LARA

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
sav08:first-order_logic_semantics [2008/04/02 20:49]
vkuncak
sav08:first-order_logic_semantics [2008/04/02 21:27]
vkuncak
Line 40: Line 40:
  
 We generalize this notion as follows: if $I$ is an interpretation and $T$ is a set of first-order formulas, we write $e_S(T)(I)={\it true}$ iff for every $F \in T$ we have $e_F(F)(I)={\it true}$ (set is treated as infinite conjunction). ​  This is a generalization because $e_S(\{F\})(I) = e_F(F)(I)$. We generalize this notion as follows: if $I$ is an interpretation and $T$ is a set of first-order formulas, we write $e_S(T)(I)={\it true}$ iff for every $F \in T$ we have $e_F(F)(I)={\it true}$ (set is treated as infinite conjunction). ​  This is a generalization because $e_S(\{F\})(I) = e_F(F)(I)$.
 +
 +
 +**A terminological note:** in algebra, an interpretation is often called a //​structure//​. Instead of using $\alpha$ mapping language ${\cal L} = \{ f_1,​\ldots,​f_n,​ R_1,​\ldots,​R_m\}$ to interpretation of its symbols, the structure is denoted by a tuple $(D,​\alpha(f_1),​\ldots,​\alpha(f_n),​\alpha(R_1),​\ldots,​\alpha(R_n))$. ​ For example, an interpretation with domain ${\can N}$, with one binary operation whose interpretation is $+$ and one binary relation whose interpretation is $\leq$ can be written as $({\cal N},​+,​\leq)$. ​ This way we avoid writing $\alpha$ all the time, but it becomes more cumbersome to describe correspondence between structures.
 +
  
 ===== Examples ===== ===== Examples =====