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G�en�eration al�eatoire uniforme de structuresd�ecomposables en arithm�etique ottanteR�esum�e : La m�ethode r�ecursive mise au point par Nijenhuis et Wilf [15] et syst�ematis�eepar Flajolet, Van Cutsem et Zimmermann [8], est ici �etendue �a l'utilisation de nombresottants. La m�ethode qui en d�ecoule, appel�ee ADZ, permet de g�en�erer al�eatoirement etuniform�ement des structures d�ecomposables | �etiquet�ees ou non | en temps et espacemoyens O(n1+�), apr�es un pr�ecalcul de complexit�e en temps O(n2+�), se r�eduisant �a O(n1+�)pour des grammaires alg�ebriques.Mots-cl�e : g�en�eration al�eatoire uniforme, structure d�ecomposable, arithm�etique d'intervalle



Uniform Random Generation of Decomposable Structures Using Floating-Point Arithmetic 31 Introduction.In 1978, Nijenhuis and Wilf presented e�cient algorithms to generate various data-structureslike sets, multisets, and trees [15]. This method was systematized by Flajolet, Van Cutsemand Zimmermann in [8] to decomposable data-structures, and is now known as the recursivemethod. It is implemented in the Maple computer algebra system [4], in the combstructpackage, previously known as Ga��a [17].The recursive method as presented in [8] has two major drawbacks: �rstly the pre-processing phase requires �(n2) arithmetic operations, and secondly the coe�cient growthmakes the bit complexity for one generation much higher than the O(n logn) arithmeticcomplexity. A workaround to the �rst problem is well-known for context-free grammars:the coe�cients satisfy P -recurrences which enable one to compute them in O(n) arithmeticcomplexity. But the second problem remains: with na��ve multiprecision multiplication, eachgeneration costs1 O(n3+�) with the boustrophedonic method as already mentioned in [8].Even if the experiments suggest that the average bit complexity is less than O(n3+�), thismethod is limited to structures of size about one thousand, and does not allow to generatedata structures of size one million.Trying to use oating-point numbers instead of arbitrary precision integers is a naturalidea: at each point of the algorithm where a choice has to be made, only O(n) di�erentbranches are possible. Therefore it is enough to know O(logn) bits of the correspondingprobabilities to be able to decide in most cases. This idea was already expressed in [14] byMairson, and also in [8]: \The computation times could be further decreased (at the expenseof a minuscule loss of uniformity) by using oating point arithmetics. . ." This method wouldgive only a quasi-uniform generator, but it is possible to get a really uniform generator usingcerti�ed oating-point arithmetics, for example interval arithmetics following the IEEE 754standard [11]. With that idea, Alain Denise got in [6] an e�cient uniform generator usingoating-point approximations, for some classes of rational languages. In the following paper,we show this holds for all classes of decomposable structures.Our contribution is to present a new algorithm for the uniform random generation ofdecomposable structures using oating-point numbers, to analyze precisely the precision ofoating-point computations and the average bit complexity of our algorithm. This algorithmis close to optimal for that class, as it exhibits a quasi-linear complexity both in expected timeand space. Previously known algorithms were either limited to small classes of structures:balanced parenthesis strings in [3], regular languages in [12], some kinds of trees in [2]; orthey did not have a quasi-linear time or space complexity: the algorithms proposed by Hickeyand Cohen [10] (resp. Mairson [14]) for context-free languages with r nonterminals eitherhave O(nr+1) (resp. O(n2)) space complexity, or O(n2 log2 n) (resp. O(n2)) time complexity.Goldwurm's algorithm [9] works in linear space, but does not improve the time complexityof the recursive method.The paper is organized as follows. Section 2 recalls briey the standard algorithm andits complexity. Section 3 recalls some basic statements about oating-point arithmetic and1We write O(n3+�) for O(n3+o(1)), which is also sometimes written O~(n3) (\soft-O" notation).RR n�0123456789



