

Verification of Data Structures
Using Jahob

Feride Çetin
Kremena Diatchka

 Jahob
 Motivation
 Cyclic list example
 In progess: leaf linked tree
 Conclusions

Outline

Verifying data structures

 Developer: provides specifications
– Loop invariants
– Procedure contracts (pre- & post-conditions)
– Class invariants

 Jahob:
 Specs --> logical constraints --> proved by decision

procedures

Motivations

1. We can solve more problems
automatically

2. Fast computers --> can use advanced
techniques

3. Computers everywhere -> bugs
everywhere, bugging everyone

4. Bugs are $$$

Modular verification of data structures

Status

 Verified
– List with header node
– Queue
– Cyclic list

 Tried
– Instantiable queue

 In progress
– Leaf-linked tree

Cyclic list example

Demo (kind of)

Leaf-linked tree

 Motivation: log(n) operations on linked list
 Node:

– Node left, right, next, prev, parent
– int v

Leaf-linked tree structure

 Binary search tree
 No sort property verification for this project
 Left subtree : values <= parent.v
 Right subtree : values > parent.v
 Each parent node holds the largest left

subtree value
 private static Node root;

Insertion method

 Each value is inserted as a leaf
 Two insertion stages:

– Insertion in the binary search tree
– Update of the leaf-linked list

Methods

boolean isEmpty() -> verified

boolean isLeaf (Node n) -> verified

void add (int v) -> in progress

void leafUpdate (Node n) -> in progress

Specification variables

 Nodes: all nodes reachable from root using left or right
fields

 Content: the values of nodes in Nodes

 Internal nodes: all those nodes for which at least one
of the left or right fields is not null

Class invariants

 Tree invariant on left and right fields

 Root Not Pointed: if root is not null then no node
exists whose left, right, next, prev fields point to root

 Field constraint on all Node fields of a node: they
should point to a node in Nodes (in this tree)

 Field constraint on parent field: if x has a parent, then
there exists a node whose left or right field points to x

Conclusions

“The whole problem with the world is
that fools and fanatics are always so
certain of themselves, but wiser people
so full of doubts.”

- Earl Bertrand Russell

Conclusions

“The whole problem with the world is
that fools and fanatics are always so
certain of themselves, but wiser people
so full of doubts.”

- Earl Bertrand Russell

Jahob: helping prove fools wrong and wise
people correct since 2007

 1

Verification of Data Structures
Using Jahob

Feride Çetin
Kremena Diatchka

 2

 2

 Jahob
 Motivation
 Cyclic list example
 In progess: leaf linked tree
 Conclusions

Outline

Motivation
Jahob and decision procedures it uses

Mona, spass (FOL theorem prover)
What data structures we have done
Cyclic list example – show it verifies
In progess: leaf linked tree
Conclusions

 3

 3

Verifying data structures

 Developer: provides specifications
– Loop invariants
– Procedure contracts (pre- & post-conditions)
– Class invariants

 Jahob:
 Specs --> logical constraints --> proved by decision

procedures

 4

 4

Motivations

1. We can solve more problems
automatically

2. Fast computers --> can use advanced
techniques

3. Computers everywhere -> bugs
everywhere, bugging everyone

4. Bugs are $$$

Modular verification of data structures

Software bugs, or errors, are so prevalent and so detrimental that they cost the
U.S. economy an estimated $59.5 billion annually, or about 0.6 percent of the
gross domestic product, according to a newly released study commissioned by
th

 5

 5

Status

 Verified
– List with header node
– Queue
– Cyclic list

 Tried
– Instantiable queue

 In progress
– Leaf-linked tree

 6

 6

Cyclic list example

Demo (kind of)

 7

 7

Leaf-linked tree

 Motivation: log(n) operations on linked list
 Node:

– Node left, right, next, prev, parent
– int v

 8

 8

Leaf-linked tree structure

 Binary search tree
 No sort property verification for this project
 Left subtree : values <= parent.v
 Right subtree : values > parent.v
 Each parent node holds the largest left

subtree value
 private static Node root;

 9

 9

Insertion method

 Each value is inserted as a leaf
 Two insertion stages:

– Insertion in the binary search tree
– Update of the leaf-linked list

 10

 10

Methods

boolean isEmpty() -> verified

boolean isLeaf (Node n) -> verified

void add (int v) -> in progress

void leafUpdate (Node n) -> in progress

 11

 11

Specification variables

 Nodes: all nodes reachable from root using left or right
fields

 Content: the values of nodes in Nodes

 Internal nodes: all those nodes for which at least one
of the left or right fields is not null

 12

 12

Class invariants

 Tree invariant on left and right fields

 Root Not Pointed: if root is not null then no node
exists whose left, right, next, prev fields point to root

 Field constraint on all Node fields of a node: they
should point to a node in Nodes (in this tree)

 Field constraint on parent field: if x has a parent, then
there exists a node whose left or right field points to x

 13

 13

Conclusions

“The whole problem with the world is
that fools and fanatics are always so
certain of themselves, but wiser people
so full of doubts.”

- Earl Bertrand Russell

We are taking little steps toward creating more reliable software,
where we can say for certain that parts of it perform what they are
meant to do.

 14

 14

Conclusions

“The whole problem with the world is
that fools and fanatics are always so
certain of themselves, but wiser people
so full of doubts.”

- Earl Bertrand Russell

Jahob: helping prove fools wrong and wise
people correct since 2007

We are taking little steps toward creating more reliable software,
where we can say for certain that parts of it perform what they are
meant to do.

