
A Scala Library for Testing Student

Assignments on Concurrent Programming

Mikaël Mayer

EPFL, Switzerland

mikael.mayer@epfl.ch

Ravichandhran Madhavan

EPFL, Switzerland

ravi.kandhadai@epfl.ch

Abstract

We present a lightweight library for testing concurrent Scala

programs by systematically exploring multiple interleavings

between user-specified operations on shared objects. Our li-

brary is targeted at beginners of concurrent programming

in Scala, runs on a standard JVM, and supports conven-

tional synchronization primitives such as wait, notify, and

synchronized. The key component of the library is the trait

SchedulableMonitor that accepts a thread schedule, and in-

terleaves as per the schedule all user-specified operations in-

voked through multiple threads on objects implementing the

trait. Using our library, we developed a unit test engine that

tests concurrent operations on shared objects on thousands

of schedules obtained by bounding the number of context-

switches. If a unit test fails on a schedule, the test engine

offers as feedback the interleaved traces of execution that re-

sulted in the failure. We used our test engine to automatically

test and evaluate two assignments: (a) lock-based producer/-

consumer problem, and (b) lock-free sorted list implemen-

tation, offered to a class of 150 under-graduate students of

EPFL. Our evaluations show that the system is effective in

detecting bugs in students’ solutions.

Categories and Subject Descriptors D.1.3 [Software]:

Concurrent Programming; D.2.5 [Software Engineering]:

Testing and Debugging

General Terms Languages, Reliability, Verification

Keywords Testing, Debugging, Concurrency, Synchro-

nization, Scheduling, Deadlocks, Grading

1. Introduction

The increasing adoption of massively parallel and distributed

hardware has created a huge demand for softwares that are

able to improve their performance by exploiting the available

parallel hardware. In response to this demand, languages and

runtimes have evolved significantly in providing higher-level

language abstractions for creating concurrent computations,

such as C# Tasks and Scala Futures, as well as for coordinat-

ing accesses to resources shared across concurrent threads

of execution, such as synchronized, wait/notify, and

atomic integers supported by Java virtual machine (JVM).

While these features have largely simplified programming

concurrent softwares, discovering and fixing bugs in concur-

rent programs remains a considerable challenge, especially

when they result from interleavings of effectful computa-

tions executed concurrently.

Automated detection of such concurrency bugs has, justi-

fiably, attracted much research, and has witnessed significant

advances in the recent years: [6, 16–19, 21] to name a few.

These systems have been demonstrated to be effective in

detecting complex concurrency bugs on large code bases.

However, when seen from a larger perspective of software

testing, the existing systems mostly address the problem of

bounded model checking of concurrent programs through

either symbolic or explicit state exploration. They employ

heavy-weight static analyses like symbolic execution, and/or

run on instrumented runtime infrastructures with dedicated

schedulers for exploring multiple interleaving between in-

structions of concurrent operations. They typically target

fine-grained hazards such as data races, memory safety, or

exceptions/assertion-failures in the program. In compari-

son, less attention has been paid to designing unit testing

frameworks for concurrent programs that allow program-

mers to check high-level properties of code snippets on

user-provided inputs, analogous to JUnit and ScalaTest.

Such unit testing libraries, despite being less automated than

bounded model checkers, offer more flexibility to users, and

do not require additional infrastructure to execute tests. Fur-

thermore, they serve as a way to specify requirements of a

software under development, and are integral to test-driven

software development methodologies such as extreme pro-

gramming [3]. In particular, our motivation for exploring

such frameworks is to create a grading system where stu-

dents can automatically test their (partial) solutions of the

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive version was published in the following publication:

SCALA’16, October 30–31, 2016, Amsterdam, Netherlands
c© 2016 ACM. 978-1-4503-4648-1/16/10...

http://dx.doi.org/10.1145/2998392.2998395

1

assignments, and use the failed tests as a guidance to solve

the assignments. While there are approaches that try to com-

bine model checking with unit testing frameworks [14, 22],

it is typically hard to preserve the benefits of both due to

above mentioned incompatibilities in their goals.

However, a factor limiting the usefulness of unit testing

frameworks in a concurrent setting is that it is often nec-

essary to test an operation when its instructions interleave

with that of other operations that may execute concurrently.

Yet, existing unit testing frameworks do not offer any sup-

port for scheduling (or ordering) operations executed by

multiple threads in a systematic way. In this paper, we pro-

pose a library for Scala that provides functionalities for se-

quentializing operations executed by multiple threads, based

on an ordering provided as input. Users of the library can

programmatically mark the operations, such as reads/writes

of shared variables, whose interleavings need to be tested,

and can write unit tests that checks properties that has to

hold for all interleavings of the marked operations executed

concurrently from user-defined threads. The properties are

tested on thousands of different interleavings between the

marked operations executed by the threads, referred to as

schedules. Moreover, our library is implemented using stan-

dard Scala features, compiles with standard scalac, and can

be imported into any Scala project, much like JUnit and

ScalaTest library. These aspects increase the portability of

the test suites written using our library across different ver-

sions of Scala compiler, and/or JVMs.

The design of our library is primarily motivated by the

need to specify properties about concurrent operations with-

out relying on their concrete implementations. This allows

programmers (students in our case) to program against a

predefined set of test cases, and hence continuously check

the code under development for compliance with the re-

quirements, and identify bugs early. This approach has been

particularly helpful for students to learn and solve pro-

gramming assignments more effectively, and has been a

standard practice in Scala programming courses, especially

those offered as MOOCs (https://www.coursera.org/

specializations/scala). However, being completely

opaque to the implementation is impossible to achieve in

our setting, since the library unlike a runtime cannot keep

track of the writes/reads to shared memory locations that an

unknown implementation could possibly access. Nonethe-

less, we circumvent this problem by providing students with

a well-marked set of (atomic) operations that update shared

memory locations to which they are required to restrict their

implementations. To summarize, the following are the main

contributions of this paper:

• We present an algorithm that uses standard Scala con-

structs to enforce an ordering between explicitly marked

operations in a program, in the presence of synchro-

nization primitives: synchronized, wait, notify and

notifyall.