4 Alain Denise , Paul Zimmermannone operation preprocessing one generationgeneral context-freeO(M (n logn)) O(n2M (n logn)) O(n2+�) O(n lognM (n logn))na��ve O(n2+�) O(n4+�) O(n2+�) O(n3+�)Sch�onhage O(n1+�) O(n3+�) O(n2+�) O(n2+�)Table 1: Bit complexity of the standard algorithm with large integer arithmetic.rounding modes, and analyzes the error propagation during the preprocessing phase. ThenSection 4 states and analyzes two random generation algorithms using oating-point arith-metics, a quasi-uniform one and a really uniform one. These results are con�rmed by theexperimental data from Section 5. Finally, Section 6 concludes and states some open ques-tions.2 Standard algorithm.The standard algorithm | also mentioned hereafter as recursive algorithm | describedin [8] takes as input a combinatorial speci�cation, i.e. a grammar with productions madefrom basic objects (1 and Z of size 0 and 1 respectively) and from constructions (+ fordisjoint union, � for products, sequence for sequences, set for multisets and cycle fordirected cycles). The algorithm works as follows: First translate the speci�cation into astandard one, where all products are binary, and the sequence, set, cycle constructionshave been replaced with the marking and unmarking constructions � and ��1 (see [8]).Then the standard speci�cation translates directly into procedures for counting the numberof objects of a given size generated from a given non-terminal, or for generating one suchobject uniformly at random. The computation of all tables up to size n requires O(n2)operations on coe�cients, then one random generation needs O(n logn) operations in theworst case using the boustrophedonic method.Bit complexity. The integer coe�cients used in the algorithm usually have an exponen-tial growth with respect to the size n, so that an arbitrary precision arithmetic has to beused. More precisely, it is shown in [8] that the coe�cients have size O(n logn).2 Hence,with usual quadratic algorithms for integer arithmetic, each operation costs O(n2 log2 n),whence the preprocessing has bit-complexityO(n4 log2 n) and one generation has complexityO(n3 log3 n), as summarized in the table below, where O(M (n)) stands for the cost of mul-tiplying two n bit numbers. In the context-free case, where the set and cycle construc-tions are not used, the counting sequences satisfy linear recurrences with polynomials coef-�cients (P -recurrences or holonomic sequences), therefore the coe�cients can be computed2In the unlabelled case, they even have size O(n): since the generating functions have a nonzero radiusof convergence � as noticed in [8], the coe�cients satisfy logyn = n log 1� (1 + o(1)). INRIA



Uniform Random Generation of Decomposable Structures Using Floating-Point Arithmetic 5in O(n) operations between numbers of O(n) and O(logn) bits, i.e. with a bit complexityof O(n2 logn).Another paper extends this to unlabelled objects [7]. From now on, we suppose we aregiven an unlabelled standard speci�cation, with union, product, marking and unmarkingconstructions. The labelled case is very similar, with additional binomial coe�cients.3 Floating point arithmetic.3.1 Basic de�nitions.First, we recall some properties of oating-point arithmetic, as stated for example in [5, 13].In computers, a oating-point number is generally represented by three values: a sign sx 2f�1; 1g, a mantissa mx, and an exponent ex, so thatx = sx �mx � 2ex :Due to the limited size of the mantissa, arithmetic operations on oating-point numbers donot give exact results in general. Let us denote, as in [13], the basic operations +, �, �, = by�, 	, 
, � respectively, when applied to oating-point numbers. The IEEE 754 standard[11] �xes their precise behaviour as follows. For any arbitrary oating-point numbers a andb, a� b = �(a+ b);a	 b = �(a� b);a
