion of new elements.

Counting Blocks with a Specific Status The flash memory managed by the
file system is organized in blocks, each containing 256 kB data. During system
initialization, each Flash block transitions from the initial state to one of the
following states: free, used, error, or bad. Blocks in state error contain bit flips
which are not correctable with the employed error correction codes. Those blocks
can be reused for new data in the future. In extreme cases, the Flash hardware
itself can fail due to aging or radiation. This leads to bad blocks, which should
never be used anymore.

Instrument operators want to know how many blocks are in which state to
assess the state of the flash memory. We store the number of blocks in each state
in global counters. It is therefore natural to define an invariant that states that
these global counters actually correspond to the number of control blocks with
a specific status.

We defined the invariant using the recursive function countStatus that
counts the blocks with a given status. Proving the invariant further required
proving lemmas that explain how countStatus changes after updating the sta-
tus of a block, which is not trivial given the recursive nature of countStatus.
Specifically, it requires proving additional lemmas, which state the desired prop-
erties as postconditions, and which are themselves defined recursively following
the countStatus pattern to simulate proofs by induction on the executions of
countStatus.

6.2 General Improvements to Stainless

During the project, we continuously improved Stainless, either by fixing bugs, or
implementing new features. In total, we merged around 150 pull requests related
to this project in the public Stainless code base, and around 25 in the public
code base of Inox, our backend solver.

12 J. Hamza, S. Felix, V. Kunčak, I. Nussbaumer, F. Schramka

To deal with a project this size we had to make performance improvements,
for instance by supporting more recent backend SMT solvers (Z3 4.8.12 with
its experimental “new core” option, CVC4 1.8), or by reducing the amount of
duplication in the generated verification conditions.

To make solving of some verification conditions possible, we had to extend
the opaque keyword to control at each call-site whether function bodies are
visible to the solver6. Before, Stainless only supported the opaque keyword with
per-function granularity.

6.3 Identified Bugs in the STIX File System Code

During this project we identified a number of implementation bugs in the existing
file system code, of which we highlight two examples. First, we uncovered a
potential buffer overflow due to an off-by-1 error in a data structure. The way
the buffer was used prevented this problem from ever surfacing, but otherwise
innocent changes might trigger the bug in the future, if left unfixed. Second, the
type system of Scala helped identify a case where an incompatible enum type was
returned by a function. Even though these bugs have no real-world ramifications,
we patched the in-orbit instrument in December 2021.

6.4 Using Stainless without Prior Formal Verification Experience

Our team consists of experts that worked on the original file system imple-
mentation, and verification experts that were concerned with improvements to
Stainless verification and code generation, as well as help in specification and
verification.

Our experience with Stainless confirmed the expectation that formal verifi-
cation of code is challenging without prior experience in the field.

First, it takes time to get accustomed to the language, in this case Scala sub-
set supported by Stainless. For example, programmers cannot use the standard
Scala class libraries or certain high-level abstractions, because they are unver-
ified or rely on dynamic memory allocation. Instead, to write embedded code
in Scala, basic data structures must be implemented first. The resulting code is
similar to the C implementation, but benefits from a richer type system. With
these building blocks in place, we quickly adjusted to the way some constructs
have to be expressed (e.g. enumerations, pass by reference, global variables).

A bigger challenge is specifying correct and verifiable properties. Some prop-
erties are straightforward to express or have proof obligations even generated
automatically, like absence of arithmetic overflows or out of bound accesses.
Other properties require recursive lemmas to encode inductive proofs in Stain-
less. The examples in Chapter 6.1 were only verifiable with assistance by the
formal verification experts in the group.

6 Thanks to Georg Stefan Schmid for an implementation idea of this feature.

From Verified Scala to STIX File System Embedded Code using Stainless 13

Legend

Flight Software FSWrite

write1 markBlockAsBadBlockCommon_crc16_0

FSWrite_Sc

markBlockAsBadBlock_fromScala

markBlockAsBB_toCwrite1_toC

write1_fromScala

MemFilesystemWrite_0

toPartition_0searchForFile_0

writeFile_0

compare_0

equals_FindMode_0

equals_SearchMode_0

findFile_0

find_1

findInner_0 hashFunc_0

markBlockAsBB_toBridge setBlockAsOccupied_0

updateStatsBlockTransition_0write1_toBridge

writeOnce_0

ScalaBridgeC

Fig. 3. Flight Software using the file system (top), and the hardware drivers (bottom)
were not modified. Only the file system was ported to Scala. Bridge functions, written
in C, connect the two implementations when function signatures differ.