• We present an unit testing library for Scala (https://

github.com/epfl-lara/muscat) capable of checking

properties on multiple interleavings of operations explic-

itly marked by the user.

• We use the unit testing library to test and evaluate two as-

signments on concurrent programming offered to a class

of 150 under-graduate students of EPFL. Our evaluations

show that the unit tests were able to unravel deep concur-

rency bugs in students’ solutions, as well as provide them

useful feedback to locate and fix bugs.

To make things concrete, in following section we present

an overview of the library using an implementation of a

blocking, concurrent, circular queue shown in Fig. 1, and

a unit test suite for the queue shown in Fig. 2.

2. Illustration: Blocking, Concurrent Queue

Fig. 1 shows the definition of a class Queue that implements

a finite queue of capacity size. It uses an array buffer

to store the elements of the queue, and maintains an index

head to the head of the queue, and a counter count that

tracks the number elements in the queue. These fields con-

stitute the mutable state of the queue. We define a set of ac-

cessor and mutator functions to access and update the state

as shown in lines 7 to 20. Each accessor function reads or

writes exactly one memory location of the mutable state, and

hence constitutes a logically atomic operation (even though

the operation may be compiled down to several bytecode in-

structions). The queue supports enqueue and dequeue op-

erations, which can be invoked concurrently. The operations

are guarded by the synchronized construct to prevent race

conditions on the mutable state of the queue. However, if

an operation cannot be completed because the queue does

not have enough elements to dequeue or has no space to en-

queue, the thread executing the operation is blocked using

wait until it is notified by a subsequent change to the state

of the queue. Note that the wait construct releases the lock

acquired by synchronized, and on notification would try

to re-acquire the lock before resuming the execution. (The

Java documentation [1] provides more details.)

This example is based on one of the assignment of-

fered to the students of an under-graduate course on concur-

rent programming (http://lara.epfl.ch/w/parcon16:

problem_statement_and_handout). The students were

asked to implement the two queue operations enqueue

and dequeue, as well as helper functions such as isFull,

isEmpty or tail if needed, using only the accessor and mu-

tator functions. Our real design was slightly more advanced

so that students have the impression of working directly with

an array of nullable elements.

Observe that the class Queue extends a trait Monitor

which is defined in the library, whose implementation shown

in Fig. 5. This binds the synchronized, wait, and notify

constructs to the function defined in the trait Monitor in-

2

1 class Queue[T](val size: Int) extends Monitor {
2 /∗∗ Shared mutable state ∗∗/
3 private var buffer = new Array[Option[T]](size)
4 private var head = 0;
5 private var count = 0;
6 /∗∗ Accessor functions for the shared state ∗∗/
7 protected def update(index: Int, elem: T) {
8 buffer(index) = Some(elem)
9 }

10 protected def apply(index: Int): T =
11 buffer(index) match {
12 case Some(e) ⇒ e
13 }
14 protected def delete(index: Int) {
15 buffer(index) = None
16 }
17 protected def head: Int = head
18 protected def head =(h: Int): Unit = head = h
19 protected def count: Int = count
20 protected def count =(c: Int): Unit = count = c
21 /∗∗ Externally visible queue operations ∗∗/
22 def tail: Int = (head + count) % size
23 def isFull: Boolean = count == size
24 def isEmpty: Boolean = count == 0
25

26 def enqueue(e: T): Unit = synchronized {
27 while (isFull()) wait()
28 this(tail) = e
29 count += 1
30 notifyAll()
31 }
32 def dequeue(): T = synchronized {
33 while (isEmpty) wait()
34 val elem = this(head)
35 this.delete(head)
36 head = (head + 1) % size
37 count −= 1
38 notifyAll()
39 elem
40 } }

Figure 1. Implemenation of a blocking, concurrent queue.

stead of their definitions in the class Object, thus mak-

ing them overridable. The trait Monitor by default binds

the constructs to their standard implementation. However,

another trait, namely SchedulableMonitor (described

shortly), provides a different implementation for the syn-

chronization constructs, and can be mixed in with the class

Queue to override the standard definition. As described in

section 3, we were able to achieve this kind of overridability

of synchronization primitives due to the syntactic exten-

sibility offered by Scala through features such as implicit

parameters and call-by-name.

Fig. 2 shows a unit test suite QueueTestSuite that

tests the implementation of a Queue. The test suite uses a

sub-class of the Queue class, namely SchedulableQueue,

whose accessor and mutator functions are wrapped inside a

1 class SchedulableQueue[T](val size: Int,schedr: Scheduler)
2 extends Queue[T](size) with SchedulableMonitor {
3 val scheduler = schedr
4 /∗∗ Marking interleavable expressions ∗∗/
5 override def update(index: Int, elem: T): Unit = exec {
6 super.update(index, elem)
7 }{ /∗∗ optional log message ∗∗/ }
8 override def apply(index: Int): T = exec {super(index)}
9 override def delete(index: Int): Unit = exec {

10 super.delete(index) }
11 override def head = exec{ super.head }
12 override def head =(h: Int) = exec{ super.head =(h) }
13 override def count = exec{ super.count }
14 override def count =(c: Int) = exec{ super.count =(c)}
15 override def tail = exec{ super.tail }
16 }
17 class QueueTestSuite extends FunSuite {
18 test(”Testing FIFO behavior on a queue of size 3”) {
19 testManyScedules(4, // number of threads
20 sched ⇒ {
21 val q = new SchedulableQueue[Int](3, sched)
22 // operations per thread
23 val threadOps = List(// th.1 code
24 () ⇒ { q.enqueue(1); q.enqueue(2) }
25 () ⇒ q.dequeue(), // thread 2 code
26 () ⇒ q.enqueue(3), // thread 3 code
27 () ⇒ q.enqueue(4)) // thread 4 code
28 // validate that thread 2 cannot return 2
29 val resultValidator =
30 results ⇒ (results(1).asInstanceOf[Int] 6= 2,
31 “Should not obtain 2”)
32 (threadOps, resultValidator)
33 })
34 } }

Figure 2. Sample units test for the concurrent queue.

