
On Delayed Choice Execution for Falsification

EPFL IC LARA-REPORT-2008-08

Milos Gligoric1, Tihomir Gvero1, Sarfraz Khurshid2, Viktor Kuncak3, and
Darko Marinov4

1 University of Belgrade, Serbia
2 University of Texas at Austin, TX, USA

3 EPFL, Switzerland
4 University of Illinois at Urbana-Champaign, IL, USA

Abstract. We present an approach for finding errors in programs and
specifications. We formulate our approach as an execution mechanism
for a non-deterministic guarded-command language. Guarded commands
have already proved useful for verification-condition generation but are
usually viewed as a non-executable representation. We show how to ex-
ecute guarded commands using an explicit-state model checker. We il-
lustrate the benefits of this approach in two related domains: bounded-
exhaustive testing and falsification for Hoare triples.
The basis of our approach is the delayed-choice technique for improv-
ing the execution of guarded commands. Delayed choice postpones non-
deterministic choice of values until they are used. Our approach also
supports copy-propagation of symbolic values but avoids the cost of
full-blown symbolic execution. We describe an implementation of our
approach in Java PathFinder, a popular model checker for Java pro-
grams. Our experimental results show that our techniques significantly
improve performance compared to the current execution strategy in Java
Pathfinder.

1 Introduction

Program annotations such as assertions, preconditions, postconditions, and in-
variants are a fundamental mechanism for increasing software reliability. When
program annotations are detailed enough, they enable scalable modular ver-
ification in which a program component is verified independently of the rest
of the program. Such approaches have been used for modular verification of
memory-safe imperative programs resulting in tools such as ESC/Java [17] and
Spec# [4]. Significant case studies have been completed using such techniques,
including JavaCard electronic purse implementation verification using KeY and
KIV [38,19] and data structures verification using Jahob [43].

Such modular verification approaches reduce to validation of Hoare triples
{P}s{Q}, denoting that executing a statement s in a non-error state satisfying P

does not cause errors and results in a state satisfying Q. Typically, such modular
verification is an interactive effort in which a substantial portion of time is spent

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/g/Gligoric:Milos.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/g/Gvero:Tihomir.html
http://users.ece.utexas.edu/~khurshid/
http://lara.epfl.ch/~kuncak
http://www-sal.cs.uiuc.edu/~marinov/

2 Gligoric, Gvero, Khurshid, Kuncak, Marinov

debugging too strong or too weak annotations (in addition to correcting any
errors in the implementation). Such inadequate annotations correspond to invalid
Hoare triples. Unfortunately, the tools geared towards proving validity of Hoare
triples often provide only a limited support for falsification, i.e., generation of
counterexamples to Hoare triples. Our approach can also be viewed as automated
test generation [7], which automatically generates tests inputs satisfying P , then
tests the program s; assert(Q) on these inputs.

To make modular verification more practical, this paper presents new tech-
niques for falsification of a fairly general class of Hoare triples. We consider
falsification for Hoare triples {P}s{Q} where P and Q are properties expressed
in an expressive (undecidable) language, and s denotes a potentially large piece
of imperative code, with loops and recursion.

Approaches based on verification conditions. One approach to falsify
a Hoare triple is to search for counterexamples to a verification condition
for the Hoare triple. Unlike verification conditions for validity, which over-
approximate program code, a verification condition for falsification needs to
under-approximate program code. When s contains loops, this leads to tech-
niques such as loop unrolling and procedure inlining. Once a verification condi-
tion is generated, model finding techniques for formulas can generate counterex-
amples to Hoare triple [23,15]. Among the challenges in this approach is the size
of generated formulas and the limitations of model finders.

Our formulation using guarded commands. Instead of casting the prob-
lem in terms of formulas in an expressive logic, we represent the Hoare triple
using a guarded-command language containing standard statements s (includ-
ing assignments and loops) and special statements assume, havoc, assert. The
validity of {P}s{Q} then reduces to the absence of errors in the program

havoc(x1, . . . , xn); assume(P); s; assert(Q)

where x1, . . . , xn denote state variables appearing in P, s, Q. Such representations
are the basis of verification systems such as ESC/Java [17], Spec# [4], and
Jahob [43,26].

We propose in this paper the use of execution-based, explicit-state model
checking techniques to find assertion violations in non-deterministic guarded
command programs, which gives counterexamples to the original Hoare triples.
Moreover, we do not restrict ourselves to programs of the above form; we consider
arbitrary guarded programs. This perspective led us to a solution applicable to
falsification of a wide range of Hoare triples (where preconditions and postcon-
ditions are themselves expressed as arbitrary programs). At the same time, this
technique provides an approach to bounded-exhaustive testing [7, 29].

The use of a general-purpose language results in a system with a simple pro-
gramming model that allows developers to control search efficiency by smoothly
combining predicates, which specify the conditions of assume and assert state-
ments, and generators, which directly generate states that satisfy these condi-
tions, potentially utilizing domain-specific knowledge.

On Delayed Choice Execution for Falsification 3

This approach allowed us to focus on the core technical problem of improv-
ing the efficiency of systematic exploration of guarded-command language exe-
cutions. We implemented these ideas on top of the non-deterministic choices in
Java PathFinder [41], a popular model checker for Java programs. We show that
our approach can be based on a general principle of delayed choice, which post-
pones non-deterministic choices of variables until the execution requires concrete
values. The implementation of this principle led to significant improvements in
the Java PathFinder running times.

Contributions. We summarize our contributions as follows:

1. We show how to encode both Hoare triple falsification and test case genera-
tion as systematic exploration of non-deterministic program executions. The
resulting approach
– supports a combination of predicates (declarative specifications) and gen-

erators (imperative specifications) to describe preconditions
– provides the semantic foundation and a generalization of the notion of

test input finitization [7, 29, 32];
2. We present techniques that improve the performance of execution of guarded

commands using Java PathFinder:
– delayed choice technique postpones non-deterministic choice of values

until they are examined, reducing the size of the search tree
– copy propagation delays the choice of values even if the values are being

copied, while avoiding the cost of full-blown symbolic execution;
3. We describe an implementation of our techniques in Java PathFinder. The

results show that our techniques improve the time to generate test inputs
up to a given bound or the time to find the first counterexample for a Hoare
triple. Overall, they suggest that the approach is useful for detecting errors
in code and specifications.

