LARA

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
sav08:weak_monadic_logic_of_one_successor [2008/05/15 09:50]
vkuncak
sav08:weak_monadic_logic_of_one_successor [2015/04/21 17:30] (current)
Line 18: Line 18:
  
 Let $\mathbb{N} = \{0,​1,​2,​\ldots\}$ denote non-negative integers. ​ Let $D$ be the set of all //finite subsets// of $\mathbb{N}$. ​ We consider the set of interpretations $(D,​\alpha)$ where for each variable $v$ we have $\alpha(v) \in D$, where $\subseteq$ is the subset relation Let $\mathbb{N} = \{0,​1,​2,​\ldots\}$ denote non-negative integers. ​ Let $D$ be the set of all //finite subsets// of $\mathbb{N}$. ​ We consider the set of interpretations $(D,​\alpha)$ where for each variable $v$ we have $\alpha(v) \in D$, where $\subseteq$ is the subset relation
-\[+\begin{equation*}
    ​\alpha({\subseteq}) = \{ (S_1,S_2) \mid S_1 \subseteq S_2 \}    ​\alpha({\subseteq}) = \{ (S_1,S_2) \mid S_1 \subseteq S_2 \}
-\]+\end{equation*}
 and the relation $succ(v_1,​v_2)$ is the successor relation on integers lifted to singleton sets: and the relation $succ(v_1,​v_2)$ is the successor relation on integers lifted to singleton sets:
-\[+\begin{equation*}
    ​\alpha(succ) = \{ (\{k\},​\{k+1\}) \mid k \in \mathbb{N} \}    ​\alpha(succ) = \{ (\{k\},​\{k+1\}) \mid k \in \mathbb{N} \}
-\]+\end{equation*}
 The meaning of formulas is given by standard [[First-order logic semantics]]. The meaning of formulas is given by standard [[First-order logic semantics]].
  
 Note in particular that quantification is restricted to finite sets (elements of $D$). Note in particular that quantification is restricted to finite sets (elements of $D$).
 +
 +
  
 ===== Expressive Power ===== ===== Expressive Power =====
Line 57: Line 59:
  
 **Using transitive closure and successors:​** **Using transitive closure and successors:​**
-  * Constant zero: $(x=0) = One(x) \land \lnot (\exists y. One(y) \land s(y,x))$ +  * Constant zero: $(x=0) = One(x) \land \lnot (\exists y. One(y) \land succ(y,x))$ 
-  * Addition by constant: $(x = y + c) = (\exists y_1,​\ldots,​y_{c-1}. ​s(y,y_1) \land s(y_1,y_2) \land \ldots \land s(y_{c-1},​x))$ +  * Addition by constant: $(x = y + c) = (\exists y_1,​\ldots,​y_{c-1}. ​succ(y,y_1) \land succ(y_1,y_2) \land \ldots \land succ(y_{c-1},​x))$ 
-  * Ordering on positions in the string: $(u \leq v) = ((u,v) \in \{(x,y)|s(x,y))\}^*$+  * Ordering on positions in the string: $(u \leq v) = ((u,v) \in \{(x,y)|succ(x,y))\}^*$
   * Reachability in $k$-increments,​ that is, $\exists k \geq 0. y=x + c\cdot k$: $\mbox{Reach}_c(u,​v) = ((u,v) \in \{(x,y)\mid y=x+c\}^*)$   * Reachability in $k$-increments,​ that is, $\exists k \geq 0. y=x + c\cdot k$: $\mbox{Reach}_c(u,​v) = ((u,v) \in \{(x,y)\mid y=x+c\}^*)$
   * Congruence modulo $c$: $(x \equiv y)(\mbox{mod}\ c) = \mbox{Reach}_c(x,​y) \lor \mbox{Reach}_c(y,​x)$   * Congruence modulo $c$: $(x \equiv y)(\mbox{mod}\ c) = \mbox{Reach}_c(x,​y) \lor \mbox{Reach}_c(y,​x)$
Line 71: Line 73:
 Then we can define addition $N(Z) = N(X) + N(Y)$ by saying that there exists a set of carry bits $C$ such that the rules for binary addition hold: Then we can define addition $N(Z) = N(X) + N(Y)$ by saying that there exists a set of carry bits $C$ such that the rules for binary addition hold:
 \begin{equation*} \begin{equation*}
-  \exists C.\ 0 \notin ​i\ \land \forall i.\ +  \exists C.\ 0 \notin ​C\ \land \forall i.\ 
    ​\big(\begin{array}[t]{rcl}    ​\big(\begin{array}[t]{rcl}
     ((i \in Z) &​\leftrightarrow&​ ((i \in X) \oplus (i \in Y) \oplus (i \in C))\ \land\\     ((i \in Z) &​\leftrightarrow&​ ((i \in X) \oplus (i \in Y) \oplus (i \in C))\ \land\\
Line 90: Line 92:
  
 Relations on singleton sets: Relations on singleton sets:
-\[+\begin{equation*}
    r^s_F = \{(p,q) \mid F(\{p\},​\{q\}) \}    r^s_F = \{(p,q) \mid F(\{p\},​\{q\}) \}
-\]+\end{equation*}
  
 Relations on binary representations:​ Relations on binary representations:​
-\[+\begin{equation*}
    r^b_F = \{(p,q) \mid F(N(p),​N(q)) \}    r^b_F = \{(p,q) \mid F(N(p),​N(q)) \}
-\]+\end{equation*}
  
 Addition is not definable as some $r^s_F$, but it is definable as $r^b_F$. Addition is not definable as some $r^s_F$, but it is definable as $r^b_F$.