1 test(”An exhaustive test of FIFO property”) {
2 testManySchedules(4, sched ⇒ {
3 val q = new SchedulableQueue[(Char, Int)](3, sched)
4 val (n, chars) = (2, List(’a’, ’b’, ’c’))
5 val threadOps = chars.map(c =>

6 () ⇒ for (i ← 1 to n) { q.enqueue((c, i)) }
7) :+ (() ⇒ {
8 val counts = HashMap.empty[Char, Int]
9 for(c ← chars) counts(c) = 0

10 for (i ← 1 to 3 ∗ n)) {
11 val (c, n) = q.dequeue()
12 counts(c) += 1
13 assert(counts(c) == n)
14 }
15 })
16 (threadOps, results ⇒ (true, ””))
17 })}

Figure 3. An exhaustive unit test for the concurrent queue

example shown in Fig. 1

3

library function exec, but otherwise inherits the definitions

of the Queue. The exec construct serves to mark operations

that access shared state, and whose interleavings have to be

tested. It also accepts an optional message that is appended

to a log (specific to a schedule) with the thread id once the

operation wrapped inside exec completes. We refer to the

operations wrapped inside exec as marked operations. It is

desirable, but not binding, that the marked operations are

atomic, because our scheduling algorithm allows context

switches only at the start of exec. (Readers may wonder

that it may be simpler to wrap the accessors and mutators

of the Queue class with exec, rather than doing so in a sub-

class that extends the Queue. We resort to this strategy since

it restricts the overheads of the scheduling algorithm to the

subclass, which is used only in the unit tests, insulating other

parts of the applications that may use the Queue class.)

Observe that the class SchedulableQueue also mixes in

the trait SchedulableMonitor. This trait defines the exec

construct, and also overrides the standard implementations

of synchronized, wait, and notify constructs. The trait

SchedulableMonitor implements the necessary coordina-

tion for ordering the operations wrapped inside exec using

the scheduler provided as input, which stores a schedule. We

define a schedule as a list of thread ids that specifies the or-

der in which the marked operations of each thread should

interleave. For instance, given two threads with ids T1 and

T2, a schedule: List(T1, T2, T1, T2, · · ·) indicates that T1

should execute first until encountering its second marked op-

eration, then should yield control to T2, which may execute

until its second marked operation, and then yields the con-

trol back to T1, and so on. That is, T1 and T2 alternatively

execute their instructions yielding control to the other thread

at the beginning of marked operations.

Similar to marked operations, the entry and exit points

of synchronization primitives such as synchronized, wait,

and notify are also considered as points of context switch.

For instance, if threads T1 and T2 race to enter a common

synchronized block (a critical section) when they begin

execution, the thread T1 should be allowed to enter the block,

and T2 should be blocked as per the above schedule. Inci-

dentally, the presence of synchronization primitives makes

certain schedules impossible to follow. For instance, in the

current example, if T1 encounters a second marked opera-

tion while being in the synchronized block, it has to yield

control to T2. However, T2 cannot execute since T1 hasn’t

exited the critical section. In our library, we dynamically al-

ter such schedules so that it conforms to the locking protocol,

by allowing threads to execute out of turn.

The schedules can be manually constructed by the users

of the library, or can be autogenerated using the methods

provided in the library that are parametrized by the length

of the schedule (as described shortly). Moreover, the thread

ids in the schedules need not necessarily match the number

of marked operations executed by the threads at run time.

(a) If a schedule has more entries for a thread T1 than its

marked operations, then the additional slots of T1 are ig-

nored by the algorithm. (b) One the other hand, if a sched-

ule has fewer slots for a thread T1 then T1 is blocked until

the entire schedule has been consumed, and is allowed to

complete concurrently with other threads that may also have

unscheduled marked operations. In Fig. 6 we describe the

implementation of exec, and present the algorithm for or-

dering the marked operations.

Consider now the unit test shown in Fig. 2 at lines 18

to 34. It is meant to check the first-in-first-out (FIFO) behav-

ior of the queue in the presence of concurrent queue opera-

tions. The test uses a library function testManyScedules

which accepts as arguments (a) the number of threads that

should be created, (b) a function: Schedule⇒ (List[Unit

⇒Any], List[Any]⇒(Boolean, String)) that takes a

schedule and returns a list of operations that should be ex-

ecuted by each thread (List[Unit⇒Any]) and a validator

function of type List[Any]⇒(Boolean, String). Given

a list of return values of each thread, the validator function

checks a property and returns its truth value along with an

error message that should be used if the truth value is false.

Note that the validator function can also access other vari-

ables that are in scope. For instance, it can access the in-

ternal state of the queue q. In the unit test shown in Fig. 2,

we test the queue on four threads that manipulate a single

shared queue q, as shown by lines 24 to 27. The property

that is checked here is that the dequeue operation executed

by thread 2 should never return the number two. The func-

tion testManyScedules randomly samples few thousand

schedules from the space of possible schedules with four

threads, having a bounded number of context switches and a

fixed length. The bound on the number of context switches,

and the length are configurable by the user. For instance, for

evaluating students’ solutions, we fixed the number of sched-

ules to be sampled as 10k, the length of the schedules as 20,

and the context switch bound as 10, since the code-snippets

that the students had to implement were small. Fig. 3 shows

another unit test that tests FIFO propery more exhaustively

using assertions and thread local mutable state.