2 Our Approach through an Example

We next illustrate our approach of using guarded-command language execution
for falsification and test generation. We first show how it supports two existing
styles of precondition specifications: predicates and generators. We then show
how it allows the developers to smoothly combine these styles, resulting in nat-
ural specifications and efficient search.

As an example we use red-black trees [11], a widely used data structure
underlying, for example, the TreeMap class implementation of the Java Standard
library. Thanks to non-trivial data structure invariants, red-black trees often
appear as a benchmark for techniques that check expressive properties [31, 24,
28, 2]. Figure 1 shows the skeleton of a red-black tree implementation.

Specification of red-black trees. The class invariant for red-black trees is a
conjunction of the following properties [11], denoted isRBT:

treeness: The nodes reachable from root along the left and right children should
form a tree (have no cycles and no two incoming pointers to any node), and the parent
field should appropriately point to a node’s immediate predecessor.

4 Gligoric, Gvero, Khurshid, Kuncak, Marinov

class Tree {
Node root; int size;
static boolean RED = false, BLACK = true;
static class Node {

Node left, right, parent;
boolean color; int key; }

void insert(int value) { ... }
void remove(int value) { ... }
boolean contains(int value) { ... }

}

Fig. 1. A red-black tree implementation in Java

coloring: (1) The children of a node colored red must be colored black. (2) All
simple paths from the root to a leaf must have the same number of black nodes.

ordering: The values in the tree should be ordered for binary search, i.e., for each

node n, the values in the left subtree should be smaller than the value in n, and the

values in the right subtree should be larger than the value in n.

We next consider the problem of finding counterexamples to the Hoare
triple {isRBT}remove(v){isRBT}, stating that the remove method preserves the
class invariant. We reduce this problem to exploring the executions of the non-
deterministic program havoc(x); assume(isRBT); remove(v); assert(isRBT), whose
transition system semantics first changes the state arbitrarily, then filters out the
states that do not satisfy isRBT, executes the remove method on them, and tests
that the result still satisfies isRBT.

Executable predicates. In our approach, the developer can use arbitrary ex-
ecutable code to specify predicates, as they would do when using Java’s assert
statement. Figure 2 shows the isRBT Java method that returns true exactly
when the isRBT predicate holds in the current state. Among the advantages of
such executable specifications is that the developers need not learn a new speci-
fication language and the compiler can use standard techniques to optimize the
code. Moreover, the developers can choose to hand-optimize the checks using
property-specific algorithms, such as the work-list algorithm in Figure 2 that
checks treeness. Alternatively, the developers can choose more compact nota-
tions such as JML [10] or functional languages [37] and compile them to Java
bytecodes that specify the predicates.

Assume and assert. To specify the postcondition, the developer can use
the usual Java assert statement, writing assert(isRBT()) after remove in
our example to ensure that the resulting state satisfies the class invariant.
In our approach, the developer can also use the dual statement, writing e.g.,
assume(isRBT()). If the currently considered state does not satisfy the invari-
ant, the system silently ignores the current execution and moves to other exe-
cutions that need to be considered. This corresponds to the relational seman-
tics of assume in the guarded command languages and is also familiar to the
users of Java PathFinder, where it corresponds to invoking, in this example,
ignoreIf(!isRBT()).

On Delayed Choice Execution for Falsification 5

boolean isRBT() {
return treeness() && coloring() && ordering();

}
boolean treeness() {

if (root == null) return size == 0;
Set<Node> visited = new java.util.HashSet<Node>(); visited.add(t.root);
List<Node> workList = new java.util.LinkedList<Node>(); workList.add(t.root);
if (root.parent != null) return false;
while (!workList.isEmpty()) {

Node current = workList.removeFirst();
Node cl = current.left;
if (cl != null) {

if (!visited.add(cl)) return false;
if (cl.parent != current) return false;
workList.add(cl); }

Node cr = current.right;
if (cr != null) {

if (!visited.add(cr)) return false;
if (cr.parent != current) return false;
workList.add(cr); }

}
return size == visited.size();

}
boolean coloring() {

// Part (1): red node must have black children
...
// Part (2): number of black nodes on all paths is the same
int numberOfBlack = −1;
List<Pair> workList = new java.util.LinkedList<Pair>();
workList.add(new Pair(root, 0));
while (!workList.isEmpty()) {

Pair p = workList.removeFirst(); Node e = p.e; int n = p.n;
if (e != null && e.color == BLACK) n++;
if (e == null) {

if (numberOfBlack == −1) numberOfBlack = n;
else if (numberOfBlack != n) return false;

} else {
workList.add(new Pair(e.left, n)); workList.add(new Pair(e.right, n));

}
}
return true;

}
boolean ordering() { ... }

Fig. 2. Red-black tree class invariant as an executable predicate

Non-deterministic initialization as havoc. It remains to describe how
our approach models the havoc statements, whose semantics is to non-
deterministically change the values to listed variables. For this purpose, we use
non-deterministic assignments. An example is the statement k=getInt(0, N−1),
a version of which is already present in Java PathFinder. Its meaning can be
specified as introducing N branches in a non-deterministic execution, where in

6 Gligoric, Gvero, Khurshid, Kuncak, Marinov

void havoc(int maxSize, int maxKey) {
size = getInt(1, maxSize);
ObjectPool<Node> nodes = new ObjectPool<Node>(size);
root = nodes.getAny();
for (Node n : nodes) {

n.left = nodes.getAny(); n.right = nodes.getAny();
n.parent = nodes.getAny();
n.color = getBoolean();
n.key = getInt(1, maxKey); }

}

Fig. 3. Method performing non-deterministic initialization of a red-black tree

Tree t = new Tree(); t.havoc(N, N); assume(t.isRBT());
int v = getInt(0, N); t.remove(v); assert(t.isRBT());

Fig. 4. Checking the Hoare triple for remove

branch i (for 0 ≤ i ≤ N −1) the variable k has value i. Figure 3 shows the use of
this approach in our red-black tree example. The non-deterministic initialization
of a red-black tree data structure proceeds in several steps: 1) pick the tree size
(the number of nodes); 2) create a pool of objects of this size; 3) iterate over
all objects in the pool and non-deterministically initialize their fields to point to
other objects in the pool. The getAny picks an arbitrary object in the pool and
can be, in principle, implemented using getInt.