6.5 Integration into the Existing C Code Base

In most cases, the generated C code can be integrated trivially in the existing
C code base, because it has identical signatures. However, some concepts can be
expressed in multiple ways in C. For example, the existing C code freely mixes
arrays, raw pointers and bounded pointers, whereas the generated C code rep-
resents arrays as structs. Similarly, the existing code exploits the liberal C type
system and preprocessor macros, which the generated code does not do. In such
cases, it becomes necessary to convert between different representations at the
interfaces. The required conversions are implemented as small, inlined functions
with negligible overhead (Fig. 4). The call graph in Fig. 3 of the FSWrite func-
tion shows the STIX flight software and hardware drivers written in C, the file
system in Scala, and how the bridge functions act as interfaces in-between.

14 J. Hamza, S. Felix, V. Kunčak, I. Nussbaumer, F. Schramka

static array uint8 toGenCArray(const void∗ x, int len) {
return (array uint8) { (uint8 t∗)x, len };

}
void stream write(MemStream s∗ s, void∗ buf, uint32 t bytes) {

stream write scala(s, toGenCArray(buf, bytes));
}

Fig. 4. Converting raw pointers to bounded arrays is trivial, due to the low level of C
code. GCC optimizes these conversions, making it a zero-cost abstraction.

Table 2. Quantitative comparison between the original, hand-written C code and
automatically generated C code. The reported sizes include the benchmark code. We
report averaged results from 250 runs.

Original C Generated C

Code size 513 072 bytes 514 368 bytes (+0.3%)
Data size 21 824 bytes 21 744 bytes (-0.4%)

Boot time 539 288ms 560 305ms (+3.9%)
Read file (32 kb) 183ms 176ms (-3.8%)
Write file (32 kb) 238ms 242ms (+1.7%)
Delete file 5ms 9ms (+55.6%)
Little-Endian decoding (224 kb) 404ms 199ms (-50.7%)
Little-Endian encoding (224 kb) 797ms 1006ms (+26.2%)
Compression (106 samples) 20 506ms 20 566ms (+0.3%)

6.6 Generated Code Performance, Memory, and Code Size Impact

In this case study we generate approximately 1 kLOC of C code from around
6 kLOC of Scala code (for implementation, specification and proof hints), which
replaces a similar number of original C code. We compared the original flight
software C code to the generated C code quantitatively and qualitatively. We fo-
cus our attention on file system metadata operations and microbenchmarks. The
measurements were performed on an engineering model of the flight hardware.
The engineering model contains 62’022 files in 7 partitions. During boot, the file
system initialization code reads and processes all flash blocks. The next three
tests operate on a particular file in the file system. A file is read, deleted, and
finally written again. These operations perform a name-based lookup internally.
Finally, we perform in-memory data microbenchmarks: endianness conversion
and sample compression. It is important to note that we compare the generated
C code to a hand-tuned C implementation. The performance is comparable to
the original C code for high-level operations (Table 2).

Significant increases in code size would not be acceptable: The CPU instruc-
tion cache has a limited capacity of only 256 instructions and significant perfor-
mance drops occur when inner loops exceed this limit. Measurements confirm
that the code and data sizes stayed almost identical. This is expected, as we
carefully declared the data structures to correspond exactly to their existing C

From Verified Scala to STIX File System Embedded Code using Stainless 15

counterparts to ensure interoperability. The small data size reduction is caused
by the replacement of a look-up table in the C version with an equivalent look-up
function in Scala. The manual inspection of the resulting assembly code shows
that GCC produces virtually identical outputs for inner loops in both cases.