 b = �(a� b);a� b = �(a=b);where the function � is the active \rounding mode", which can be chosen by the user amongthe following ones: rounding towards the nearest number (�), towards 0 (Z), towards �1(�), or towards +1 (r). This means that any basic operation on oating-point numbers isperformed as if it was done with an in�nite precision, and then the result rounded in orderto agree with the oating-point representation.In this paper, we will only deal with two rounding modes: towards �1 and towards +1.(In fact, since we will be handling only positive numbers, the towards �1 mode will beequivalent to the towards 0 mode.) These modes satisfy, for any real number x,3x(1� ") � �(x) � xand x � r(x) � x(1 + "):3Supposing the computer representationof x is not denormalized | see [11] | which holds for all numbersconsidered here, since they are integers.RR n�0123456789



6 Alain Denise , Paul ZimmermannThe value " is called the computer precision and is equal to 21�b, where b is the length ofthe mantissa in the oating-point representation.4For the sake of convenience, we will write a�b (resp. a	b, a
b, a�b) for �(a + b)(resp. �(a�b), �(a�b), �(a=b)); and a�b (resp. a	b, a
b, a�b) forr(a+b) (resp. r(a�b),r(a� b), r(a=b)).The following easy lemma will be useful in the rest of the paper:Lemma 3.1 Let a and b be two nonnegative numbers and ~a and ~b two nonnegative approxi-mations of a and b such that a(1 � �a) � ~a � a and b(1 � �b) � ~b � b, with �a; �b � 0.Then (a+ b)(1 �max(�a; �b)� ") � ~a�~b � a+ b;(a� b)(1� �a � �b � ") � ~a
~b � a� b:If n is any positive number exactly representable, i.e. n � 2b, then(a� n)(1 � �a � ") � ~a
n � a� n;(a=n)(1� �a � 2") � ~a�n � a=n:3.2 Error propagation.The aim of this subsection is to estimate the error we get when computing the coe�cientsduring the preprocessing stage. The main result is the following:Proposition 3.2 Let (T0; T1; : : :Tm) be the combinatorial structure classes from a standardspeci�cation, and denote by tk;l the number of structures of Tk of size l. Suppose that theTk are ordered in such a way that, in the counting algorithm, the computation of a given tk;ldepends only on the tk0;l with 0 � k0 < k and on the tk0;l0 with 0 � k0 � m and 0 � l0 < l.If we use oating-point arithmetics with precision " and the rounding towards �1 mode tocompute the tk;l for 0 � k � m and 0 � l � n according to the counting templates in [8],and provided that no overow occurs during the computation, then we get an approximation~tk;l of tk;l, such that tk;l(1� "k;l) � ~tk;l � tk;l;with "k;l = 2ml2"� 2(m� k)l";assuming in addition that all the coe�cients of size zero tk;0 can be represented exactly,i.e. are not larger than 2b = 2=".Proof. We prove it by induction on k and l. The formula is true for l = 0 since we supposedthat all tk;0 can be represented exactly, i.e. ~tk;0 = tk;0 and "k;0 = 0.Now suppose that the formula is true for any pair (k0; l0) such that either 0 � k0 < k andl0 = l or l0 < l, and let us prove that it is true too for (k; l) with l � 1.4In base two, the �rst bit of the mantissa being always one for a non-zero normalized number, it is usuallynot represented. For instance, the C double numbers have b = 53, but only 52 bits are e�ectively stored,and " = 2�52. INRIA



Uniform Random Generation of Decomposable Structures Using Floating-Point Arithmetic 7� If Tk = 1 or Tk = Z, the formula is obvious since "k;l = 0 for all l.� If Tk = Tk1 +Tk2 then ~tk;l = ~tk1;l�~tk2;l and by Lemma 3.1, "k;l � max("k1 ;l; "k2;l)+ ".As necessarily k1; k2 � k � 1, then using the induction hypothesis, we get "k;l �2ml2" + 2(k � 1�m)l" + " � 2ml2" + 2(k �m)l" since l � 1.� If Tk = Tk1 � Tk2 then ~tk;l = (~tk1;a
~tk2;l�a)�(~tk1;a+1
~tk2;l�a�1)� : : :�(~tk1;b