Summary of writing Hoare triples in our approach. Figure 4 shows how
to model the problem of checking Hoare triple {isRBT}remove(v){isRBT} for
trees up to size N and containing values between 0 and N in our system.

Eager choice execution. We can use a straightforward implementation of
getInt and getAny methods, which non-deterministically picks a concrete value
and immediately returns it. This allows us to easily obtain a baseline imple-
mentation on top of Java PathFinder. However, the combinatorial explosion in
havoc causes the baseline implementation to explicitly consider NO(4N) possi-
bilities for a given N . In our experiments, Java PathFinder did not complete the
search over all red-black trees of size N = 3 within 40 minutes.

Delayed choice execution. Our approach proposes the delayed choice exe-
cution strategy for Java PathFinder. This strategy takes exactly the same de-
scription of the Hoare triple from Figure 4 and generates the red-black trees of
the same size N = 3 in 1.2 seconds. (Section 4 contains an experimental evalua-
tion of our approach.) The key idea of delayed execution strategy is to delay the
non-deterministic choices of values to the point where the values are used for the
first time. Consequently, the order in which the values are used for the first time
creates a dynamic ordering of the variables in the search space of counterexam-
ples. This approach implements the essential idea of backtracking algorithms,
also present in modern SAT and SMT solvers [8, 13, 5] and constraint logic pro-
gramming [1]: when a constraint fails to hold (in our case, assume(false) is

On Delayed Choice Execution for Falsification 7

executed), detect the reason for the conflict and use this information to change
the current assignment to variables. In particular, if the reason for conflict in-
volves only a given set of variables, then only these variables need to be con-
sidered as candidates for a change, even if the code executed z = getInt(...)

assignments for some other variables z. In our approach, a variable is involved
in a conflict if its value has been read in ways other than copying it to another
variable.

RBT generateRBT(int N) {
RBT t = new RBT(); t.root = generateTreeBackbone(N);
generateColoring(t); // not shown, very complex
generateOrdering(t); // not shown, fairly simple
t.size = numberOfNodes(t); // not shown, trivial
return t;

}
Node generateTreeBackbone(int N) {

if (N == 0) return null;
Node n = new Node();
int leftSize = getInt(0, N − 1); int rightSize = getInt(0, N − 1 − leftSize);
n.left = generateTreeBackbone(leftSize); if (n.left != null) n.left.parent = n;
n.right = generateTreeBackbone(rightSize); if (n.right != null) n.right.parent = n;
return n;

}

Fig. 5. Code that directly generates trees

Comparison to Korat algorithms. The approach of delayed execution has
already proved extremely effective in the context of the specialized Korat tool
that was used by the authors for test generation [7,29,32,30] and data structure
repair [16], and has been reimplemented in academic and industrial settings
[40, 33].

Korat accepts as input a method such as isRBT, implicitly performs havoc

commands, and searches for a structure on which the method returns true. To
specify the search space, Korat requires a set of ad-hoc parameters, called fini-
tization, that indicate the bounds of the search space. In this work, we have
shown that Korat’s algorithm can be deployed in a general explicit-state model
checker such as Java PathFinder using the delayed choice idea. The algorithm
continues to work correctly in this generalized settings, removing many unneces-
sary requirements on the form of problems solved by Korat. Our new approach
provides the programmer with a great flexibility in specifying the scope of finite
search, because finitization is not a special construct anymore: it instead becomes
simply a piece of code that contains certain non-deterministic assignments. Most
importantly, the programmers are now free to mix non-deterministic assignments
(havoc) and assume statements in flexible ways, combining the benefits of pred-

icates and generators.

8 Gligoric, Gvero, Khurshid, Kuncak, Marinov

Using generators to establish preconditions. Instead of generating all
possible graphs in Figure 3 and then filtering those that are not trees using the
treeness method in Figure 2, a simpler and faster alternative is to directly
generate trees of size N . The generateTreeBackbone method in Figure 5 does
precisely this. The previouly shown treeness method in Figure 2 presents a
predicate characterizing trees, whereas Figure 5 presents a generator for trees.
We call the former declarative approach (as it only specifies what the trees look
like, although the specification is expressed in an imperative language), and we
call the latter imperative approach (as it specifies how to generate trees) [12].
Writing preconditions using generators instead of predicates can dramatically
speed up the execution. The correctness of such (manual) transformation can
easily be expressed in our framework as a program transformation that preserves
(up to isomorphism) the set of all generated structures.

However, using generators alone is highly non-trivial. Although it was easy to
write code that generates arbitrary trees, generating only trees for which correct
coloring exists is much more difficult. In fact, an entire research paper was de-
voted to such efficient generation of red-black trees [2]. In comparison, declarative
generation is often easier, anecdotally confirmed by the fact that undergradu-
ate students were able to write appropriate checks [30]. This trade-off justifies
delayed choice execution as an optimization for predicate-based execution explo-
ration, but also asks for approaches to combine generators and predicates.