We found that minor, innocent differences between the original and gener-
ated C code can have significant performance effects. For example, the extreme
performance gaps observed in the Endian conversion microbenchmarks are not
a result of major differences in the original and generated C code, but instead
the result of different inlining decisions of the GCC compiler.

For quick operations, like file deletion, the performance overhead of bridge
functions (see previous chapter) can become significant. However, the overhead
is acceptable in the context of the overall system for our use case.

7 Discussion and Conclusions

We have presented an approach for verifying embedded software implementa-
tions. The approach can be used to incrementally verify software by rewriting
parts of it in a memory safe language and using source-to-source translation to
produce C code that integrates into a large software ecosystem written in C.

To make this approach work, we needed to make substantial improvements
to the original verifier, which was initially aimed at functional programs with
memory allocated on the heap. We improved support for bitvector data types,
including unsigned data types not present on the JVM. Furthermore, we added
supported non-local return from functions, translating such code to compute a
value of Either type (disjoint sum) encoding normal or early return outcome. We
introduced new specification constructs for loops with such early returns.

A substantial change was to accommodate the use of global, statically allo-
cated memory. We preserved the design of Stainless where developers must use
parameters to pass mutable parts of the heap and thus document function side
effects. The design is convenient in Scala because function parameters can be
declared implicit and omitted at the function call sites. To ensure that generated
code uses only statically allocated memory that is appropriately initialized, we
proposed a model that specifies initial values of fields of cases classes. Our code
generator also recognizes data structure invariants that constrain Scala array
sizes to be compile-time reducible to a constant; it maps such arrays to C arrays
of constant size.

The executable Scala code we wrote in our case study has imperative flavor,
so one may ask whether the use of Scala and Stainless was justified. We argue
that it is justified, for several reasons. The first reason is the ability to use Scala
as a unified memory-safe Scala notation for both code and specifications. Indeed,
even in imperative code of our case study, all control structures we used remain
valid Scala; the language remains memory safe by design. Moreover, majority
of lines of code in the case study is non-executable Scala code used to express
preconditions, post-conditions, invariants, and proof hints (such as intermediate
assertions and recursive functions expressive inductive proofs). These specifica-

16 J. Hamza, S. Felix, V. Kunčak, I. Nussbaumer, F. Schramka

tion (ghost) constructs widely use functional programming idioms with recursive
functions and recursive data types. Ghost code never executes in the resulting
system: Stainless proves it correct and eliminates it during code generation. The
net result is that executable code is efficient, yet the developer has used con-
structs that belong to the same language for both code and specifications. In
particular, for aspects of code that are purely functional, Scala functions serve
as their own specification. This in contrast to verification systems where im-
plementation and specification live in separate domains, which often results in
unnecessary specification effort and a steeper learning curve for users.

Using our approach we verified components of the file system on the STIX
instrument of the Solar Orbiter satellite. In this process we have identified and
corrected several errors in the original system. We then established that the
ported component of the code is free of run-time errors and that it satisfies basic
invariants. The code size and performance of the generated code were on par
with the original C code. We thus hope we presented a piece of evidence for
feasibility of formal verification in embedded system domain.

One possibly misleading aspect of our case study is that we started with
an existing C code base, so one may be tempted to attribute a necessary cost
to porting C to Scala. Of course, having an existing C code is not necessary
for developing new systems: they can be written in Scala and Stainless to start
with, taking verification goal into consideration from the beginning. Developing
libraries of verified Stainless code in the future would thus make formally verified
approach more cost effective and avoid the danger of errors in existing or interface
code. Our work thus may help realize the vision [19] of using Scala broadly as
a modern language for for mission critical systems, creating synergies with the
other uses of Scala in runtime monitoring [35], simulation [29], and probabilistic
safety assessment [10].

