LARA

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
sav08:herbrand_s_expansion_theorem [2008/04/01 15:59]
giuliano
sav08:herbrand_s_expansion_theorem [2015/04/21 17:30] (current)
Line 8: Line 8:
  
 Define ​ Define ​
-\[+\begin{equation*}
    ​expand(C) = \{ subst(\{x_1 \mapsto t_1,​\ldots,​x_n \mapsto t_n\})(C) \mid FV(C) = \{x_1,​\ldots,​x_n\}\ \land\ t_1,​\ldots,​t_n \in GT \}    ​expand(C) = \{ subst(\{x_1 \mapsto t_1,​\ldots,​x_n \mapsto t_n\})(C) \mid FV(C) = \{x_1,​\ldots,​x_n\}\ \land\ t_1,​\ldots,​t_n \in GT \}
-\]+\end{equation*}
  
 Note that if $C$ is true in $I$, then $expand(C)$ is also true in $I$ ($expand(C)$ is a consequence of $C$). Note that if $C$ is true in $I$, then $expand(C)$ is also true in $I$ ($expand(C)$ is a consequence of $C$).
  
 We expand entire set: We expand entire set:
-\[+\begin{equation*}
    ​expand(S) = \bigcup_{C \in S} expand(C)    ​expand(S) = \bigcup_{C \in S} expand(C)
-\]+\end{equation*}
  
 Clauses in the expansion have no variables, they are //ground clauses//. Clauses in the expansion have no variables, they are //ground clauses//.
Line 31: Line 31:
  
 Define propositional model $I_P : V \to \{\it true},{\it false\}$ by  Define propositional model $I_P : V \to \{\it true},{\it false\}$ by 
-\[+\begin{equation*}
     I_P(p(C_G)) = e_F(C_G)(I)     I_P(p(C_G)) = e_F(C_G)(I)
-\]+\end{equation*}
  
 Let Let
-\[+\begin{equation*}
    ​propExpand(S) = \{ p(C_G) \mid C_G \in expand(S) \}    ​propExpand(S) = \{ p(C_G) \mid C_G \in expand(S) \}
-\]+\end{equation*}
  
 **Lemma:** If $I$ is a model of $S$, then $I_P$ is a model of $propExpand(S)$. **Lemma:** If $I$ is a model of $S$, then $I_P$ is a model of $propExpand(S)$.
Line 66: Line 66:
   * set $propExpand(S)$ has a propositional model   * set $propExpand(S)$ has a propositional model
   * set $S$ has a model with domain $GT$   * set $S$ has a model with domain $GT$
 +
 +**Example:​** Take the first three clauses our example (from [[Normal Forms for First-Order Logic]]):
 +  * $R(x,g(x))$
 +  * $\neg R(x,y) \lor R(x,​f(y,​z)))$
 +  * $P(x) \lor P(f(x,a))$
 +Taking as domain $D$ the set of natural numbers, the structure $(D,​\alpha)$ is a model of the conjunction of these three clauses, where $\alpha$ is given by:
 +  * $\alpha(a) = 1$
 +  * $\alpha(c) = 2$
 +  * $\alpha(g)(x) = (x + 1)$
 +  * $\alpha(f)(y,​z) = y+z$
 +  * $\alpha(R) = \{(x,y).\ x < y\}$
 +  * $\alpha(P) = \{x.\ x \mbox{ is even} \}$
 +This model induces an Herbrand model $(GT,​\alpha_H)$,​ in which $\alpha_H(P)$ is a set of ground terms and $\alpha_H(R)$ is a relation on ground terms, $\alpha_H(R) \subseteq GT^2$. ​
 +
 +To determine, for example, whether $(f(a,​a),​g(c)) \in \alpha_H(R)$ we check the truth value of the formula
 +\begin{equation*}
 +   ​R(f(a,​a),​g(c)))
 +\end{equation*}
 +in the original interpretation $(D,​\alpha)$. The truth value of the above formula in $\alpha$ reduces to $1+1 < 2+1$, which is true. Therefore, we define $\alpha_H(R)$ to contain the pair of ground terms $(f(a,​a),​g(c)))$. On the other hand, $R(f(a,​a),​c)$ evaluates to false in $(D,​\alpha)$,​ so we define $\alpha_H(R)$ so that it does not contain the pair $(f(a,​a),​c)$.