Combining generators and predicates. Our approach makes combination
of generators and predicates possible because they are both expressed in a unified
framework: systematic execution of guarded commands. Consider the properties
in our running example. For the treeness property, comparing the imperative
generation (Figure 5) and declarative generation (figures 2 and 3), one could
argue that it is easier to write a generator than a predicate. Our new approach
allows the developer to combine, for example, a generator for treeness with a
predicate for coloring. One would generate trees as in generateTreeBackbone

method of Figure 5 and then find appropriate node colors using the coloring

predicate in Figure 2.

Isomorphism avoidance. Our approach also supports avoiding the generation
of structures that are isomorphic thanks to the abstract nature of Java references.
In a naive approach to implementing getAny method for object pools, invoking
the method N times and reading each of the invoked values would generate
Nk possible k-tuples of values. A better implementation uses the fact that all
fresh objects are observationally equivalent. It therefore returns either one of
the previously returned objects or the first object from the pool that was not
returned before. This avoids the isomorphism that follows from the fact that
Java programs cannot observe numeric values of references, only their equality
and the associated field values [7].

Copy propagation. We finally illustrate the copy propagation feature of our
approach, which keeps non-deterministic values symbolic even if they are copied
through memory locations. Consider first a version of red-black tree that, in
addition to the key field also has a value field storing arbitrary objects. Because

On Delayed Choice Execution for Falsification 9

void sort(int[] keys, int[] elems) {
for (int i = 0; i < keys.length − 1; i++)

for (int j = i+1; j < keys.length; j++)
if (keys[i] > keys[j]) {

int tmp = keys[i]; keys[i] = keys[j]; keys[j] = tmp;
tmp = elems[i]; elems[i] = elems[j]; elems[j] = tmp; }

}
...
int length = getInt(0, N);
int[] keys = new int[length]; int[] values = new int[length];
for (int i = 0; i < length; i++) {

keys[i] = getInt(0, N); values[i] = getInt(0, VAL−1); }
sort.sort(keys, values);
assert (sorted(keys));
...

Fig. 6. Checking code that sorts data stored in two arrays

nodes are stored according to key values, no value field in a tree will be read
by remove operation. Therefore, even if the field is initialized with value values
belonging to a large set, the search will terminate equally fast, proving that the
initial value fields do not affect the correctness of the Hoare triple.

Consider, however, code shown in Figure 6 of sorting data stored in the
values array, according to keys stored in the separate keys array. The correspon-
dence between data and key is established by the position; whenever in-place sort
moves keys, it also moves the corresponding values. Consequently, both values

and keys entries are read by the code. The simple form of delayed execution
would explore all VALN possibilities for the values array. In contrast, our copy
propagation technique keeps the values symbolic when they are copied, choos-
ing concrete values only when the variable is involved in a non-copy operation,
e.g., an arithmetic operation or field dereference. In this example, such non-copy
operations do not arise for the elements of the values array. For N = 5, copy
propagation therefore ensures that the exhaustive execution finishes in 4.8 sec-
onds, regardless of the VAL bound. In contrast, exhaustive exploration without
copy propagation times out for even moderate values of VAL.

3 Delayed Choice Execution Algorithm

We next make the core of our algorithm precise by presenting it as a source-to-
source transformation of a simple non-deterministic language. Our formalization
covers the essence of delayed execution with copy propagation.

3.1 Preliminaries

Program representation. Our language is a variant guarded-command lan-
guage similar to representations such as, e.g., BoogiePL [3]. We represent the
program as an abstract control-flow graph CFG ⊆ CS × ST × CS. (Structured

10 Gligoric, Gvero, Khurshid, Kuncak, Marinov

control statements such as ’if’ and ’while’ can be translated into control graphs
using standard techniques.) The set CS denotes control states. For a program
with a single thread and without procedure calls, CS is simply the finite set of
program points. In general, CS can be an infinite set encoding program counters
for all threads and the control stack. ST is the set of statements. Statements
manipulate visible and invisible variables and may contain expressions.

The purpose of visible variables is to denote variables that are externally
observable. In delayed execution, visible variables always contain concrete values,
whereas invisible variables may also contain delayed computation. Expressions
contain only visible variables and there are separate statements to load values
from invisible variables and store them to invisible variables. If we included
additional input/output statements into our language, their arguments would
also contain only visible variables.

The statements take the following forms:

– v = x (read), where v is a visible variable and x is an invisible variable;
– x = e (write) where x is an invisible variable and e is an expression containing

visible variables and constants;
– x = y (copy) where x, y are invisible variables;
– assume(b), where b is a Boolean expression, behaves as no-op if b is true,

and blocks execution if b is false. This statement corresponds to the ’as-
sume’ statement of the guarded command language. It also corresponds to
ignoreIf(¬b) in Java PathFinder.

– x=getInt(a, b) is a non-deterministic write of an integer value from the
set {a, . . . , b} to x. Here x is an invisible variable and a, b are expres-
sions evaluated at the time x=getInt(a, b) is executed. The meaning of
x=getInt(a, b) is the sequence of guarded-command language statements
havoc(x) ; assume(a ≤ x ≤ b).

Program semantics. A program state (c, d) consists of the control state c ∈ CS

and the data state d ∈ DS. We let TS = CS × DS denote the set of all states. A
data state d is a function from variables to their values. A variable is either an
invisible variable x ∈ IV or visible variable v ∈ VV. Therefore, d : (IV ∪ VV) →
Vals.

Given a statement s ∈ ST we define its meaning JsK ⊆ DS2 on program
variables as follows (f [p := q] is g such that g(x) = f(x) for x 6= p and g(p) = q):

– Jv = xK = {(d, d′) | d′=d[v:=d(x)]}
– Jx = eK = {(d, d′) | d′=d[x:=d(e)]}
– Jassume(b)K = {(d, d) | d(b)}
– Jx=getInt(a, b)K = {(d, d′) | ∃u ∈ {a, . . . , b}. d′=d[x:=u]}

We define transition relation TR ⊆ TS2 in the natural way: ((c, d), (c′, d′)) ∈ TR

if and only if there exists (c, s, c′) ∈ E such that (d, d′) ∈ JsK.
We represent the meaning of a program as a computation tree CT(E, s0) =

(CTV, CTE) where CTV ⊆ CS × DS is a set of states and CTE is a set of edges
on CTV that forms a tree. (In practice, the benefits of delayed execution remain

On Delayed Choice Execution for Falsification 11

also in the presence of state comparison [42], when the computation is more
appropriately represented as a graph instead of a tree.) Given an initial state
s0 ∈ TS, we define the computation tree CT(E, s0) as the pointwise-least pair of
sets (CTV, CTE) such that

1. s0 ∈ CTV;
2. if s ∈ CTV and (s, s′) ∈ TR, then (s, s′) ∈ CTE and s′ ∈ CTV.