References

1. Amani, S., Hixon, A., Chen, Z., Rizkallah, C., Chubb, P., O’Connor, L., Beeren,
J., Nagashima, Y., Lim, J., Sewell, T., Tuong, J., Keller, G., Murray, T.C., Klein,
G., Heiser, G.: Cogent: Verifying high-assurance file system implementations. In:
Conte, T., Zhou, Y. (eds.) Proceedings of the Twenty-First International Con-
ference on Architectural Support for Programming Languages and Operating Sys-
tems, ASPLOS 2016, Atlanta, GA, USA, April 2-6, 2016. pp. 175–188. ACM (2016).
https://doi.org/10.1145/2872362.2872404

2. Antognini, M.: Extending Safe C Support In Leon. Master’s thesis, EPFL (2017),
http://infoscience.epfl.ch/record/227942

3. Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanović, D., King, T.,
Reynolds, A., Tinelli, C.: CVC4. In: International Conference on Computer Aided
Verification. pp. 171–177. Springer (2011)

4. Beckert, B., Moskal, M.: Deductive verification of system software
in the verisoft XT project. Künstliche Intell. 24(1), 57–61 (2010).
https://doi.org/10.1007/s13218-010-0005-7

https://doi.org/10.1145/2872362.2872404
http://infoscience.epfl.ch/record/227942
https://doi.org/10.1007/s13218-010-0005-7

From Verified Scala to STIX File System Embedded Code using Stainless 17

5. Blanc, R.W., Kneuss, E., Kuncak, V., Suter, P.: An overview of the Leon verifica-
tion system: Verification by translation to recursive functions. In: Scala Workshop
(2013)

6. Blanc, R.W.: Verification by Reduction to Functional Programs. Ph.D. the-
sis, EPFL, Lausanne (2017). https://doi.org/10.5075/epfl-thesis-7636, http://
infoscience.epfl.ch/record/230242

7. Bloom, G., Sherrill, J.: Scheduling and thread management with RTEMS. ACM
Sigbed Review 11(1), 20–25 (2014)

8. Bornholt, J., Kaufmann, A., Li, J., Krishnamurthy, A., Torlak, E., Wang, X.:
Specifying and checking file system crash-consistency models. In: Conte, T.,
Zhou, Y. (eds.) Proceedings of the Twenty-First International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems, AS-
PLOS 2016, Atlanta, GA, USA, April 2-6, 2016. pp. 83–98. ACM (2016).
https://doi.org/10.1145/2872362.2872406

9. Bornholt, J., Kaufmann, A., Li, J., Krishnamurthy, A., Torlak, E., Wang, X.: Spec-
ifying and checking file system crash-consistency models. In: Proceedings of the
Twenty-First International Conference on Architectural Support for Programming
Languages and Operating Systems. pp. 83–98 (2016)

10. Buyse, M., Delmas, R., Hamadi, Y.: ALPACAS: A Language for Parametric
Assessment of Critical Architecture Safety. In: Møller, A., Sridharan, M. (eds.)
35th European Conference on Object-Oriented Programming (ECOOP 2021).
Leibniz International Proceedings in Informatics (LIPIcs), vol. 194, pp. 5:1–5:29.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany (2021).
https://doi.org/10.4230/LIPIcs.ECOOP.2021.5

11. Chajed, T., Chen, H., Chlipala, A., Kaashoek, M.F., Zeldovich, N., Ziegler, D.: Cer-
tifying a file system using crash Hoare logic: Correctness in the presence of crashes.
Commun. ACM 60(4), 75–84 (mar 2017). https://doi.org/10.1145/3051092

12. Chajed, T., Tassarotti, J., Theng, M., Jung, R., Kaashoek, M.F., Zeldovich, N.:
Gojournal: a verified, concurrent, crash-safe journaling system. In: Brown, A.D.,
Lorch, J.R. (eds.) 15th USENIX Symposium on Operating Systems Design and
Implementation, OSDI 2021, July 14-16, 2021. pp. 423–439. USENIX Association
(2021), https://www.usenix.org/conference/osdi21/presentation/chajed

13. Cohen, E., Dahlweid, M., Hillebrand, M.A., Leinenbach, D., Moskal, M., Santen,
T., Schulte, W., Tobies, S.: VCC: A practical system for verifying concurrent C. In:
Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) Theorem Proving in Higher
Order Logics, 22nd International Conference, TPHOLs 2009, Munich, Germany,
August 17-20, 2009. Proceedings. Lecture Notes in Computer Science, vol. 5674,
pp. 23–42. Springer (2009). https://doi.org/10.1007/978-3-642-03359-9 2

