LARA

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

sav08:sets_and_relations [2010/02/26 22:03]
vkuncak
sav08:sets_and_relations [2015/04/21 17:30]
Line 1: Line 1:
-====== Sets and Relations ====== 
- 
-===== Sets ===== 
- 
-Sets are unordered collection of elements. 
- 
-We denote a finite set containing only elements $a$, $b$ and $c$ by $\{ a, b, c \}$.  The order and number of occurrences does not matter: 
-$\{ a, b, c \} = \{ c, a, b \} = \{ a, b, b, c \}$. 
-  * $a \in \{ a,b,c \}$ 
-  * $d \notin \{a,b,c\}$ iff $d \neq a \land d \neq b \land d \neq c$ 
- 
-Empty set: $\emptyset$. For every $x$ we have $x \notin \emptyset$. 
- 
-To denote large or infinite sets we can use set comprehensions:​ $\{ x.\ P(x) \}$ is set of all objects with property $P$. 
-\[ 
-    y \in \{ x. P(x) \} \ \leftrightarrow\ P(y) 
-\] 
- 
-Notation for set comprehension:​ $\{ f(x)|x. P(x) \} = \{ y. (\exists x. y=f(x) \land P(x)) \}$ 
- 
-Sometimes the binder $x$ can be inferred from context so we write simply $\{ f(x) | P(x) \}$.  In general there is ambiguity in which variables are bound. (Example: what does the $a$ in $f(a,b)$ refer to in the expression: 
-\[ 
-   \{a \} \cup \{ f(a,b) \mid P(a,b) \} 
-\] 
-does it refer to the outerone $a$ as in $\{a\}$ or is it a newly bound variable? The notation with dot and bar resolves this ambiguity. 
- 
-Subset: $A \subseteq B$ means $\forall x. x \in A \rightarrow x \in B$ 
- 
-\[ 
-   A \cup B = \{ x. x \in A \lor x \in B \} 
-\] 
-\[ 
-   A \cap B = \{ x. x \in A \land x \in B \} 
-\] 
-\[ 
-   A \setminus B = \{ x. x \in A \land x \notin B \} 
-\] 
- 
-Boolean algebra of subsets of some set $U$ (we define $A^c = U \setminus A$): 
-  * $\cup, \cap$ are associative,​ commutative,​ idempotent 
-  * neutral and zero elements: $A \cup \emptyset = A$, $A \cap \emptyset = \emptyset$ 
-  * absorption: $A \cup A = A$, $A \cap A = A$ 
-  * deMorgan laws: $(A \cup B)^c = A^c \cap B^c$, $(A \cap B)^c = A^c \cup B^c$ 
-  * complement as partition of universal set: $A \cap A^c = \emptyset$, $A \cup A^c = U$ 
-  * double complement: $(A^c)^c = A$ 
- 
-Which axioms are sufficient? 
-  * [[http://​citeseer.ist.psu.edu/​57459.html|William McCune: Solution of the Robbins Problem. J. Autom. Reasoning 19(3): 263-276 (1997)]] 
- 
- 
- 
- 
- 
-==== Infinte Unions and Intersections ==== 
- 
-Note that sets can be nested. Consider, for example, the following set $S$ 
-\[ 
-   S = \{ \{ p, \{q, r\} \}, r \} 
-\] 
-This set has two elements. The first element is another set. We have $\{ p, \{q, r\} \} \in S$. Note that it is not the case that  
- 
-Suppose that we have a set $B$ that contains other sets.  We define union of the sets contained in $B$ as follows: 
-\[ 
-   ​\bigcup B = \{ x.\ \exists a. a \in B \land x \in a \} 
-\] 
-As a special case, we have 
-\[ 
-   ​\bigcup \{ a_1, a_2, a_3 \} = a_1 \cup a_2 \cup a_3 
-\] 
-Often the elements of the set $B$ are computed by a set comprehension of the form $B = \{ f(i).\ i \in J \}$. 
-We then write 
-\[ 
-   ​\bigcup_{i \in J} f(i) 
-\] 
-and the meaning is 
-\[ 
-   ​\bigcup \{ f(i).\ i \in J \} 
-\] 
-Therefore, $x \in \bigcup \{ f(i).\ i \in J \}$ is equivalent to $\exists i.\ i \in J \land x \in f(i)$. 