An execution trace t is a sequence s0s1 . . . of states starting from the root of the
computation tree.

3.2 Delayed Execution as a Program Transformation

Our algorithm can be expressed as a program transformation on control-flow
graphs that replaces certain statements (c, s, c′) in the original graph with new
statements (c, τ(s), c′). The effect of the transformation is to postpone branching
in the computation tree generated by the control-flow graph. The transformation
changes the meaning of x=getInt(a, b) to store only a symbolic representation
(a, b) of the possible values, which we denote by x= Susp(a, b). We use state-
ment force(x) to denote making an actual non-deterministic choice of the stored
symbolic value of x.

Figure 7 illustrates this transformation on an example of picking an ordered
triple of elements x0 ≤ x1 ≤ x2 whose values are in the set {0, 1}. This small ex-
ample already illustrates delayed execution. In general, when picking n elements
from {0, 1} and assuming that they are ordered, eager execution explores 2O(n)

paths, whereas delayed execution explores a polynomial number of paths.

x0 = Susp(0,1);
force(x0);
x1 = Susp(0,1);
force(x1);
x2 = Susp(0,1);
force(x2);
v0 = x0;
v1 = x1;
assume (v0 <= v1);
v2 = x2;
assume (v1 <= v2);

x0 = Susp(0,1);
x1 = Susp(0,1);
x2 = Susp(0,1);
force(x0);
v0 = x0;
force(x1);
v1 = x1;
assume (v0 <= v1);
force(x2);
v2 = x2;
assume (v1 <= v2);

Fig. 7. Eager Execution (Left) and Delayed Execution (Right) of a Program

We next describe the process of delaying the execution more precisely. We
show that it preserves the projections of states onto visible variables. Our eval-
uation in Section 4 shows that the size of trees often decreases and sometimes
dramatically so.

For each invisible variable x ∈ IV, our transformation extends its domain so
that it stores a pointer to a cell c where c stores either 1) a concrete value (as

12 Gligoric, Gvero, Khurshid, Kuncak, Marinov

before), or 2) an expression of the form Susp(a, b), denoting the set of values
{x | a ≤ x ≤ b} from which a concrete value may be chosen in the future. (A
reference to Susp(a, b) corresponds to representations of delayed expressions in
implementations of non-strict functional languages [21,22].) The environment d

now maps not only variable names to concrete values, but also maps cells to
suspended computations or concrete values. We define

Jx= Susp(a, b)K = {(d, d′) | d′ = d[x := c, c := Susp(a, b)], for c cell fresh in d}
Jv =!xK = {(d, d[v := d(d(x))]
Jforce(x)K = { (d, d[c := u]) | d(x) = c ∧

(d(c) = u ∧ u ∈ Vals) ∨ (d(c) = Susp(a, b) ∧ a ≤ u ≤ b)}

Note the use of shared cells to represent values of invisible variables. This ensures
that the suspended computations are properly shared in the presence of copy
statements for invisible variables, and preserves the set of computed results of
eager non-deterministic evaluation [27].

Initial tree. We represent the initial, eager, computation tree by the following
transformations of statements in the original program, which obviously preserve
states up to visible variables:

x=getInt(a, b) ; x= Susp(a, b) ; force(x)
v = x ; v =!x

An invariant of executing such computation tree is that each execution of v =!x
is preceded (but not necessarily immediately preceded) with an execution of
force(x). We maintain (and further strengthen) this invariant when transforming
the tree to delayed form.

Delayed tree. In the delayed tree, we do the following replacements

x=getInt(a, b) ; x= Susp(a, b)
v = x ; force(x) ; v =!x

In summary, the difference between two trees is that force(x) immediately

follows the specification of the non-deterministic choice in the original tree, but
it immediately precedes the dereference v =!x in the delayed tree.5

In both of the transformed trees, the semantics of copy statements has the
same form as before: it copies references to cells, without forcing the non-
deterministic choices stored in these cells. In the delayed tree, this achieves the
effect of copy propagation.

3.3 Preservation of Visible Variables in Delayed Execution

Define α on program states as a function that projects data state onto visible
variables

α(c, d) = (c, d|VV)

5 Informally we could say that delayed execution postpones the decisions if possible
and uses force only when and if needed (to preserve the values of visible variables).

On Delayed Choice Execution for Falsification 13

We sketch an argument showing that the initial tree and the delayed tree preserve
the values α(c, d) for reachable states (c, d).

We show this by transforming the initial tree into the delayed tree by gradu-
ally moving force(x) occurrences from the root towards the leaves of the tree, by
swapping their executions with executions of other statements. In the notation
below, if s1 and s2 are two statements, we will write s1 ; s2 for the part of the
tree resulting from executing s1 and then s2.

Statements independent of x: If s is a statement that does not read or write
x, we replace

force(x) ; s

with
s ; force(x)

This includes cases where s is y=Susp(a, b) for y a variable distinct from x.
Because

Jforce(x)K ◦ JsK = JsK ◦ Jforce(x)K

the set of states at each level of the tree is preserved by such transformation.

Assignment to x: If sx is a statement of that assigns to x (of the form x = . . .),
then we replace

force(x) ; sx

with simply sx, removing this occurrence of force(x) from the tree. This clearly
preserves the set of reachable states after the assignment and preserves the value
of α for the set of all nodes in the tree.

