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Verifying data structures

 Developer: provides specifications
– Loop invariants
– Procedure contracts (pre- & post-conditions)
– Class invariants

 Jahob:
 Specs --> logical constraints --> proved by decision 

procedures



  

Motivations

1.  We can solve more problems 
automatically

2. Fast computers --> can use advanced 
techniques 

3. Computers everywhere -> bugs 
everywhere, bugging everyone

4. Bugs are $$$

Modular verification of data structures



  

Status

 Verified
– List  with header node
– Queue
– Cyclic list

 Tried
– Instantiable queue

 In progress
– Leaf-linked tree



  

Cyclic list example

Demo (kind of)



  

Leaf-linked tree

 Motivation: log(n) operations on linked list
 Node: 

– Node left, right, next, prev, parent
– int v



  

Leaf-linked tree structure

 Binary search tree 
 No sort property verification for this project
 Left subtree : values <= parent.v
 Right subtree : values > parent.v
 Each parent node holds the largest left 

subtree value
 private static Node root;



  

Insertion method

 Each value is inserted as a leaf
 Two insertion stages:

– Insertion in the binary search tree
– Update of the leaf-linked list



  

Methods

boolean isEmpty() -> verified

boolean isLeaf (Node n) -> verified

void add (int v) -> in progress

void leafUpdate (Node n) -> in progress



  

Specification variables

 Nodes: all nodes reachable from root using left or right 
fields

 Content: the values of nodes in Nodes

 Internal nodes: all those nodes for which at least one 
of the left or right fields is not null



  

Class invariants

 Tree invariant on left and right fields

 Root Not Pointed: if root is not null then no node 
exists whose left, right, next, prev fields point to root

 Field constraint on all Node fields of a node: they 
should point to a node in Nodes (in this tree)

 Field constraint on parent field: if x has a parent, then 
there exists a node whose left or right field points to x



  

Conclusions

“The whole problem with the world is 
that fools and fanatics are always so 
certain of themselves, but wiser people 
so full of doubts.”

- Earl Bertrand Russell
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Verifying data structures

 Developer: provides specifications
– Loop invariants
– Procedure contracts (pre- & post-conditions)
– Class invariants

 Jahob:
 Specs --> logical constraints --> proved by decision 

procedures
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Motivations

1.  We can solve more problems 
automatically

2. Fast computers --> can use advanced 
techniques 

3. Computers everywhere -> bugs 
everywhere, bugging everyone

4. Bugs are $$$

Modular verification of data structures

Software bugs, or errors, are so prevalent and so detrimental that they cost the 
U.S. economy an estimated $59.5 billion annually, or about 0.6 percent of the 
gross domestic product, according to a newly released study commissioned by 
th



  

 5

  5

Status

 Verified
– List  with header node
– Queue
– Cyclic list

 Tried
– Instantiable queue

 In progress
– Leaf-linked tree
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Leaf-linked tree

 Motivation: log(n) operations on linked list
 Node: 

– Node left, right, next, prev, parent
– int v
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Leaf-linked tree structure

 Binary search tree 
 No sort property verification for this project
 Left subtree : values <= parent.v
 Right subtree : values > parent.v
 Each parent node holds the largest left 

subtree value
 private static Node root;
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Insertion method

 Each value is inserted as a leaf
 Two insertion stages:

– Insertion in the binary search tree
– Update of the leaf-linked list
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Methods

boolean isEmpty() -> verified

boolean isLeaf (Node n) -> verified

void add (int v) -> in progress

void leafUpdate (Node n) -> in progress
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Specification variables

 Nodes: all nodes reachable from root using left or right 
fields

 Content: the values of nodes in Nodes

 Internal nodes: all those nodes for which at least one 
of the left or right fields is not null
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Class invariants

 Tree invariant on left and right fields

 Root Not Pointed: if root is not null then no node 
exists whose left, right, next, prev fields point to root

 Field constraint on all Node fields of a node: they 
should point to a node in Nodes (in this tree)

 Field constraint on parent field: if x has a parent, then 
there exists a node whose left or right field points to x
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Conclusions

“The whole problem with the world is 
that fools and fanatics are always so 
certain of themselves, but wiser people 
so full of doubts.”

- Earl Bertrand Russell

We are taking little steps toward creating more reliable software, 
where we can say for certain that parts of it perform what they are 
meant to do. 
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