LARA

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

sav08:substitution_theorems_for_propositional_logic [2008/03/11 16:11]
vkuncak
sav08:substitution_theorems_for_propositional_logic [2015/04/21 17:30]
Line 1: Line 1:
-====== Substitution Theorems for Propositional Logic ====== 
- 
-Relate syntax and semantics. 
- 
-Called metatheorems,​ because they are not formulas //within// the logic, but formulas //about// the logic. 
- 
-From semantics we can prove the following lemma by induction. 
- 
-Lemma: if $I_1(p) = I_2(p)$ for every $p \in FV(F)$, then $e(F)(I_1)=e(F)(I_2)$. 
- 
-===== Substitutions ===== 
- 
-Substitution is a maping formulas to formulas, 
-\[ 
-   ​\sigma : D \to {\cal F} 
-\] 
-where $D \subseteq {\cal F}$ is the domain of substitution,​ usually finite. ​ We write it 
-\[ 
-   ​\sigma = \{F_1 \mapsto G_1,\ldots, F_n \mapsto G_n\} 
-\] 
-Let ${\cal S}$ be set of all substitutions.  ​ 
- 
-Substitution operator //subst// takes such a map and a formula and returns a new formula. 
- 
-Recursive definition of //subst//: 
- 
-For $F \in {\cal F}$ we write $F \sigma$ instead of $subst(\sigma)(F)$,​ so 
-\[ 
-   subst : {\cal S} \to ({\cal F} \to {\cal F}) 
-\] 
- 
-//Variable substitution//​ is substitution where the domain is a subset of $V$ - it only replaces variables, not complex formulas. 
- 
-**Theorem:​** For formula $F$, interpretation $I$ and variable substitution $\sigma = \{p_1 \mapsto F_1,​\ldots,​p_n \mapsto F_n\}$, 
-\[ 
-   ​e(subst(\{p_1 \mapsto F_1,​\ldots,​p_n \mapsto F_n\})(F))(I) =  
-\] 
-++++| 
-\[ 
-   ​e(F)(I[p_1 \mapsto e(F_1)(I),​\ldots,​p_n \mapsto e(F_n)(I)]) 
-\] 
-++++ 
- 
-Corollary (tautology instances): if $\models F$, then $\models (subst(\sigma)(F))$ for every variable substitution $\sigma$. 
- 
-We say that two formulas are equivalent if $\models (F \leftrightarrow G)$. 
-**Lemma**: If $\models (F \leftrightarrow G)$ then for every interpretation $I$ we have $e(F)(I) = e(G)(I)$. 
- 
-From the tautology instances Corrolary we obtain. 
- 
-Corollary: if $\models (F \leftrightarrow G)$ and $\sigma$ is a variable substitution,​ then $\models (subst(\sigma)(F) \leftrightarrow subst(\sigma)(G))$. 
- 
-Does the theorem hold if $\sigma$ is ++not a variable substitution?​|No,​ because a general substitution could produce an arbitrary formula.++ 
- 
-This theorem was about transforming formulas from the outside, ignoring the structure of certain subformulas. 
- 
-We next justify transforming formulas from inside. 
- 
-We say that $\sigma = \{F_1 \mapsto G_1,​\ldots,​F_n \mapsto G_n\}$ is //​equivalence-preserving//​ iff for all $i$ where $1 \le i \le n$ we have $\models (F_i \leftrightarrow G_i)$. 
- 
-**Theorem on Substituting Equivalent Subformulas**:​ if $\sigma$ is equivalence-preserving,​ then for every formula $F$ we have $\models (F \leftrightarrow (subst(\sigma)(F))$.