Copy of x: We replace
force(x) ; y = x

with
y = x; force(y)

and continue the moving of the newly introduced occurrence of force(y).

Double occurrence of force(x): We replace a double occurrence of force(x)
with a single one. Because force(x) is idempotent,

Jforce(x)K ◦ Jforce(x)K = Jforce(x)K

this transformation does not affect the set of reachable states in the tree.

Read v =!x: When reaching the pattern

force(x) ; v =!x

the moving stops, reaching the pattern occurring in the delayed tree.

Summary and removing leaf choices. Each step of these transformations
preserves the set of states at the level n of the tree for increasing value of n, and
preserves the set of α(c, d) in the tree for all nodes in the tree at levels i ≤ n.
In the final step, we remove all occurrences of force(x) that lead to leaves of

14 Gligoric, Gvero, Khurshid, Kuncak, Marinov

the tree. This last transformation does not preserve the set of values of x in the
state, but it does preserve the set of values of visible variables.

The result of such move of statements force(x) is almost identical to the
delayed tree. The only difference can be additional force(x) statements that
appear in the delayed tree because our simple description of delayed tree blindly
inserts force(x) before each read of x. However, each of our transformations
preserves the invariant that, whenever v =!x is executed then d(d(x)) already
contains a concrete value. Therefore, any such additional force(x) statements
perform no state change and can be added or removed from the tree without
effect.

This completes our argument and establishes that the sets of values α(c, d)
for all reachable states (c, d) in the eager and the delayed tree are identical.

Theorem. Let (CTV, CTE) be the eager tree and (CTV ′, CTE′) the delayed
tree. Then {α(p) | p ∈ CTV} = {α(p′) | p′ ∈ CTV ′}.

3.4 Reduction in the Number of Paths

The reasoning in the previous subsection also shows why the number of traces in
the delayed tree is no larger than the number of traces in the eager tree, and can
be substantially smaller. It suffices to notice that all of the above transformations
that move force(x) downwards either preserve or reduce the number of traces
(paths from root to leaf) of the tree. In practice, the most important reduction
results at the point of removing force(x) statements that lead to the leaves of
the execution tree. For example, if the transformation removes K statements
of the form force(xi), and each xi points to a distinct non-deterministic choice
expression Susp(0, N − 1), then the transformation reduces the number of paths
NK times.

3.5 Generating Linked Structures

Figure 8 presents a Java-like pseudo code for an implementation of object pools
with a getAny method that avoids isomorphic structures. The use of getInt

inside the implementation corresponds to its eager version. Our system obtains
benefits from delayed choice execution on linked structures by encapsulating val-
ues returned by getAny into suspensions, similar as for getInt. The suspension
for getAny maintains a reference to the underlying ObjectPool object. An im-
portant property of such implementation (established in [29]) is that it avoids
linked structures isomorphic up to reference identities [20, 7].

4 Evaluation

We implemented our delayed choice algorithm by modifying Java PathFinder
using its attribute mechanism [35] to store non-deterministic values that have
not been read yet and by modifying the implementation of getInt to generate
such delayed values. The implementation of object pool is similar.

On Delayed Choice Execution for Falsification 15

class ObjectPool<T> {
T[] entries; int next; boolean full;
ObjectPool(int size) { // precondition: 0 < size

entries = new T[size];
next = 0; full = false; }

T getAny() { // class invariant: next < entries.length
int i = getInt(0, next); // eagerly get at most one new object
if ((i == next) && !full) {

entries[i] = new T();
if (next < entries.length − 1) next++;
else full = true;

}
return entries[i]; }

}

Fig. 8. Implementation of object pools and getAny

Java PathFinder Baseline Delayed Choice
program size structures time [s] explored time [s] explored

RedBlackTree 7 35 9.96 54,912 3.24 16,983
8 64 65.67 366,080 13.85 80,470
9 122 449.17 2,489,344 64.24 381,470

DAG 3 34 5.68 4,802 0.69 321
4 2,352 out of mem - 6.41 21,196
5 769,894 - - 1,013.75 4,997,210

HeapArray 6 13,139 16.66 160,132 4.12 27,664
7 117,562 304.32 2,739,136 32.43 227,494
8 1,005,075 8,166.77 54,481,005 318.59 2,325,069

NQueens 5 10 1.4 3,125 0.10 177
6 4 7.68 46,656 0.24 746
7 40 82.35 823,543 0.51 3,073
8 92 out of mem - 2.29 13,756

SearchTree 4 490 1.36 3,584 0.63 1,484
5 5,292 15.87 131,250 3.23 21,210
6 60,984 675.33 6,158,592 40.24 305,052

SortedList 6 924 5.94 5,5987 0.64 3,967
7 3,432 900.67 960,800 2.38 18,026
8 12,870 1,865.55 19,173,961 9.85 80,089

Fig. 9. Enumeration of structures satisfying their invariants

We present an evaluation of our approach using a variety of data structure
implementations: RedBlackTree is the example introduced in Section 2; DAG rep-
resents directed acyclic graphs; HeapArray is an array-based implementation of
the heap data structure; SearchTree is binary search tree; and SortedList is a
doubly-linked list containing sorted elements. Additionally, NQueens is the tra-
ditional problem from constraint solving [1]. For each structure, we wrote its
representation invariant using our combined generator/predicate approach. Our
experimental setup compares standard execution of Java PathFinder with our
delayed choice execution using the same invariant. We turn off state hashing of
Java PathFinder in our experiments, because duplicate states rarely arise in exe-
cutions of our examples. We perform two kinds of experiments: (1) enumerating
all structures of a given size, and (2) finding errors in code.

