LARA

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Last revision Both sides next revision
sav08:tarski_s_fixpoint_theorem [2008/05/07 22:48]
giuliano
sav08:tarski_s_fixpoint_theorem [2008/05/07 22:50]
giuliano
Line 50: Line 50:
 **Proof:​**\\ **Proof:​**\\
 By definition of $\omega$-continuous we have $G(\bigsqcup_{n \ge 0} G^n(\bot)) = \bigsqcup_{n \ge 0} G^{n+1}(\bot)=\bigsqcup_{n \ge 1} G^n(\bot)$.\\ But $\bigsqcup_{n \ge 0} G^n(\bot) = \bigsqcup_{n \ge 1} G^n(\bot) \sqcup \bot = \bigsqcup_{n \ge 1} G^n(\bot)$ because $\bot$ is the least element of the lattice.\\ By definition of $\omega$-continuous we have $G(\bigsqcup_{n \ge 0} G^n(\bot)) = \bigsqcup_{n \ge 0} G^{n+1}(\bot)=\bigsqcup_{n \ge 1} G^n(\bot)$.\\ But $\bigsqcup_{n \ge 0} G^n(\bot) = \bigsqcup_{n \ge 1} G^n(\bot) \sqcup \bot = \bigsqcup_{n \ge 1} G^n(\bot)$ because $\bot$ is the least element of the lattice.\\
-Thus $G(\bigsqcup_{n \ge 0} G^n(\bot)) = \bigsqcup_{n \ge 0} G^n(\bot)$ and $a*$ is a fixpoint.\\+Thus $G(\bigsqcup_{n \ge 0} G^n(\bot)) = \bigsqcup_{n \ge 0} G^n(\bot)$ and $a_*$ is a fixpoint.\\
 Now let's prove it is the least.\\ Now let's prove it is the least.\\
 Let $c$ be such that $G(c)=c$. We want $\bigsqcup_{n \ge 0} G^n(\bot) \sqsubseteq c$. This is equivalent to $\forall n \in \mathbb N . G^n(\bot) \sqsubseteq c$.\\ Let $c$ be such that $G(c)=c$. We want $\bigsqcup_{n \ge 0} G^n(\bot) \sqsubseteq c$. This is equivalent to $\forall n \in \mathbb N . G^n(\bot) \sqsubseteq c$.\\