LARA

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
sav08:tarski_s_fixpoint_theorem [2008/05/07 22:48]
giuliano
sav08:tarski_s_fixpoint_theorem [2009/03/26 10:36]
vkuncak
Line 40: Line 40:
 **Lemma:** The value $a_*$ is a prefix point. **Lemma:** The value $a_*$ is a prefix point.
  
-Observation:​ $a_*$ need not be a fixpoint.+Observation:​ $a_*$ need not be a fixpoint ​(example in exercises, e.g. on lattice [0,1] of real numbers).
  
 **Definition:​** A function $G$ is $\omega$-continuous if for every chain $x_0 \sqsubseteq x_1 \sqsubseteq \ldots \sqsubseteq x_n \sqsubseteq \ldots$ we have **Definition:​** A function $G$ is $\omega$-continuous if for every chain $x_0 \sqsubseteq x_1 \sqsubseteq \ldots \sqsubseteq x_n \sqsubseteq \ldots$ we have
Line 50: Line 50:
 **Proof:​**\\ **Proof:​**\\
 By definition of $\omega$-continuous we have $G(\bigsqcup_{n \ge 0} G^n(\bot)) = \bigsqcup_{n \ge 0} G^{n+1}(\bot)=\bigsqcup_{n \ge 1} G^n(\bot)$.\\ But $\bigsqcup_{n \ge 0} G^n(\bot) = \bigsqcup_{n \ge 1} G^n(\bot) \sqcup \bot = \bigsqcup_{n \ge 1} G^n(\bot)$ because $\bot$ is the least element of the lattice.\\ By definition of $\omega$-continuous we have $G(\bigsqcup_{n \ge 0} G^n(\bot)) = \bigsqcup_{n \ge 0} G^{n+1}(\bot)=\bigsqcup_{n \ge 1} G^n(\bot)$.\\ But $\bigsqcup_{n \ge 0} G^n(\bot) = \bigsqcup_{n \ge 1} G^n(\bot) \sqcup \bot = \bigsqcup_{n \ge 1} G^n(\bot)$ because $\bot$ is the least element of the lattice.\\
-Thus $G(\bigsqcup_{n \ge 0} G^n(\bot)) = \bigsqcup_{n \ge 0} G^n(\bot)$ and $a*$ is a fixpoint.\\+Thus $G(\bigsqcup_{n \ge 0} G^n(\bot)) = \bigsqcup_{n \ge 0} G^n(\bot)$ and $a_*$ is a fixpoint.\\
 Now let's prove it is the least.\\ Now let's prove it is the least.\\
 Let $c$ be such that $G(c)=c$. We want $\bigsqcup_{n \ge 0} G^n(\bot) \sqsubseteq c$. This is equivalent to $\forall n \in \mathbb N . G^n(\bot) \sqsubseteq c$.\\ Let $c$ be such that $G(c)=c$. We want $\bigsqcup_{n \ge 0} G^n(\bot) \sqsubseteq c$. This is equivalent to $\forall n \in \mathbb N . G^n(\bot) \sqsubseteq c$.\\