For interested readers, it was shown by J. Hamza and oth-

ers [4, 9] that to ensure linearizability of a concurrent queue

it suffices to verify that certain bad patterns, which are simi-

lar to the property tested by the unit tests, do not occur when

the operations are executed concurrently. Though such theo-

rems may not exist for other concurrent data structures, it is

still possible to check some deep correctness properties us-

ing similar unit tests. For example, for a concurrent list, one

can check that after executing a sequence of insert operations

concurrently with delete operations, the list must contain all

elements belonging to inserts but not to deletes.

A schedule is considered to have failed a test iff one of the

following scenarios manifests on a schedule: (a) an uncaught

exception is thrown by a thread, or (b) the time taken by

4

the overall execution of the schedule exceeds a user-defined

timeout (which is needed to handle non-terminating com-

putations and livelocks), or (c) the threads are caught in a

deadlock (which will be detected by our framework), or (d)

the validator function returns false. When a schedule fails a

test, testManyScedules displays the interleaved log of the

exec and synchronization operations that led to the failure,

and flags the unit test as failed.

Detecting and Reporting Bugs. Fig. 4 present a simplified

version of a buggy solution provided by a student for the

concurrent queue example, during our evaluations. The bug

is due to the use of the construct notify instead of the con-

struct notifyAll, and was detected by one of our unit tests.

As per the JVM specification [1], the construct o.notify

notifies an arbitrarily chosen thread waiting on the receiver

object o, whereas notifyAll notifies every thread waiting

on the receiver object o. The error trace outputted by the

failed test is shown in Fig. 4. The error trace is a log of

the events, qualified by the thread ids, generated by the in-

terleaving that led to a failure. The unit test that failed on

this buggy solution created five concurrent threads with ids

ranging from 1 to 5, each invoking an operation on a shared

queue q of unit capacity. The threads 1, 2, and 3 concur-

rently invoked q.enqueue on values one, two and three,

respectively, and the threads 4 and 5 concurrently invoked

q.dequeue. The error trace depicts a scenario in which the

operations executed by the threads interleave in a way that

results in a deadlock, as described below. Initially, all threads

try to enter the synchronized block (a critical section)

as shown by the event logs i: synchronized → check.

Thread 4 succeeds in entering the synchronized block (as

shown by 4: synchronized → enter), and finds that the

queue is empty and enters the wait state. In the following

steps, thread 1 succeeds in enqueuing an element as shown

by the event logs between 1: synchronized → enter,

and 1: synchronized → exit. Subsequently, threads 2

and 3, which are trying to enqueue an element, enter the

critical section and transition to the wait state finding that

the queue is full. Later, thread 5 succeeds in dequeuing the

element enqueued by thread 1. It also issues a notification

before exiting (see event 5:notify), which is delivered to

one thread, namely thread 4. However, thread 4, which is

trying execute a dequeue operation, immediately enters the

wait state again, since the queue is now empty. Neither of the

threads 2, 3, or 4 are able to make progress from this state, re-

sulting in a deadlock. Interestingly, analyzing the history of

the source control repository used by the student to submit

the solution revealed that the student was able to correctly

change notify to notifyAll in his subsequent attempts.

With this overview of the functionality offered by the library,

in the subsequent sections, we explain the underlying algo-

rithms and techniques that enable these features.

class Queue[T](val size: Int) extends Monitor {
def enqueue(e: T): Unit = synchronized {
while (isFull()) wait()
this(tail) = e
count += 1
notify()
}
def dequeue(): T = synchronized{
while (isEmpty()) wait()
def result = this(head)
count −= 1
head = (head + 1) % size
notify()
result
}}

Error trace reported for a failed test:

Thread 4 crashed on the following schedule:
5:synchronized check

1:synchronized check
3:synchronized check
4:synchronized check

2:synchronized check
4:synchronized → enter
4:Read count → 0
4:wait

1:synchronized → enter
1:Read count → 0
1:Read head → 0
1:Read count → 0
1:Write buffer(0) = 1
1:Read count → 0
1:Write count = 1
1:notify
1:synchronized → exit

3:synchronized → enter
3:Read count → 1
3:wait

2:synchronized → enter
2:Read count → 1
2:wait

5:synchronized → enter
5:Read count → 1
5:Read count → 1
5:Write count = 0
5:Read head → 0
5:Write head = 0
5:notify
5:Read head → 0
5:Read buffer(0)
5:synchronized → exit

4:Read count → 0
4:wait
4:throw java.lang.Exception: Deadlock:
Threads 2, 4, 3 are waiting but all othes
have ended and cannot notify them.

Figure 4. A buggy implementation of the queue, and the

error trace reported for a failed test.

5

1 class Dummy
2 trait Monitor {
3 implicit val d: Dummy = new Dummy
4 def wait()(implicit d: Dummy) = waitFun()
5 def synchronized[T](e: ⇒ T) = synchronizedFun(e)
6 def notify()(implicit d: Dummy) = notifyFun()
7 def notifyAll()(implicit d: Dummy) = notifyAllFun()
8 // default implementations
9 def waitFun(): Unit = super.wait()

10 def synchronizedFun[T](toExecute: ⇒T): T =
11 super.synchronized(toExecute)
12 def notifyFun(): Unit = super.notify()
13 def notifyAllFun(): Unit = super.notifyAll()
14 }

Figure 5. trait Monitor that binds synchronization primi-

tives to methods defined in the trait, which are overridable.

3. Library Implementation

We classify the implementation of the library into parts that

deal with (a) enforcing the order specified by a schedule

on the marked operations executed by the threads, and (b)

generating context-bounded schedules through random sam-

pling. We first focus on part (a), which is the main contri-

bution of this paper, and briefly discuss part (b), which is

fairly straightforward. As mentioned in section 2, most of

the functionality necessary for ordering the operations of a

shared data structure is provided by the trait Schedulable

Monitor. The trait also overrides the definitions of the syn-

chronization primitives, which is not directly supported by

the Scala language, since the synchronization primitives are

declared as final methods of the class Object. Below we

explain a way to override their definitions.