~tk2;l�b),where a is 0 or 1 and b is l�1 or l according to the relative position of k1; k2 with respectto k. By Lemma 3.1 we deduce that "k;l � maxa�i�b("k1 ;i + "k2;l�i) + (b � a + 1)".Using the induction hypothesis gives "k;l � 2maxa�i�b f(i)"+(b�a+1)" with f(i) =mi2 + (k1 � m)i + m(l � i)2 + (k2 � m)(l � i). The function f(i) being convex, themaximum is reached either in i = a or in i = b, and we have three cases to study:{ k1; k2 < k, i.e. a = 0 and b = l. Then f(a) and f(b) are bounded by ml2 + (k �1�m)l, and "k;l � 2ml2"+ 2(k� 1�m)l"+ (l+ 1)" � 2ml2"+ 2(k�m)l" sinceagain l � 1.{ k1 < k and k2 � k (the case k1 � k and k2 < k is similar), i.e. a = 1 andb = l (i = 0 is not possible since tk;l would depend from tk2;l). Then f(a) =m(l2 � 2l + 2) + (k1 �m) + (k2 �m)(l � 1) and f(b) = ml2 + (k1 �m)l. Usingk1 � k� 1 and k2 � m gives f(a) � ml2 + (k� 1�m)l + (m+ k� 1)(1� l) andf(b) � ml2+(k� 1�m)l, thus max(f(a); f(b)) � ml2+(k� 1�m)l since 1 � l.Therefore "k;l � 2ml2" + 2(k � 1�m)l" + l" � 2ml2" + 2(k �m)l".{ k1; k2 � k, i.e. a = 1 and b = l � 1. Since k1; k2 � m, then max(f(a); f(b)) �m(l2 � 2l+2) and "k;l � 2m(l2� 2l+2)"+(l� 1)". This case cannot happen forl = 1 because we need a � b so that the sum is not zero; in addition we cannothave k = 0 here since the �rst production is either T0 = 1 or T0 = Z. Hence"k;l � 2ml2"�2ml"+2(2�l)m"+(l�1)" � 2ml2"�2ml"+2l" � 2ml2"+2(k�m)l"since l � 2 and k � 1.� If Tk = �Tk1 or �Tk = Tk1 then, respectively, ~tk;l = ~tk1;l
l or ~tk;l = ~tk1;l�l, and"k;l � "k1;l + " or "k;l � "k1;l + 2" from Lemma 3.1 since we suppose that l is exactlyrepresented. Using the induction hypothesis, k1 < k and l � 1 gives again "k;l �2ml2" + 2(k �m)l". 2Note that the value of "k;l in Proposition 3.2 is a very general bound. The relative errorwill generally be lower in real cases. For any particular standard speci�cation, it will bepossible to compute a better value for "k;l by using formulas of Lemma 3.1.In the above proof, for the case Tk = Tk1 �Tk2 , we did not explicit the order in which theassociative product (~tk1;a
~tk2;l�a)� � � ��(~tk1;b
~tk2;l�b) was computed. Therefore the boundobtained for "k;l holds for any order of computation, in particular either the sequential oneor the boustrophedonic one.RR n�0123456789



8 Alain Denise , Paul Zimmermann4 Random generation.In this section, we describe two variations of the classical recursive method of uniformrandom generation. The �rst one | quasi-uniform generation | is not really new: itconsists in applying exactly the algorithms of [8], with oating-point arithmetic (here weconsider for example rounding towards �1) in place of exact arithmetic. Its precision| i.e. the maximal relative di�erence between the probability of a given structure to begenerated and the uniform probability | strongly depends on the precision of the oating-point representation, say the number of bits in the mantissa of the oating-point numbers.This is detailed in the following theorem.Theorem 4.1 (Precision and complexity of quasi-uniform generation) Let C bea class of combinatorial structures whose standard speci�cation admits m+ 1 classes. If weare given a perfect uniform generator of random real numbers between 0 and 1, and providedthat no overow occurs during the computation, the recursive algorithm using oating-pointarithmetic will generate a structure of size n with a probability ~pm;n such thatpn(1� �m;n) � ~pm;n � pn(1� �m;n)�1;with �m;n = O(m2n32�b)where pn = 1=cn is the uniform probability over the elements of C of size n, and b is thelength of the mantissa of oating-point numbers.The complexity of the preprocessing stage is O(n2M (b)); the worst-case complexity ofone generation is O(n lognM (b)), where M (b) is the worst-case complexity of any standardarithmetic operation on oating-point numbers having a mantissa of size b.Proof. In order to generate a structure from class C with size n, we make at most (n +1)(m+1) choices, each of them with a probability equal to ~an�~cn (sum), or to (~ak
~bn�k)�~cn(product).5 No choice has to be made for the pointing/unpointing constructions. The a's,b's and c's having been computed as in Proposition 3.2, each choice introduces a relativeerror of at most O(mn2�) with � = 21�b. This implies the �rst part of the theorem. Thesecond part follows directly from the complexity given in [8]. 2The above result gives the possibility to generate quasi-uniform random structures ofreasonable size with \standard" programs in usual languages. For example, given a standardspeci�cation with two classes, and using oating-point numbers with a mantissa of length53 (standard \double" oating-point numbers), one can generate random objects up to asize of 10000 with a relative error of order 10�3, if the coe�cients are small enough (lessthan 1:8 � 10308) so that no overow occurs.5The exact probability depend on how we accumulate the products �k = (~ak