16 Gligoric, Gvero, Khurshid, Kuncak, Marinov

Java PathFinder Baseline Delayed Choice
program size time [s] explored time [s] explored

6 7.76 3,478 1.29 1,514
RedBlackTree BUG1 7 7.00 21,706 2.62 7,169

8 37.31 157,834 9.38 38,457
6 4.48 5,548 2.30 2,196

RedBlackTree BUG2 7 10.33 31,787 3.97 9,454
8 41.54 188,384 11.75 42,997
6 2.97 3,478 1.15 1,514

RedBlackTree BUG3 7 6.51 21,555 2.36 6,960
8 28.85 138,853 6.95 32,667
6 3.51 3,451 1.14 1,452

RedBlackTree BUG4 7 6.33 21,437 2.09 6,807
8 28.75 138,863 6.76 32,667

Fig. 10. Time to first counterexample

Figure 9 shows the efficiency of our approach for structure enumeration. For
each program and several bounds, we tabulate the total number of successful
paths in the execution tree (the number of valid structures generated), the ex-
ploration time, and the total number of paths explored. Both techniques generate
the same number of structures, but delayed choice explores fewer paths which
provides significant speed-ups, from 2x up to 190x as size increases.

Figure 10 shows the effectiveness of our approach for finding errors in
code. Bugs of omission were manually inserted into the implementation of
RedBlackTree by a student not familiar with our work. The “explored” column
shows the number of candidate structures explored until the bug is hit. Delayed
choice execution once again outperforms standard JPF execution, by 3x-4x.

5 Related Work

Techniques similar to delayed choice execution are common in constraint
solving—both for constraints written in imperative languages and for constraints
written in declarative languages. For example, Korat [7] implicitly uses delayed
choice by monitoring field accesses and using them in field initializations for the
new candidates it explores. Generalized symbolic execution [24] follows Korat
and uses “lazy initialization” to make non-deterministic field assignments on
first-access. Deng et al.’s [14] “lazier initialization” builds on generalized sym-
bolic execution and makes non-deterministic field assignments on first-use. A
key difference between previous work and this paper is that we provide a generic
framework that supports delayed choice execution for arbitrary guarded com-
mands and provides fully automatic execution using the Java PathFinder model
checker [41].

Our unification of generators and predicates generalizes Korat’s finitization,
which has a very specific purpose: to define a bound on the input space of the
predicate that represents the constraint to solve. While the users may still write
standard Korat finitizations, the unification enables them to seamlessly combine
dedicated generators with imperative predicates, which enables easier formula-

On Delayed Choice Execution for Falsification 17

tion of constraints, faster generation of solutions, as well as focused generation
of a desired subset of solutions.

Delayed choice execution is a lightweight form of symbolic execution [25].
Delayed choice execution does not explicitly build path conditions or examine
them for feasibility using decision procedures. Several recent approaches to sys-
tematic testing use symbolic execution in some form, often by combining it with
concrete executions [18,39,9,34]. Delayed choice execution, which explores only
concrete executions but delays the assignment of values to fields until they are
used, is complementary to these approaches and can be used to optimize them.

Concrete executions have also been used with predicate abstraction [36] as
well as generation of proofs [6]. In contrast, our approach focuses on efficiently
covering a specified set of concrete executions, without attempting to perform
approximation or generating proofs. Note that a natural consequence of delayed
choice execution is that if the code does not “force” the assignment of a concrete
value to a variable (the value remains suspended), the exploration proves that
the execution would produce the same result for all values of that variable (even
for values outside the range specified by the user).

Researchers have identified non-deterministic call-by-need lambda calculus as
a useful programming model [27]. Our delayed choice execution employed call-
by-need execution for side-effect-free choice expressions, thereby incorporating
non-deterministic call-by-need execution into an imperative language.

The Eclipse constraint solver [1] provides a constraint logic programming
(CLP) interface for writing declarative constraints. Eclipse provides suspensions

that delay testing of predicates until more information is available. We believe
adapting techniques from CLP holds much promise for imperative constraint
solving, as witnessed by our encouraging results in implementing a form of sus-
pensions in Java PathFinder. Moreover, we believe that the non-deterministic
imperative programming paradigm that we advocate is among the most likely
vehicles to incorporate advanced declarative constructs into modern languages.

6 Conclusions

We have shown that Hoare triple falsification and test generation can be natu-
rally expressed as exploration of guarded command language executions. More-
over, we have shown how to use the concept of delayed execution to turn explicit-
state model checker into an engine that efficiently explores such executions. We
found the resulting system to be extremely effective in detecting bugs in speci-
fications and code. We expect our experience to encourage further study of con-
nections between systematic executions of imperative programs and declarative
constraint solving.

Acknowledgements. We would like to thank Igor Andjelkovic for creating
faulty versions of the Red Black Tree example.

References

1. K. Apt and M. G. Wallace. Constraint Logic Programming using Eclipse. CUP,
2006.

18 Gligoric, Gvero, Khurshid, Kuncak, Marinov

2. Thomas Ball, Daniel Hoffman, Frank Ruskey, Richard Webber, and Lee J. White.
State generation and automated class testing. STVR, 10(3), 2000.

3. Mike Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs, and
K. Rustan M. Leino. Boogie: A modular reusable verifier for object-oriented
programs. In FMCO, 2005.

4. Mike Barnett, Robert DeLine, Manuel Fähndrich, K. Rustan M. Leino, and
Wolfram Schulte. Verification of object-oriented programs with invariants.
Journal of Object Technology, 3(6):27–56, 2004.

5. Clark Barrett and Cesare Tinelli. CVC3. In CAV, volume 4590 of LNCS, 2007.
6. Nels E. Beckman, Aditya V. Nori, Sriram K. Rajamani, and Robert J. Simmons.

Proofs from tests. In ISSTA, 2008.
7. Chandrasekhar Boyapati, Sarfraz Khurshid, and Darko Marinov. Korat:

Automated testing based on Java predicates. In ISSTA, 2002.
8. Roberto Bruttomesso, Alessandro Cimatti, Anders Franzén, Alberto Griggio, and

Roberto Sebastiani. The MathSAT 4SMT solver. In CAV, 2008.
9. Cristian Cadar, Vijay Ganesh, Peter M. Pawlowski, David L. Dill, and

Dawson R. Engler. Exe: automatically generating inputs of death. In ACM
Conference on Computer and Communications Security, pages 322–335, 2006.