Overriding synchronization primitives. We define a trait

Monitor that has methods named identical to the synchro-

nization primitives, whose definition is shown in Fig. 5. The

first four methods of the trait are carefully crafted so that

their signatures are different from the signatures of the syn-

chronization primitives defined in class Object, but can be

used by a client in exactly the same way as the standard syn-

chronization primitives. In particular, the functions wait and

notify uses implicit parameters that are bound to a dummy

object, and synchronized accepts a call-by-name parame-

ter (the standard definition uses call-by-value).

When these definitions are available in scope, the Scala

compiler prefers to bind uses of the primitives to these

definitions, rather than the standard ones defined in class

Object. For example, consider the Queue class shown in

Fig. 1. Normally, the call to this.synchronized (say at

line 26) would refer to Object.synchronized, but since

Queue extends Monitor the call to this.synchronized

will now bind to Monitor.synchronized. These defini-

tions allows users to the use the standard Scala syntax for

writing programs testable using our library, even in the pres-

ence of synchronization primitives. Note that, by default, the

1 trait SchedulableMonitor extends Monitor {
2 /∗∗ abstract method that returns a scheduler ∗∗/
3 def scheduler: Scheduler
4 /∗∗ Overriden synchronization primitives ∗∗/
5 override def waitFun() = { ... } ...
6 def exec[T](op: => T)(msg: => String): T = { ... }
7 }
8 /∗∗ A class used by ‘SchedulableMonitor‘ ∗∗/
9 class Scheduler(fullSchedule: List[Int]) {

10 /∗∗ Mutable private state ∗∗/
11 var remSchedule = fullSchedule // remaining schedule
12 var numThreads = 0 // #threads running concurrently
13 val threadStates = new HashMap[Int, ThreadState]()
14 def waitForTurn = { ... }
15 }
16 /∗∗ Classes representing thread states ∗∗/
17 abstract class ThreadState // Abbreviated TS below:
18 type L = AnyRef
19 type LS = Seq[AnyRef]
20 case object Starting extends TS
21 case class Running(locks: LS) extends TS
22 case class Sync(lock: L, locks: LS) extends TS
23 case class Waiting(lock: L, locks: LS) extends TS
24 case class SyncUnique(lock: L, locks: LS) extends TS
25 case class VariableRW(locks: LS) extends TS
26 case object Ending extends TS

Figure 6. Outline of the trait SchedulableMonitor, and

the helper classes Scheduler, and ThreadState.

trait Monitor redirects these methods to their standard im-

plementation (see lines 9 - 13). Nonetheless, any subtype of

Monitor can override the standard definition by overriding

the methods defined in lines 9 - 13.

3.1 Implementation of SchedulableMonitor

Fig. 6 shows the outline of the definition of the trait Schedul-

ableMonitor, and a class Scheduler. The class Scheduler

stores the schedule, and implements a few helper functions.

For exposition purposes, in figures 7 and 8 we present the

definition of the synchronization functions and waitForTurn

function as high-level pseudocode, abstracting away some

of the intricacies and low-level details. Our actual im-

plementation is slightly more sophisticated than the algo-

rithm presented here. In particular, it can dynamically al-

ter a schedule if it is not feasible due to locking depen-

dencies. These features are omitted for clarity. Interested

readers are requested to refer to the source repository:

https://github.com/epfl-lara/muscat. Our schedul-

ing algorithm crucially relies on tracking the state of execu-

tion of threads that are created by the unit tests. Below we

describe the thread states tracked by our library.

Thread states. The Scheduler class maintains an abstract

state with each thread created via the testManySchedules

method of a unit test, as illustrated in Fig. 2. The states are

tracked by the variable threadStates which is a mutable

6

1 def exec[T](op: ⇒ T)(msg: ⇒ Option[String]): T = {
2 val t = current thread
3 change state of t from ‘Running‘ to ‘VariableRW‘
4 scheduler.waitForTurn()
5 val res = op
6 msg match {
7 case Some(m) ⇒ log(m(res))
8 case None =>⇒
9 }}

10 def synchronizedFun[T](toExecute: ⇒T): T = {
11 val locks = locks held by the current thread
12 change current thread state to ‘Sync(this, locks)‘
13 scheduler.waitForTurn()
14 val s = toExecute
15 change thread state to ‘Running(locks)‘
16 s
17 }
18 def waitFun() = {
19 val locks = locks held by the current thread
20 change current thread state to
21 ‘Waiting(this, locks.filter(!= this))‘
22 scheduler.waitForTurn()
23 }
24 def notifyFun() = {
25 For every thread in state ‘Waiting(this, locks)‘
26 change its state to ‘SyncUnique(this, locks)‘
27 }
28 def notifyAllFun() = {
29 For every thread in state ‘Waiting(this, locks)‘ or
30 ‘SyncUnique(this, locks)‘
31 change its state to ‘Sync(this, locks)‘
32 }

Figure 7. Pseudocode of the trait SchedulableMonitor.

hash map from thread ids to an abstract class ThreadState.

Each abstract state is represented by a case class that extends

ThreadState as shown in Fig. 6, and is designed based on

the JVM documention [1]. Initially, all threads are initialized

to the state Starting, and transition to other states as they

execute a shared operation or a synchronization primitive.

Many states store a sequence of locks, which are objects on

which the thread would have acquired a lock when executed

on the JVM. For instance, when a thread enters a block

o.synchronized, it takes a lock on the object o. Hence, o is

added to the list of locks stored in the thread’s state until the

thread exits the synchronized block. The locks are stored as a

sequence (instead of a set) to correctly model re-entrant calls

to synchronized i.e, calls of o.synchronized within an

o.synchronized block. Below we describe each state:

• A thread that is started would be in the state Starting.

