LARA

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
sav08:interpretation_quotient_under_congruence [2009/05/14 14:06]
vkuncak
sav08:interpretation_quotient_under_congruence [2015/04/21 17:30] (current)
Line 4: Line 4:
 ===== Example: quotient on pairs of natural numbers ===== ===== Example: quotient on pairs of natural numbers =====
  
-Let ${\cal N} = \{0,​1,​2,​\ldots,​ \}$.  Consider a structure with domain $N^2$, with functions +Let ${\cal N} = \{0,​1,​2,​\ldots,​ \}$.  Consider a structure with domain $N^2$, with functions ​(plus and minus): 
-\[+\begin{equation*}
     p((x_1,​y_1),​(x_2,​y_2)) = (x_1 + x_2, y_1 + y_2)     p((x_1,​y_1),​(x_2,​y_2)) = (x_1 + x_2, y_1 + y_2)
-\] +\end{equation*} 
-\[+\begin{equation*}
     m((x_1,​y_1),​(x_2,​y_2)) = (x_1 + y_2, y_1 + x_2)     m((x_1,​y_1),​(x_2,​y_2)) = (x_1 + y_2, y_1 + x_2)
-\]+\end{equation*}
 Relation $r$ defined by Relation $r$ defined by
-\[+\begin{equation*}
    r = \{((x_1,​y_1),​(x_2,​y_2)) \mid x_1 + y_2 = x_2 + y_1  \}    r = \{((x_1,​y_1),​(x_2,​y_2)) \mid x_1 + y_2 = x_2 + y_1  \}
-\] +\end{equation*} 
-is a congruence with respect to operations $p$ and $m$.  ​+is a congruence with respect to operations $p$ and $m$.  ​Indded, we can check that, for example, if $r((x_1,​y_1),​(x'​_1,​y'​_1))$ and 
 +$r((x_2,​y_2),​(x'​_2,​y'​_2))$ then 
 +\begin{equation*} 
 +     ​r(p((x_1,​y_1),​(x_2,​y_2)),​ p((x'​_1,​y'​_1),​(x'​_2,​y'​_2))) 
 +\end{equation*}
  
 Congruence is an equivalence relation. ​ What are equivalence classes for elements: Congruence is an equivalence relation. ​ What are equivalence classes for elements:
Line 28: Line 32:
  
 In the resulting structure $([N^2], I_Q)$ we define operations $p$ and $m$ such that the following holds: In the resulting structure $([N^2], I_Q)$ we define operations $p$ and $m$ such that the following holds:
-\[+\begin{equation*}
 \begin{array}{l} \begin{array}{l}
    ​I_Q(p)( [(x_1,y_1)] , [(x_2,y_2)] ) = [(x_1 + x_2, y_1 + y_2)] \\    ​I_Q(p)( [(x_1,y_1)] , [(x_2,y_2)] ) = [(x_1 + x_2, y_1 + y_2)] \\
    ​I_Q(m)( [(x_1,y_1)] , [(x_2,y_2)] ) = [(x_1 + y_2, y_1 + x_2)]     ​I_Q(m)( [(x_1,y_1)] , [(x_2,y_2)] ) = [(x_1 + y_2, y_1 + x_2)] 
 \end{array} \end{array}
-\]+\end{equation*}
 This construction is an algebraic approach to construct from natural numbers one well-known structure. ​ Which one? ++| $({\cal Z}, + , -)$ where ${\cal Z}$ is the set of integers. ++ This construction is an algebraic approach to construct from natural numbers one well-known structure. ​ Which one? ++| $({\cal Z}, + , -)$ where ${\cal Z}$ is the set of integers. ++
  
Line 46: Line 50:
  
 For each element $x \in D$, define For each element $x \in D$, define
-\[+\begin{equation*}
     [x] = \{ y \mid (x,y) \in \alpha(eq) \}     [x] = \{ y \mid (x,y) \in \alpha(eq) \}
-\]+\end{equation*}
 Let Let
-\[+\begin{equation*}
     [D] = \{ [x] \mid x \in D \}     [D] = \{ [x] \mid x \in D \}
-\]+\end{equation*}
 The constructed model will be $I_Q = ([D],​\alpha_Q)$ where  The constructed model will be $I_Q = ([D],​\alpha_Q)$ where 
-\[+\begin{equation*}
     \alpha_Q(R) = \{ ([x_1],​\ldots,​[x_n]) \mid (x_1,​\ldots,​x_n) \in \alpha(R) \}     \alpha_Q(R) = \{ ([x_1],​\ldots,​[x_n]) \mid (x_1,​\ldots,​x_n) \in \alpha(R) \}
-\]+\end{equation*}
 In particular, when $R$ is $eq$ we have In particular, when $R$ is $eq$ we have
  
Line 65: Line 69:
  
 Functions are special case of relations: Functions are special case of relations:
-\[+\begin{equation*}
     \alpha_Q(f) = \{ ([x_1],​\ldots,​[x_n],​[x_{n+1}]) \mid (x_1,​\ldots,​x_n,​x_{n+1}) \in \alpha(f) \}     \alpha_Q(f) = \{ ([x_1],​\ldots,​[x_n],​[x_{n+1}]) \mid (x_1,​\ldots,​x_n,​x_{n+1}) \in \alpha(f) \}
-\]+\end{equation*}
  
 Interpretation of variables is analogous to interpretation of constants: Interpretation of variables is analogous to interpretation of constants:
-\[+\begin{equation*}
    ​\alpha_Q(x) = [\alpha(x)]    ​\alpha_Q(x) = [\alpha(x)]
-\]+\end{equation*}
  
 **Lemma 0:** For all $x_1,​\ldots,​x_n \in D$, **Lemma 0:** For all $x_1,​\ldots,​x_n \in D$,
-\[+\begin{equation*}
     ([x_1],​\ldots,​[x_n]) \in \alpha_Q(R) \mbox{ iff }  (x_1,​\ldots,​x_n) \in \alpha(R)     ([x_1],​\ldots,​[x_n]) \in \alpha_Q(R) \mbox{ iff }  (x_1,​\ldots,​x_n) \in \alpha(R)
-\]+\end{equation*}
  
 **Lemma 1:** For each function symbol $f$ with $ar(f)=n$, the relation $\alpha_Q(f)$ is a total function $[D]^n \to [D]$ and for all $x_1,​\ldots,​x_n \in D$, **Lemma 1:** For each function symbol $f$ with $ar(f)=n$, the relation $\alpha_Q(f)$ is a total function $[D]^n \to [D]$ and for all $x_1,​\ldots,​x_n \in D$,
-\[+\begin{equation*}
     \alpha_Q(f)([x_1],​\ldots,​[x_n]) = [\alpha(f)(x_1,​\ldots,​x_n)]     \alpha_Q(f)([x_1],​\ldots,​[x_n]) = [\alpha(f)(x_1,​\ldots,​x_n)]
-\]+\end{equation*}
  
 **Lemma 2:** For each term $t$ we have $e_T(t)(I_Q) = [e_T(t)(I)]$. **Lemma 2:** For each term $t$ we have $e_T(t)(I_Q) = [e_T(t)(I)]$.