LARA

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

sav08:quantifier_elimination_definition [2009/04/22 14:20]
vkuncak
sav08:quantifier_elimination_definition [2015/04/21 17:30]
Line 1: Line 1:
-====== Definition of Quantifier Elimination ====== 
- 
-In this section, we will consider some language ${\cal L}$ and some set $T$ of formulas such that $Conseq(T)=T$ (see [[sav08:​First-Order Logic Semantics]]). ​ 
- 
-As a special case, we can have 
-\[ 
-    T = \{ F \mid \forall I \in {\cal I}. e_F(F)(I) \} 
-\] 
-where ${\cal I}$ is a set of interpretations of interest. 
-Then $\models F$ reduces to $\forall I \in {\cal I}. e_F(F)(I)$. 
-If we look at one interpretation,​ then ${\cal I}$ contains only that interpretation and the condition $\models F$ means $e_F(F)(I)$. 
- 
-**Shorthand:​** We will generally fix $T$ and write $\models F$ as a shorthand for $T \models F$. 
- 
-**Example:​** Let $M = ({\cal Z},+)$ be the structure of integers with addition. If we let ${\cal I} = \{ M \}$ then $T$ in the definition above is the set of all formulas involving only $+$ that are true about integers. In this example, 
-  * $T$ contains e.g. formulas ​ 
-    * $(\forall x. x = x)$ 
-    * $(\forall x.\forall y. x+y=y+x)$ 
-    * $(\forall x.\forall y. \forall z. (x+y=z \rightarrow z+x = x+x+y)$ 
-    * $(\exists y. \forall x. x + y = x)$ 
-  * $T$ does not contain e.g. formula $(\forall x. x + x = x)$ 
- 
-**Definition:​** We say that $T$ //admits quantifier elimination//​ iff for every FOL formula $F$ in ${\cal L}$ there exists some formula $qe(F)$ such that 
-  * $\models (F \leftrightarrow qe(F))$ 
-  * $qe(F)$ has no quantifiers 
-  * $FV(qe(F)) \subseteq FV(F)$ 
-(In words: for every formula there exists an equivalent quantifier-free formula with same free variables.)  ​ 
- 
-**Definition:​** We say that $T$ admits //effective quantifier elimination//​ if there is an //​effectively computable//​ function $qe$ with the property in the previous definition. 
- 
-**Definition:​** A //ground formula// is a formula $F$ such that  
-  * $F$ contains no quantifiers and  
-  * $FV(F)=\emptyset$. 
- 
-Example: in language ${\cal L} = \{0,1,+\}$ where $0,1$ are constants and $+$ is a binary operation, an example of a ground formula is 
-\[ 
-    \lnot (0 = 1) \rightarrow \lnot (0 + 1 = 1 + 1) 
-\] 
- 
-**Lemma:** Suppose that  
-  * $T$ has effective quantifier elimination;​ 
-  * there is an algorithm for deciding $F \in T$ when $F$ is a ground formula. 
-Then there is an algorithm for deciding, given a //​sentence//​ $F$, whether $F \in T$. 
- 
-**Proof:** 
-++++| 
-Take $F$ a sentence. ​ Note $FV(F)=\emptyset$. ​ Compute $qe(F)$. Note that also $FV(qe(F)) \subseteq FV(F) = \emptyset$. ​ So $qe(F)$ is a ground formula and there is an algorithm to check $\models qe(F)$. ​ But $\models F$ is equivalent to $\models qe(F)$. 
-++++