14. Cuoq, P., Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.:
Frama-C. In: International conference on software engineering and formal methods.
pp. 233–247. Springer (2012)

15. Daněk, M., Kafka, L., Kohout, L., Sỳkora, J., Bartosiński, R.: The LEON3 proces-
sor. In: UTLEON3: Exploring Fine-Grain Multi-Threading in FPGAs, pp. 9–14.
Springer (2013)

16. De Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: International conference
on Tools and Algorithms for the Construction and Analysis of Systems. pp. 337–
340. Springer (2008)

17. Haller, P., Loiko, A.: LaCasa: Lightweight affinity and object capabilities in
scala. In: Proceedings of the 2016 ACM SIGPLAN International Conference
on Object-Oriented Programming, Systems, Languages, and Applications. p.

https://doi.org/10.5075/epfl-thesis-7636
http://infoscience.epfl.ch/record/230242
http://infoscience.epfl.ch/record/230242
https://doi.org/10.1145/2872362.2872406
https://doi.org/10.4230/LIPIcs.ECOOP.2021.5
https://doi.org/10.1145/3051092
https://www.usenix.org/conference/osdi21/presentation/chajed
https://doi.org/10.1007/978-3-642-03359-9_2

18 J. Hamza, S. Felix, V. Kunčak, I. Nussbaumer, F. Schramka

272–291. Association for Computing Machinery, New York, NY, USA (2016).
https://doi.org/10.1145/2983990.2984042

18. Hamza, J., Voirol, N., Kunčak, V.: System FR: Formalized foundations for
the Stainless verifier. Proc. ACM Program. Lang. 3(OOPSLA) (Oct 2019).
https://doi.org/10.1145/3360592, https://doi.org/10.1145/3360592

19. Havelund, K., Bocchino, R.: Integrated modeling and development of component-
based embedded software in Scala. In: Margaria, T., Steffen, B. (eds.) Leveraging
Applications of Formal Methods, Verification and Validation - 10th International
Symposium on Leveraging Applications of Formal Methods, ISoLA 2021, Rhodes,
Greece, October 17-29, 2021, Proceedings. Lecture Notes in Computer Science,
vol. 13036, pp. 233–252. Springer (2021). https://doi.org/10.1007/978-3-030-89159-
6 16, https://doi.org/10.1007/978-3-030-89159-6 16

20. Hawblitzel, C., Howell, J., Lorch, J.R., Narayan, A., Parno, B., Zhang, D., Zill,
B.: Ironclad apps: End-to-End security via automated Full-System verification.
In: 11th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 14). pp. 165–181. USENIX Association, Broomfield, CO (Oct 2014), https:
//www.usenix.org/conference/osdi14/technical-sessions/presentation/hawblitzel

21. Inria, C., contributors: Early history of coq. https://coq.inria.fr/refman/history.
html (2021)

22. Jouvelot, P., Gifford, D.K.: Algebraic reconstruction of types and effects. In: Wise,
D.S. (ed.) Conference Record of the Eighteenth Annual ACM Symposium on Prin-
ciples of Programming Languages, Orlando, Florida, USA, January 21-23, 1991.
pp. 303–310. ACM Press (1991). https://doi.org/10.1145/99583.99623

23. Kim, S., Xu, M., Kashyap, S., Yoon, J., Xu, W., Kim, T.: Finding bugs in file
systems with an extensible fuzzing framework. ACM Trans. Storage 16(2), 10:1–
10:35 (2020). https://doi.org/10.1145/3391202, https://doi.org/10.1145/3391202

24. Kroening, D., Tautschnig, M.: CBMC–c bounded model checker. In: International
Conference on Tools and Algorithms for the Construction and Analysis of Systems.
pp. 389–391. Springer (2014)

25. Krucker, S., Hurford, G.J., Grimm, O., Kögl, S., Gröbelbauer, H.P., Etesi, L.,
Casadei, D., Csillaghy, A., Benz, A.O., Arnold, N.G., et al.: The spectrometer/te-
lescope for imaging X-rays (STIX). Astronomy & Astrophysics 642, A15 (2020)