10. Yoonsik Cheon. A Runtime Assertion Checker for the Java Modeling Language.
PhD thesis, Iowa State University, April 2003.

11. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Cliff Stein.
Introduction to Algorithms (Second Edition). MIT Press and McGraw-Hill, 2001.

12. Brett Daniel, Danny Dig, Kely Garcia, and Darko Marinov. Automated testing
of refactoring engines. In ESEC/FSE, 2007.

13. Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In
TACAS, 2008.

14. Xianghua Deng, Jooyong Lee, and Robby. Bogor/Kiasan: A k-bounded symbolic
execution for checking strong heap properties of open systems. In ASE, 2006.

15. Greg Dennis, Felix Chang, and Daniel Jackson. Modular verification of code with
SAT. In ISSTA, 2006.

16. Bassem Elkarablieh, Ivan Garcia, Yuk Lai Suen, and Sarfraz Khurshid.
Assertion-based repair of complex data structures. In ASE, 2007.

17. Cormac Flanagan, K. Rustan M. Leino, Mark Lilibridge, Greg Nelson, James B.
Saxe, and Raymie Stata. Extended Static Checking for Java. In PLDI, 2002.

18. Patrice Godefroid, Nils Klarlund, and Koushik Sen. DART: Directed automated
random testing. In PLDI, 2005.

19. Dominik Haneberg, Gerhard Schellhorn, Holger Grandy, and Wolfgang Reif.
Verification of Mondex electronic purses with KIV: from transactions to a
security protocol. Formal Asp. Comput., 20(1):41–59, 2008.

20. Radu Iosif. Symmetry reduction criteria for software model checking. In
Proceedings of the SPIN Workshop on Software Model Checking (SPIN), volume
2318 of LNCS, pages 22–41, July 2002.

21. Simon L. Peyton Jones. The Implementation of Functional Programming
Languages. Prentice-Hall, 1987.

22. Simon L Peyton Jones and David R Lester. Implementing functional languages:
A tutorial, 2000.

23. Sarfraz Khurshid and Darko Marinov. TestEra: Specification-based testing of
Java programs using SAT. Autom. Softw. Eng., 11(4):403–434, 2004.

24. Sarfraz Khurshid, Corina S. Pasareanu, and Willem Visser. Generalized symbolic
execution for model checking and testing. In TACAS, 2003.

On Delayed Choice Execution for Falsification 19

25. James C. King. Symbolic execution and program testing. Commun. ACM,
19(7):385–394, 1976.

26. Viktor Kuncak. Modular Data Structure Verification. PhD thesis, EECS
Department, Massachusetts Institute of Technology, February 2007.

27. Arne Kutzner and Manfred Schmidt-Schauß. A non-deterministic call-by-need
lambda calculus. In ICFP, 1998.

28. Rupak Majumdar and Koushik Sen. Hybrid concolic testing. In ICSE, 2007.
29. Darko Marinov. Automatic Testing of Software with Structurally Complex Inputs.

PhD thesis, MIT, 2005.
30. Darko Marinov, Alexandr Andoni, Dumitru Daniliuc, Sarfraz Khurshid, and

Martin Rinard. An evaluation of exhaustive testing for data structures. Technical
Report MIT-LCS-TR-921, MIT CSAIL, Cambridge, MA, September 2003.

31. Darko Marinov and Sarfraz Khurshid. TestEra: A novel framework for
automated testing of Java programs. In ASE, 2001.

32. A. Milicevic, S. Misailovic, D. Marinov, and S. Khurshid. Korat: A tool for
generating structurally complex test inputs. In ICSE, 2007.

33. S. Misailovic, A. Milicevic, N. Petrovic, S. Khurshid, and D. Marinov. Parallel
test generation and execution with Korat. In ESEC/FSE, 2007.

34. Corina S. Pasareanu, Peter C. Mehlitz, David H. Bushnell, Karen Gundy-Burlet,
Michael R. Lowry, Suzette Person, and Mark Pape. Combining unit-level
symbolic execution and system-level concrete execution for testing nasa software.
In ISSTA, pages 15–26, 2008.

35. C.S. Pasareanu, P.C. Mehlitz, D.H. Bushnell, K. Gundy-Burlet, M.R. Lowry,
S. Person, and M. Pape. Combining unit-level symbolic execution and
system-level concrete execution for testing NASA software. In ISSTA, 2008.

36. C.S. Pasareanu, R. Pelánek, and W. Visser. Predicate abstraction with
under-approximation refinement. Logical Methods in Comp. Sci., 3(1), 2007.

37. The Scala programing language. http://www.scala-lang.org. Last accessed
October 2008.

38. P.H. Schmitt and I. Tonin. Verifying the Mondex case study. In SEFM, 2007.
39. Koushik Sen, Darko Marinov, and Gul Agha. CUTE: a concolic unit testing

engine for C. In ESEC/SIGSOFT FSE, 2005.
40. Keith Stobie. Model based testing in practice at Microsoft. Electr. Notes Theor.

Comput. Sci., 111:5–12, 2005.
41. Willem Visser, Klaus Havelund, Guillaume P. Brat, Seungjoon Park, and Flavio

Lerda. Model checking programs. Autom. Softw. Eng., 10(2):203–232, 2003.
42. Tao Xie, Darko Marinov, Wolfram Schulte, and David Notkin. Symstra: A

framework for generating object-oriented unit tests using symbolic execution. In
TACAS, pages 365–381, 2005.

43. Karen Zee, Viktor Kuncak, and Martin Rinard. Full functional verification of
linked data structures. In PLDI, 2008.

http://www.scala-lang.org

	On Delayed Choice Execution for Falsification
	Milos Gligoric, Tihomir Gvero, Sarfraz Khurshid, Viktor Kuncak, and Darko Marinov