- 
-We analogously define intersection of elements in the set: 
-\[ 
-   ​\bigcap B = \{ x. \forall a. a \in B \rightarrow x \in a \} 
-\] 
-As a special case, we have 
-\[ 
-   ​\bigcap \{ a_1, a_2, a_3 \} = a_1 \cap a_2 \cap a_3 
-\] 
-We similarly define intersection of an infinite family 
-\[ 
-   ​\bigcap_{i \in J} f(i) 
-\] 
-and the meaning is 
-\[ 
-   ​\bigcap \{ f(i).\ i \in J \} 
-\] 
-Therefore, $x \in \bigcap \{ f(i).\ i \in J \}$ is equivalent to $\forall i.\ i \in J \rightarrow x \in f(i)$. 
- 
- 
-===== Relations ===== 
- 
-Pairs: 
-\[ 
-    (a,b) = (u,v)  \iff (a = u \land b = v) 
-\] 
-Cartesian product: 
-\[ 
-    A \times B = \{ (x,y) \mid x \in A \land y \in B \} 
-\] 
- 
-Relations $r$ is simply a subset of $A \times B$, that is $r \subseteq A \times B$. 
- 
-Note: 
-\[ 
-   A \times (B \cap C) = (A \times B) \cap (A \times C) 
-\] 
-\[ 
-   A \times (B \cup C) = (A \times B) \cup (A \times C) 
-\] 
- 
-=== Diagonal relation === 
- 
-$\Delta_A \subseteq A \times A$, is given by 
-\[ 
-   ​\Delta_A = \{(x,x) \mid x \in A\} 
-\] 
- 
-==== Set operations ==== 
- 
-Relations are sets of pairs, so operations $\cap, \cup, \setminus$ apply. 
- 
-==== Relation Inverse ==== 
- 
-\[ 
-    r^{-1} = \{(y,x) \mid (x,y) \in r \} 
-\] 
- 
-==== Relation Composition ==== 
- 
-\[ 
-   r_1 \circ r_2 = \{ (x,z) \mid \exists y. (x,y) \in r_1 \land (y,z) \in r_2\} 
-\] 
- 
-Note: relations on a set $A$ together with relation composition and $\Delta_A$ form a //monoid// structure: 
-\[ 
-\begin{array}{l} 
-   r_1 \circ (r_2 \circ r_3) = (r_1 \circ r_2) \circ r_3 \\ 
-   r \circ \Delta_A = r = \Delta_A \circ r 
-\end{array} 
-\] 
- 
-Moreover, 
-\[ 
-   ​\emptyset \circ r = \emptyset = r \circ \emptyset 
-\] 
-\[ 
-    r_1 \subseteq r_2 \rightarrow r_1 \circ s \subseteq r_2 \circ s 
-\] 
-\[ 
-    r_1 \subseteq r_2 \rightarrow s \circ r_1 \subseteq s \circ r_2 
-\] 
- 
- 
- 
-==== Relation Image ==== 
- 
-When $S \subseteq A$ and $r \subseteq A \times A$ we define **image** of a set $S$ under relation $A$ as 
-\[ 
-   ​S\bullet r = \{ y.\ \exists x. x \in S \land (x,y) \in r \} 
-\] 
- 
- 
-==== Transitive Closure ==== 
- 
-Iterated composition let $r \subseteq A \times A$. 
-\[ 
-\begin{array}{l} 
-  r^0 = \Delta_A \\ 
-  r^{n+1} = r \circ r^n 
-\end{array} 
-\] 
-So, $r^n$ is n-fold composition of relation with itself. 