26. Kumar, R., Myreen, M.O., Norrish, M., Owens, S.: Cakeml: a verified imple-
mentation of ML. In: Jagannathan, S., Sewell, P. (eds.) The 41st Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
’14, San Diego, CA, USA, January 20-21, 2014. pp. 179–192. ACM (2014).
https://doi.org/10.1145/2535838.2535841

27. Leino, K.R.M.: Dafny: An automatic program verifier for functional correctness.
In: International Conference on Logic for Programming Artificial Intelligence and
Reasoning. pp. 348–370. Springer (2010)

28. Leroy, X.: Formal verification of a realistic compiler. Commun. ACM 52(7), 107–
115 (2009). https://doi.org/10.1145/1538788.1538814

29. Mehlitz, P., Shafiei, N., Tkachuk, O., Davies, M.: RACE: Building
airspace simulations faster and better with actors. In: 2016 IEEE/A-
IAA 35th Digital Avionics Systems Conference (DASC). pp. 1–9 (2016).
https://doi.org/10.1109/DASC.2016.7777991

30. Moore, J.S.: Milestones from the Pure Lisp theorem prover to ACL2. Formal As-
pects Comput. 31(6), 699–732 (2019). https://doi.org/10.1007/s00165-019-00490-3

31. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: a proof assistant for higher-
order logic, vol. 2283. Springer Science & Business Media (2002)

https://doi.org/10.1145/2983990.2984042
https://doi.org/10.1145/3360592
https://doi.org/10.1145/3360592
https://doi.org/10.1007/978-3-030-89159-6_16
https://doi.org/10.1007/978-3-030-89159-6_16
https://doi.org/10.1007/978-3-030-89159-6_16
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/hawblitzel
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/hawblitzel
https://coq.inria.fr/refman/history.html
https://coq.inria.fr/refman/history.html
https://doi.org/10.1145/99583.99623
https://doi.org/10.1145/3391202
https://doi.org/10.1145/3391202
https://doi.org/10.1145/2535838.2535841
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1109/DASC.2016.7777991
https://doi.org/10.1007/s00165-019-00490-3

From Verified Scala to STIX File System Embedded Code using Stainless 19

32. Paulson, L.C., Nipkow, T., Wenzel, M.: From LCF to Isabelle/HOL. Formal As-
pects Comput. 31(6), 675–698 (2019). https://doi.org/10.1007/s00165-019-00492-1

33. Robby, Hatcliff, J.: Slang: The Sireum programming language. In: Margaria, T.,
Steffen, B. (eds.) Leveraging Applications of Formal Methods, Verification and
Validation (ISoLA). pp. 253–273. Springer International Publishing, Cham (2021)

34. Rümmer, P.: A constraint sequent calculus for first-order logic with linear integer
arithmetic. In: Proceedings, 15th International Conference on Logic for Program-
ming, Artificial Intelligence and Reasoning. LNCS, vol. 5330, pp. 274–289. Springer
(2008)

35. Shafiei, N., Havelund, K., Mehlitz, P.C.: Actor-based runtime verification with
MESA. In: Deshmukh, J., Nickovic, D. (eds.) Runtime Verification - 20th Interna-
tional Conference, RV 2020, Los Angeles, CA, USA, October 6-9, 2020, Proceed-
ings. Lecture Notes in Computer Science, vol. 12399, pp. 221–240. Springer (2020).
https://doi.org/10.1007/978-3-030-60508-7 12

36. Suter, P., Köksal, A.S., Kuncak, V.: Satisfiability modulo recursive programs. In:
Static Analysis Symposium (SAS) (2011)

37. Voirol, N., Kneuss, E., Kuncak, V.: Counter-example complete verification for
higher-order functions. In: Scala Symposium (2015)

https://doi.org/10.1007/s00165-019-00492-1
https://doi.org/10.1007/978-3-030-60508-7_12

	From Verified Scala to STIX File System Embedded Code using Stainless