It will transition to Running(∅) once all threads start.

• A thread that is executing its instructions would be in the

state Running(locks), where locks is a list of object

references on which the thread holds a lock.

1 def waitForTurn() = {
2 wait until every thread other than the executing thread
3 is blocked on ‘waitForTurn‘
4 //last thread calling ‘waitForTurn‘ executes this code
5 val remSched = the remaining schedule ‘remSchedule‘
6 val t = remSched.head
7 val state = state of the thread t
8 state match {
9 case Sync(l, P)) ⇒

10 if (l ∈ P or there exists no other thread is
11 in a state with locks Q such that l ∈ Q) {
12 remSched = remSched.tail
13 change state of ‘t‘ to ‘Running(P :+ l)‘
14 notify thread ‘t‘, and block other threads
15 }
16 else abort the execution
17 case VariableRW(locks) ⇒
18 remSched = remSched.tail
19 change state of ‘t‘ to ‘Running(locks)‘
20 notify thread ‘t‘, and block other threads
21 case SyncUnique(l, P) ⇒
22 change the state of every thread other than ‘t‘
23 in state ‘SyncUnique(l, Q)‘ to ‘Waiting(l, Q)‘
24 change state of ‘t‘ to ‘Sync(l, P)‘
25 waitForTurn()
26 case Waiting(,) ⇒
27 if no other thread can make progress
28 report a deadlock
29 else

30 discard the schedule as it cannot be followed
31 } }

Figure 8. Pseudocode of the function waitForTurn.

• The state VariableRW(lock, locks) denotes that the

thread is about execute a marked operation wrapped in-

side the exec construct.

• The state Sync(lock, locks) denotes that the thread

is attempting to enter a lock.synchronize block.

• The state Waiting(lock, locks) denotes that the

thread is waiting due to an invocation of lock.wait(),

while holding locks on the list of objects given by locks.

• The state SyncUnique(lock, locks) is an transition

state that results after a call to lock.notify by a thread.

In this state, only one thread waiting on lock.wait will

acquire the lock and enter the critical section, and others

fall back to the waiting state.

• A thread that is about to terminate will enter the state

Ending. This state is necessary to initiate certain clean

up operations, and invoke the waitForTurn function to

schedule the next thread to execute.

Implementation of synchronization primitives. (A) Imple-

mentation of Exec. As shown in Fig. 7, the exec function

first looks up the id of the executing thread, and changes

its state from Running(locks) to VariableRW(locks)

7

by updating the mutable hash map threadStates of the

helper class Scheduler shown in Fig. 6. (Since this is an

update to a shared state, in the implementation it is actually

enclosed within a synchronized block.) The function then in-

vokes waitForTurn which blocks the thread until it is the

turn of the thread to execute as per the schedule stored in the

scheduler. Once the thread is unblocked, it executes the

marked operation op, and records a log message. It is guar-

anteed by the waitForTurn function that op is executed in

isolation without interference from other threads.

(B) Implementation of synchronizedFun. The function

synchronizedFun first computes the set of locks that are

held by the thread under execution. Recall that this infor-

mation is available in the state of the thread, which should

be Running(locks). The function changes the state of the

thread to Sync(this, locks) indicating that the thread

wishes to take a lock on this object, and then invokes

waitForTurn function. When the thread is granted access,

it can acquire the lock and execute the critical section.

(C) Implementation of waitFun. This function changes

the state of the executing thread to the Waiting state and re-

leases all the locks on the this object. The thread executing

this function will be blocked until it is notified by another

thread, at which point it will transition to SyncUnique or

Sync state.

(D) Implementation of notifyFun. The notifyFun changes

state of every thread in state Waiting(this,locks), where

locks is unconstrained, to the state SyncUnique(this,

locks). Among the threads in state SyncUnique(this,

locks) exactly one of them would be chosen to execute

by waitForTurn based on the schedule. The state of the

remaining threads will be reset to Waiting.

(E) Implementation of notifyAllFun. The notifyAllFun

function changes the state of every thread in state Waiting(

this, locks) to Sync(this,locks). Unlike the previ-

ous case, all threads in state Sync(this,locks) would be

ready to execute, and would do so eventually, unless the ex-

ecution is aborted due to a faulty schedule. However, the

threads will be permitted to execute by waitForTurn only

in the order specified by the schedule.

WaitForTurn Algorithm. Fig. 8 shows the pseudocode of

this function. Initially, the function blocks until all threads

have invoked the waitForTurn function, and are waiting for

the function’s response. The thread that enters the function

last will execute the remaining code of the waitForTurn

function. This step is much like a barrier, and is imple-

mented using the mutable fields of the Scheduler class (like

numThreads shown in Fig. 6) that keeps track of the number

of active threads that are executing.

In the following steps, the function retrieves the identi-

fier t of the thread that should be allowed to execute next

using remSchedule. It then chooses an appropriate action

to perform based on the state of the thread. For instance, if

the thread t is in the state Sync(l, P), then it is allowed

to take a lock on l iff no other thread is holding the lock.

Once the next thread is chosen, the function advances the

schedule one step (line 12), and changes the state of the cho-

sen thread to Running, augmenting the locks field P with

l (line 13). However, to correctly model re-entrant calls to

synchronized [1], while augmenting P with l at line 13

we ensure that if l was released by the thread due to a call

to l.wait(), the same number of l’s that was held by the

thread before calling l.wait() is added back to P. (For

brevity we omit the additional components of the state re-

quired to track this information.) Finally, the thread that is

chosen is notified so that it can execute, and every other

thread remains blocked. However, since a direct notification

from one thread to another is not permitted by the JVM, in

the actual implementation, the protocol for notifying threads

works through mutable fields and objects shared among the

threads. (We use the Scheduler itself for this purpose, as it

is shared among all threads under execution.)