- 
-Transitive closure: 
-\[ 
-   r^* = \bigcup_{n \geq 0} r^n 
-\] 
- 
-Equivalent statement: $r^*$ is equal to the least relation $s$ (with respect to $\subseteq$) that satisfies 
-\[ 
-    \Delta_A\ \cup\ (s \circ r)\ \subseteq\ s 
-\] 
-or, equivalently,​ the least relation $s$ (with respect to $\subseteq$) that satisfies 
-\[ 
-    \Delta_A\ \cup\ (r \circ s)\ \subseteq\ s 
-\] 
-or, equivalently,​ the least relation $s$ (with respect to $\subseteq$) that satisfies 
-\[ 
-    \Delta_A\ \cup\ r \cup (s \circ s)\ \subseteq\ s 
-\] 
- 
-==== Some Laws in Algebra of Relations ==== 
- 
-\[ 
-    (r_1 \circ r_2)^{-1} = r_2^{-1} \circ r_1^{-1} 
-\]  
-\[ 
-    r_1 \circ (r_2 \cup r_3) = (r_1 \circ r_2) \cup (r_1 \circ r_3) 
-\] 
-\[ 
-    (r^{-1})^{*} = (r^{*})^{-1} 
-\] 
- 
-Binary relation $r \subseteq A\times A$ can be represented as a directed graph $(A,r)$ with nodes $A$ and edges $r$ 
-  * Graphical representation of $r^{-1}$, $r^{*}$, and $(r \cup r^{-1})^{*}$ 
- 
-Equivalence relation $r$ is relation with these properties: 
-  * reflexive: $\Delta_A \subseteq r$ 
-  * symmetric: $r^{-1} \subseteq r$ 
-  * transitive: $r \circ r \subseteq r$ 
- 
-Equivalence classes are defined by 
-\[ 
-   x/r = \{y \mid (x,y) \in r 
-\] 
-The set $\{ x/r \mid x \in A \}$ is a partition: 
-  * each set non-empty 
-  * sets are disjoint 
-  * their union is $A$ 
-Conversely: each collection of sets $P$ that is a partition defines equivalence class by 
-\[ 
-   r = \{ (x,y) \mid \exists c \in P. x \in c \land y \in c \} 
-\] 
- 
-Congruence: equivalence that agrees with some set of operations.  ​ 
- 
-Partial orders: 
-  * reflexive 
-  * antisymmetric:​ $r \cap r^{-1} \subseteq \Delta_A$ 
-  * transitive 
- 
-===== Functions ===== 
- 
-**Example:​** an example function $f : A \to B$ for $A = \{a,b,c\}$, $B=\{1,​2,​3\}$ is 
-\[ 
-  f = \{ (a,3), (b,2), (c,3) \} 
-\] 
- 
-Definition of function, injectivity,​ surjectivity. 
- 
- 
-$2^B = \{ A \mid A \subseteq B \}$ 
- 
-$(A \to B) = B^A$ - the set of all functions from $A$ to $B$.  For $|B|>2$ it is a strictly bigger set than $B$. 
- 
-$(A \to B \to C) = (A \to (B \to C))$ (think of exponentiation on numbers) 
- 
-Note that $A \to B \to C$ is [[isomorphism|isomorphic]] to $A \times B \to C$, they are two ways of representing functions with two arguments. ​ $(C^B)^A = C^{B \times A}$ 
- 
-There is also isomorphism between ​ 
-  * n-tuples $(x_1,​\ldots,​x_n) \in A^n$ and  
-  * functions $f : \{1,​\ldots,​n\} \to A$, where $f = \{(1,​x_1),​\ldots,​(n,​x_n) \}$ 
- 
-==== Function update ===== 
- 
-Function update operator takes a function $f : A \to B$ and two values $a_0 \in A$, $b_0 \in B$ and creates a new function $f[a_0 \mapsto b_0]$ that behaves like $f$ in all points except at $a_0$, where it has value $b_0$. ​ Formally, 
-\[ 
-f[a_0 \mapsto b_0](x) = \left\{\begin{array}{l} 
-  b_0, \mbox{ if } x=a_0 \\ 
-  f(x), \mbox{ if } x \neq a_0 
-\] 
- 
-==== Domain and Range of Relations and Functions ==== 
- 
-For relation $r \subseteq A \times B$ we define domain and range of $r$: 
-\[ 
-    dom(r) = \{ x.\ \exists y. (x,y) \in r \} 
-\] 
-\[ 
-    ran(r) = \{ y.\ \exists x. (x,y) \in r \} 
-\] 
-Clearly, $dom(r) \subseteq A$ and $ran(r) \subseteq B$. 
- 
- 
-==== Partial Function ==== 
- 
-Notation: $\exists^{\leq 1} x. P(x)$ means $\forall x. \forall y. (P(x) \land P(y))\rightarrow x=y$. 
- 
-**Partial function** $f : A \hookrightarrow B$ is relation $f \subseteq A \times B$ such that 
-\[ 
-    \forall x \in A. \exists^{\le 1} y.\ (x,y)\in f 
-\] 
- 
-Generalization of function update is override of partial functions, $f \oplus g$ 
- 
- 
- 
- 
- 
-==== Range, Image, and Composition ==== 
- 
-The following properties follow from the definitions:​ 
-\[ 
-   (S \bullet r_1) \bullet r_2 = S \bullet (r_1 \circ r_2) 
-\] 
-\[ 
-   S \bullet r = ran(\Delta_S \circ r) 
-\] 
- 
-===== Further references ===== 
- 
-  * [[sav08:​discrete_mathematics_by_rosen|Discrete Mathematics by Rosen]] 
-  * [[:Gallier Logic Book]], Chapter 2