LARA

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

sav08:homework06 [2008/04/08 15:45]
vkuncak
sav08:homework06 [2015/04/21 17:30]
Line 1: Line 1:
-====== Homework 06 - Due April 9 ====== 
- 
-===== Problem 1 ===== 
- 
-(Recall [[Definition of Resolution for FOL]].) 
- 
-Let $F_0$ denote formula 
-\[ 
-   ​\forall x. (A_1(x) \rightarrow B_1(x)) \land (A_2(x) \rightarrow B_2(x)) \leftrightarrow 
-              (A_1(x) \land B_1(x)) \lor (A_2(x) \land B_2(x)) 
-\] 
-For each of the following formulas, if the formula is valid, use resolution to prove it; if it is invalid, construct at least one Herbrand model for its negation. 
- 
-**a):** Formula $F_0$ 
- 
-**b):** Formula 
-\[ 
-\begin{array}{l} 
-   ​(\forall y. \lnot (A_1(y) \land A_2(y))) \rightarrow F_0 
-\end{array} 
-\] 
- 
-**c):** Formula 
-\[ 
-\begin{array}{l} 
-   ​(\forall y. A_1(y) \leftrightarrow \lnot A_2(y)) \rightarrow F_0 
-\end{array} 
-\] 
- 
-**d):** Formula 
-\[ 
-\begin{array}{l} 
-   ​(\forall y. A_1(y) \leftrightarrow \lnot A_2(y)) \land (\forall z. B_1(z) \leftrightarrow \lnot B_2(z)) \rightarrow F_0 
-\end{array} 
-\] 
- 
-**e):** Formula: 
-\[ 
-\begin{array}{l} 
-   ​(\forall x. \lnot R(x,x)) \land (\forall x. R(x,f(x)) \rightarrow (\exists x,y,z.\ R(x,y) \land R(y,z) \land \lnot R(x,z)) 
-\end{array} 
-\] 
- 
-===== Problem 2 ===== 
- 
-(Recall [[Sets and Relations]].) 
- 
-We say that a binary relation is a partial order iff it is reflexive, antisymmetric,​ and transitive. ​ Let $D$ be a non-empty set and $r_0 \subseteq D \times D$ a binary relation on $D$.  Let $r = r_0^* = \bigcup_{i\ge 0} r_0^n$ be the reflexive transitive closure of $r_0$.  ​ 
- 
-**a)** Give an example $r_0$ for which $r$ is not necessarily a partial order. 
- 
-**b)** Define $s = r \cap r^{-1}$. ​ Show that $s$ is a congruence with respect to $r$, that is: $s$ is reflexive, symmetric, and transitive and for all $x,​x',​y,​y'​ \in D$, 
-\[ 
-    (x,x') \in s \land (y,y') \in s \rightarrow ((x,y) \in r \leftrightarrow (x',​y'​) \in r) 
-\] 
- 
-**c)** For each $x \in D$ let $[x] = \{ y \mid (x,y) \in s \}$.  Let $[D] = \{ [x] \mid x \in D\}$.  Define a new relation, $[r] \subseteq [D] \times [D]$, by 
-\[ 
-    [r] = \{ ([x],[y]) \mid (x,y) \in r \} 
-\] 
-Show that $[r]$ is a partial order on $[D]$. 
- 
-Optional: Explain this constructions using terminology of graphs and strongly connected components. 
- 
-===== Problem 3 ===== 
- 
-(Recall [[Unification]].) 
- 
-Let $V$ be an infinite set of variables. Let ${\cal L}$ be some first-order language. ​ We will consider terms that contain variables from $V$ and function symbols from ${\cal L}$. 
- 
-Following Problem 2 above, let $(\sigma_1,​\sigma_2) \in r_0$ iff there exists substitution $\tau$ such that $subst(\sigma_2) = subst(\sigma_1) \circ subst(\tau)$ where $\circ$ is the standard relation composition. 
- 
-**a)** Compute $r = r_0^*$. ​ What is its relationship to $r_0$? 
- 
-**b)** Compute $s = r \cap r^{-1}$. ​ Show that relation $s$ holds iff $subst(\sigma_2) = subst(\sigma_1) \circ subst(b)$ where $b$ is a relation which is bijection on the set $V$. 
- 
-Optional: **c)** Let $E$ be a fixed set of syntactic equations. ​ Let $U$ be the set of unifiers for $E$ and $[U] = \{ [\sigma] \mid \sigma \in U \}$.  Show that if $U$ is non-empty, then there exists $a \in [U]$ such that for all $b \in [U]$, we have $(a,b) \in [r]$ (that is, $a$ is the least element of $[U]$ with respect to $[r]$ defined as in Problem 2).