The remaining cases of the waitForTurn function are

similar. In the case of SyncUnique, the thread t that is

scheduled changes state from SyncUnique to Sync, while

the remaining threads transition to the Waiting state. This

precisely captures the behavior of notify function. In the

Waiting case, our algorithm detects a deadlock by checking

whether there is any thread, other than the one scheduled,

that can make progress. This is ascertained by looking for

cycles among the locks stored in the threads that are in the

Sync state, and checking whether all threads are in Waiting

state. If there is no deadlock, we discard the schedule as it

doesn’t conform to the locking protocol. However, in our

implementation, in this case the schedule is dynamically

altered by allowing a thread that can execute (but not at the

head of the schedule) to execute out of turn. This helps in

utilizing all schedules automatically generated by our tool.

Fig. 9 pictorially depicts the state transitions with respect

to a thread, described in this section, in a state transducer

like syntax. The arrows represent transitions that happen be-

tween the states as the thread executes its instructions. The

label A on top of an arrow, if any, implies that the transi-

tion is triggered by a call/return event or a condition A, and

a label B below the arrow implies that the transition has an

effect B on the fields of the target state. For example, the la-

bels on the arrow from Running to Sync imply that the tran-

sition happens on seeing a call t.synchronized, and sets

the lock field of the state Sync to t. A transition happen-

ing on a thread can also trigger transitions in other threads.

Such triggers are denoted using •– , and the transitions they

induce (in other threads) using dotted arrows . For example,

when a thread transitions from SyncUnique to Running, it

triggers a transition in other threads holding the same lock

from state SyncUnique to Waiting. The transition ⋄→ de-

picts the state changes that happen when the scheduling al-

gorithm (waitForTurn) signals the thread to execute. We

represent changes to locks using the following notation.

8

Figure 9. State transitions of a thread.

locks←/lock means that all occurrences of lock are re-

moved from locks. locks←-lock means that lock was

the last element of locks and is removed. locks←+lock

means that locks is augmented with lock. As mentioned

earlier, this operation may add multiple copies of lock if

there were re-entrant calls to synchronized.

3.2 Schedule Exploration

Our library supports deterministic as well as probabilis-

tic exploration of interleavings of marked operations ex-

ecuted concurrently by the threads provided in the unit

test. As mentioned in section 2, we provide a function

testManySchedules that samples context-bounded sched-

ules of a specified length uniformly at random. For instance,

given five threads with ids 1 to 5. A schedule with a con-

text bound of 10 has at most 10 points where the adjacent

thread ids are not identical. We resort to this strategy as it is

widely accepted that most concurrency bugs can be detected

with fewer context switches. However, our system can also

perform more exhaustive enumeration of schedules.

4. Evaluation

We used our tool to test two assignments offered to students.

The first assignment was a producer-consumer problem with

a solution such as the one given in Fig. 1. In the second as-

signment, the students were required to implement a lock-

free linked list of sorted numbers that supports an insert

operation for inserting an element in the list in the sorted or-

der, a find operation, and a delete operation that deletes

one occurrence of a given element. The content of a list node

comprises a value, a boolean flag (that marks nodes that are

deleted), and a pointer to the next node of the list. Students

were tasked with implementing the three list operations us-

ing only an atomic CompareAndSet and get operation, im-

plemented similar to the AtomicVar shown below. (Note

that AtomicVar.CompareAndSet operations executed con-

currently will be ordered as per a given schedule, which en-

ables us to test multiple interleavings of the operations exe-

cuted by the insert and delete functions.)

class AtomicVar(init: Int) {
private val a = new java.util.concurrent.AtomicInteger(init)
def get = exec { a.get }(r ⇒ s”Read: $r”)
def compareAndSet(x: Int, y: Int) = exec{
a.compareAndSet(x, y)
}(r ⇒ s”CAS $x to $y, success: $r”)}

The detailed descriptions of the assignments are available

as Assignment 5 and 6 in the webpage lara.epfl.ch/w/

parcon16:top.

Students of our course were required to develop their

solutions using the git source control system. To evaluate

the usefulness of our tool, we analyzed the commits made

by the students to determine (a) the errors encountered by

them while solving the assignments and (b) weather the

feedbacks reported by the tool enabled students to fix the

bugs in the subsequent commits. We now discuss the results

of our evaluation. The first assignment had a total of 138

submissions, and the second assignment 121 submissions.

We tested the first assignment using 12 unit tests, which

were similar to the ones shown in Figures 2 and 3. Despite

a few minor errors in our initial implementation, which we

corrected a posteriori, we found that our tool provided some

feedback for 24 students. In total, it outputted 46 traces of

failed tests of which 9 were deadlocks and the other 37 were

due to wrong outputs generated by the students code. The

reasons for the deadlocks were mostly one of following:

(a) breaking down the use of synchronized blocks into

smaller blocks, (b) using notify instead of notifyAll, and

(c) not using a while loop around wait.

We evaluated the second assignment on 14 unit tests. Our

tool detected an error trace at least once in solutions sub-

mitted by 76 students. In total, it outputted 663 error traces.

Although hard to read at first sight, we used such traces to

walk through their lock-free code during lab sessions, and

in a few minutes help them find where the bug was. For this

assignment, it appears that most of the bugs came from the

expectation that two immediate reads of a shared field of a

list node would result in the same value. In both assignments,

we found that students also added their own tests using our

library by modifying the tests given to them.

5. Related Work

Model checkers for concurrent programs. Much of the re-

search in testing concurrent programs has been directed to-

wards bounded and symbolic model checking approaches.