~bn�k)�~cn , but this a�ectslower-order terms only. INRIA



Uniform Random Generation of Decomposable Structures Using Floating-Point Arithmetic 9We stated this Theorem for the rounding towards �1 mode, but it holds for the otherrounding modes too. We do not give any precise value for the constant behind the O(�),since a precise analysis will be given below.The second variation, which we call the ADZ method | from its inventors Alonso,Denise, Zimmermann |, is devoted to exact uniform generation using oating-point num-bers. The main idea consists in computing approximate coe�cients and probabilities, andto control their relative error in relation to the corresponding exact values. For example,suppose that we have to make a choice with a certain (exact) probability p (dependingon the coe�cients computed using the standard speci�cation recurrences). Floating-pointarithmetic does not allow us to compute p, but we can compute two oating-point numbersp� and p+ such that p� � p � p+. Now, in order to make a choice, we draw a randomnumber 0 � r � 1 and we compare it to p+ and p�. If r < p� or p+ � r then we can makethe choice; otherwise, r is located in the \error interval".In this case, there are two possibilities: either we compute (again) the coe�cients withexact integer arithmetic and run the standard algorithm to continue the generation, or wecontinue with oating-point arithmetic using a twice longer mantissa, and so on until wecan make the choice. The worst-case complexity of the latter method is not bounded, butit is better on average, by a constant factor only; we won't analyze it further.According to these principles, we present below the main generation schemes, for thesum C = A + B and the product C = A � B, based on the corresponding ones in [8]. Theother ones (initial structures, pointing and unpointing) are straightforward to write, as nochoice has to be made.Case: C = A+ B.gC := procedure(n: integer);U :=Uniform([0;1]);F := 1	((2m")
n
n); (*)p� := (~an�~cn)
F ;p+ := (~an�~cn)�F ;if U < p� then Return(gA(n))else if U > p+ then Return(gB(n))else Special(U ,gA(n),gB(n))end.Case: C = A �B.gC := procedure(n: integer);U :=Uniform([0;1]);F := 1	((2m")
n
n) (*)k := 0;S := (~a0
~bn);p� := (S�~cn)
F ;p+ := (S�~cn)�F ;RR n�0123456789



10 Alain Denise , Paul Zimmermannwhile U � p+ dok := k + 1;S := S�(~ak
~bn�k);p� := (S�~cn)
F ;p+ := (S�~cn)�F ;if U < p�then Return([gA(k),gB(n � k)])else Special(U ,[gA(k),gB(n� k)],[gA(k+ 1),gB(n� k � 1)]);end.The procedure call `Special(U ,choice1,choice2)' does the following: Compute exactly theprobability p, evaluate and return `choice1' if U < p, evaluate and return `choice2' otherwise;then use the exact algorithm [8] for the rest of the computation.Here are some remarks on these generation schemes. First, they involve only standardoating-point operations. In other words, they can be quite directly programmed in anylanguage with rounding modes, provided that the given language supports arithmetic ope-rations with arbitrary precision integers. In the calculation of F , we suppose that 2m andn are small enough to be represented exactly.6 We suppose U to be a uniformly chosennumber between 0 and 1; this is of course not possible strictly speaking, since it would needan in�nite memory. But, if we are given a perfect generator of 0 � 1 bits, then U can begenerated using a \lazy" process, bit by bit, and the needed comparisons done after eachstep. It can be proved easily that the average number of bits to be generated in order tocompare U with a random number uniformly distributed in [0; 1] equals 2.In the rest of this section, we focus on the complexities of the ADZ method. The followingproposition gives bounds for the \error interval" of the computed probabilities.Proposition 4.2 In both cases C = A + B and C = A �B, the probability of each Returncall is less than or equal to the exact probability of the corresponding choice leading to anuniform distribution. Furthermore, if (2mn2+3)" � 1=2, then the probability of each Specialcall is bounded by 3(2mn2 + 3)".Proof. Case C = A+B. The probability of Return(gA(n)) being called is p�, whereas theprobability of Return(gB(n)) is 1� p+, therefore we have to prove that p� � p � p+, wherep = an=cn is the exact probability of chosing A. The probability of Special(U ,gA(n),gB(n))is clearly p+ � p�.Let N = 2mn2" and ~N = (2m")
