LARA

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
sav08:a_simple_sound_combination_method [2009/05/13 11:25]
vkuncak
sav08:a_simple_sound_combination_method [2015/04/21 17:30] (current)
Line 49: Line 49:
  
 **Example** (from [[Calculus of Computation Textbook]], page 210, Example 10.1): Let $F$ be **Example** (from [[Calculus of Computation Textbook]], page 210, Example 10.1): Let $F$ be
-\[+\begin{equation*}
     1 \le x \land x \le 2 \land f(x) \neq f(1) \land f(x) \neq f(2)     1 \le x \land x \le 2 \land f(x) \neq f(1) \land f(x) \neq f(2)
-\]+\end{equation*}
 This formula is unsatisfiable. ​ However, This formula is unsatisfiable. ​ However,
-\[+\begin{equation*}
    ​\alpha_U(F) = true    ​\alpha_U(F) = true
-\] +\end{equation*} 
-\[+\begin{equation*}
    ​\alpha_A(F) = 1 \le x \land x \le 2    ​\alpha_A(F) = 1 \le x \land x \le 2
-\]+\end{equation*}
 and both approximations are satisfiable in resulting theories. and both approximations are satisfiable in resulting theories.
  
 Instead of doing approximation directly, let us transform the original formula into formula $F'$ where function application and arithmetic are separated: Instead of doing approximation directly, let us transform the original formula into formula $F'$ where function application and arithmetic are separated:
-\[+\begin{equation*}
    1 \le x \land x \le 2 \land y_1=1 \land f(x) \neq f(y_1) \land y_2=2 \land f(x) \neq f(y_2)    1 \le x \land x \le 2 \land y_1=1 \land f(x) \neq f(y_1) \land y_2=2 \land f(x) \neq f(y_2)
-\]+\end{equation*}
 Variables $x$ and $y_1$ both appear in the formula, so let us convert $F'$ into disjunction of $(F' \land x=y_1) \lor (F' \land x \neq y_1)$. ​ We then check satisfiability for each of the disjuncts. ​ Consider, for example, $F' \land x = y_1$, which is formula $F''​$ Variables $x$ and $y_1$ both appear in the formula, so let us convert $F'$ into disjunction of $(F' \land x=y_1) \lor (F' \land x \neq y_1)$. ​ We then check satisfiability for each of the disjuncts. ​ Consider, for example, $F' \land x = y_1$, which is formula $F''​$
-\[+\begin{equation*}
    1 \le x \land x \le 2 \land y_1=1 \land f(x) \neq f(y_1) \land y_2=2 \land f(x) \neq f(y_2) \land x = y_1    1 \le x \land x \le 2 \land y_1=1 \land f(x) \neq f(y_1) \land y_2=2 \land f(x) \neq f(y_2) \land x = y_1
-\]+\end{equation*}
 We have We have
-\[+\begin{equation*}
    ​\alpha_U(F''​) = f(x) \neq f(y_1) \land f(x) \neq f(y_2) \land x=y_1    ​\alpha_U(F''​) = f(x) \neq f(y_1) \land f(x) \neq f(y_2) \land x=y_1
-\]+\end{equation*}
 which is unsatisfiable. ​ Then, considering formula $F' \land x=y_1$, we can do further case analysis on equality of two variables, say $x=y_2$. ​ For $F' \land x \neq y_1 \land x = y_2$ we similarly obtain unsatisfiability of $\alpha_U$-approximation. ​ The remaining case is $F' \land x \neq y_1 \land x \neq y_2$.  For this formula, denoted $F'''​$,​ we have which is unsatisfiable. ​ Then, considering formula $F' \land x=y_1$, we can do further case analysis on equality of two variables, say $x=y_2$. ​ For $F' \land x \neq y_1 \land x = y_2$ we similarly obtain unsatisfiability of $\alpha_U$-approximation. ​ The remaining case is $F' \land x \neq y_1 \land x \neq y_2$.  For this formula, denoted $F'''​$,​ we have
-\[+\begin{equation*}
    ​\alpha_A(F'''​) = 1 \le x \land x \le 2 \land y_1=1 \land y_2=2 \land x \neq y_1 \land x \neq y_2    ​\alpha_A(F'''​) = 1 \le x \land x \le 2 \land y_1=1 \land y_2=2 \land x \neq y_1 \land x \neq y_2
-\]+\end{equation*}
 which is unsatisfiable. ​ Therefore, by transforming formula into disjunction of formulas, we were able to prove unsatisfiability. ​ Two things helped precision which is unsatisfiable. ​ Therefore, by transforming formula into disjunction of formulas, we were able to prove unsatisfiability. ​ Two things helped precision
   * separating literals into literals understood by individual theories (unlike mixed literals $f(x) \neq f(1)$)   * separating literals into literals understood by individual theories (unlike mixed literals $f(x) \neq f(1)$)