Due to the plethora of tools available in this space it is dif-

ficult to exhaustively mention them. Therefore, we restrict

the discussion to a few interesting tools in this area. CHESS

[18] is a model checker for .NET programs that allows a

systematic exploration of concurrent executions. COLT [23]

is a tool for compositionally testing linearizability of Java

programs by exploring multiple schedules. Both these ap-

9

proaches do not support user-defined unit tests, and rely on

assertions in the program to unravel bugs. COLT may also

raise false alarms. Java PathFinder [24] presents an ap-

proach for model checking concurrent Java code using a

specialized JVM. Goldilocks [6] is a tool for run-time data

race detection in Java. In comparison to this work, our li-

brary can be used to detect any kind of synchronization prob-

lems, and is applicable even to lock-free algorithms where

data-races can be tolerated. CSEQ [8] is a model checker

for concurrent C programs that reduces a concurrent pro-

gram to a sequential one and applies model checkers for

sequential programs such as CBMC [15, 20]. Zing [2] is a

bounded model checker for concurrent programs that sup-

ports inferring bounds on the state-space exploration. Emmi

et al. [7] propose an extended depth-first search strategy

for exploring interleavings of asynchronous programs in the

presence of a blocking await operation, especially for pro-

grams that create a tree of asynchronous tasks. In compari-

son, our tool targets concurrent data structures accessed by

multiple threads. Moreover, our scheduling algorithm han-

dles all the synchronization primitives offered by the JVM.

Spin [10, 11] is a model checker that verifies programs writ-

ten in Promela against linear temporal logic specifications.

Verifast [12] uses specifications to prove properties of con-

current C and Java programs.

Concurrent unit testing frameworks. Although scarce,

unit testing frameworks for concurrent programs have been

explored by prior works. Parallel-junit allows running unit

tests in parallel, which may expose certain concurrency

bugs. CONCURRIT [5] and [13] offer support for express-

ing concurrent schedules, but requires the programmer to

insert appropriate synchronization constructs in body of the

threads. In contrast, we explore thousands of schedules auto-

matically, even without the knowledge of the code executed

by the threads.

6. Conclusion and Future Work

We presented a lightweight unit testing library that is suit-

able for testing Scala programs written by students learning

concurrent programming. Our tool allows testing multiple

thread interleavings by generating and enforcing schedules,

and produces an interleaved error trace when a test fails.

Nonetheless, there are certain limitations to our tool which

we would like to address in the future. The tool does not ex-

plore reorderings possible due to relaxed (or weak) memory

models. We believe our tool can be extended to handle this

by modeling the weak writes to memory as asynchronous

writes to a shared, concurrent buffer. We would also like to

the add the ability to replay the error traces.

Acknowledgments

We thank Jad Hamza for providing valuable suggestions

and ideas for this work. This work is partly supported by

the Swiss National Science Foundation grant: Constraint

Solving Infrastructure for Program Analysis.

References

[1] Java documentation. URL docs.oracle.com/javase/8.

[2] T. Andrews, S. Qadeer, S. K. Rajamani, J. Rehof, and Y. Xie.

Zing: Exploiting program structure for model checking con-

current software. In CONCUR, 2004.

[3] K. Beck. Embracing change with extreme programming. ’99.

[4] A. Bouajjani, M. Emmi, C. Enea, and J. Hamza. On reducing

linearizability to state reachability. In ICALP, 2015.

[5] J. Burnim, T. Elmas, G. Necula, and K. Sen. Concurrit:

testing concurrent programs with programmable state-space

exploration. In USENIX Workshop, 2012.

[6] T. Elmas, S. Qadeer, and S. Tasiran. Goldilocks: A race-aware

java runtime. Commun. ACM, Nov. 2010.

[7] M. Emmi, B. K. Ozkan, and S. Tasiran. Exploiting synchro-

nization in the analysis of shared-memory asynchronous pro-

grams. In SPIN, 2014.

[8] B. Fischer, O. Inverso, and G. Parlato. Cseq: a sequentializa-

tion tool for C. In TACAS, 2013.

[9] J. Hamza. Algorithmic Verification of Concurrent and Dis-

tributed Data Structures. PhD thesis, 2015.

[10] G. J. Holzmann. The model checker spin. TSE, 1997.

[11] G. J. Holzmann. The SPIN model checker: Primer and refer-

ence manual. Addison-Wesley Reading, 2004.

[12] B. Jacobs, J. Smans, and F. Piessens. A quick tour of the

verifast program verifier. In APLAS, 2008.

[13] V. Jagannath, M. Gligoric, D. Jin, Q. Luo, G. Rosu, and

D. Marinov. Improved multithreaded unit testing. In FSE’11.

[14] M. Kebrt and O. Šerỳ. Unitcheck: Unit testing and model

checking combined. In ATVA, 2009.

[15] D. Kroening and M. Tautschnig. CBMC – C bounded model

checker. In TACAS, 2014.

[16] A. Lal, T. Touili, N. Kidd, and T. Reps. Interprocedural

analysis of concurrent programs under a context bound. In

TACAS, 2008.

[17] M. Musuvathi and S. Qadeer. Iterative context bounding for

systematic testing of multithreaded programs. In PLDI ’07.

[18] M. Musuvathi and S. Qadeer. CHESS: systematic stress test-

ing of concurrent software. In LOPSTR, 2006.

[19] S. Qadeer. Poirot – a concurrency sleuth. In ICFEM, 2011.

[20] I. Rabinovitz and O. Grumberg. Bounded model checking of

concurrent programs. In CAV, 2005.

[21] K. Sen. Race directed random testing of concurrent programs.

In PLDI, 2008.

[22] K. Sen and G. Agha. Cute and jcute: Concolic unit testing and

explicit path model-checking tools. In CAV, 2006.

[23] O. Shacham, N. Bronson, A. Aiken, M. Sagiv, M. Vechev,

and E. Yahav. Testing atomicity of composed concurrent

operations. In OOPSLA, 2011.

[24] W. Visser, K. Havelund, G. Brat, S. Park, and F. Lerda. Model

checking programs. In ASE, 2003.

10