n
n � N . By Proposition 3.2, we know thatan(1�N ) � ~an � an and cn(1�N ) � ~cn � cn ; so (1�N )~an=~cn � an=cn � (1�N )�1~an=~cn.It follows that p� � an=cn � p+.By the properties of oating-point operations, we have N � ~N � N (1+ ")2. Thus, since(1 + ")2 � (1 � ")�2, we have 1� N (1� ")�2 � 1� ~N � 1� N . Therefore,1� "� N (1� ")�2 � F � 1�N6As " is a power of two, it can always be exactly represented, and so 2m" if m does. INRIA



Uniform Random Generation of Decomposable Structures Using Floating-Point Arithmetic 11where F = 1	 ~N as stated in the above algorithms.Now let us look at p�. We have (~an=~cn)F (1� ")2 � (~an�~cn)
F � (~an=~cn)F ; thus~an~cn ((1� ")3 � N ) � p� � ~an~cn (1� N )since p� = (~an�~cn)
F . Similarly, we �nd that~an~cn 11�N � p+ � ~an~cn 1(1� ")3 �N :Therefore we get p+ � p� � ~an~cn � 1(1� ")3 �N � ((1� ")3 �N )�and thus, since 1� 3" � (1� ")3, we havep+ � p� � ~an~cn � 11� N 0 � (1�N 0)�where N 0 = N + 3" = (2mn2 + 3)". If we suppose, as stated in the Proposition, thatN 0 � 1=2, then 1=(1� N 0) � 1 + 2N 0 and it follows thatp+ � p� � ~an~cn 3N 0;and the proof is complete since ~an � ~cn.Case C = A � B. Let p�k ; p+k denote the values of p�; p+ at step k, with p+�1 = 0 byconvention. The statement Return([gA(k),gB(n � k)]) is executed when p+k�1 � U < p�k ,and the Special statement when p�k � U < p+k .If we substitute an by sk = a0bn+ a1bn�1+ � � �+ akbn�k and ~an by S in the above prooffor C = A+B, we obtain that p�k � sk=cn � p+k and p+k � p�k � 3(2mn2+ 3)". Whence theprobability of Return([gA(k),gB(n � k)]) being called is p�k � p+k�1 � sk=cn � sk�1=cn, thelatter probability corresponding to the uniform distribution. The probability of a Specialcall at step k is p+k � p�k � 3(2mn2 + 3)". 2Now we are able to compute the average-case complexity of the ADZ method, accordingto n and to the computer precision ". (Recall that " = 21�b where b is the length of themantissa of oating point numbers.) In these results, we consider m as a constant, sincethis number only depends on the class of structures to be generated.Theorem 4.3 (Average and worst-case complexities of the ADZ method.) The ave-rage bit-complexity of the ADZ method preprocessing, according to n and to the computerprecision ", is P1(n; ") = O(n2M (log 1" ));RR n�0123456789



12 Alain Denise , Paul Zimmermannthe average bit-complexity for the generation of one structure isC1(n; ") = O(n lognM (log 1" ) + n6"M (n logn));where M (x) stands for the cost of multiplying two x-bit numbers. The average space com-plexity is O(n log 1"+n6" logn). The corresponding worst-case complexities, both in time andspace, are the same that the ones for generation with exact arithmetic, as stated in Table 1.Proof. The results concerning P1(n; ") and the worst-case complexities are straightforward.So let us focus on C1(n; "), and let us bound �rst the total probability to be forced to runthe algorithm which uses exact coe�cients. Its follows from Proposition 4.2 that, at eachstep, the probability to run the procedure Special() is O(n3"), since there are at most n\error intervals" in the case C = A � B. And we know that there are O(n) choices to bedone during the whole generation. Thus the total probability to run Special() during thegeneration is O(n4").The integer coe�cients occurring in the recursive method having size O(n logn) [8], theworst-case complexity of Special() is O(n2M (n logn)) ; this is the complexity of generating astructure with the exact algorithm (including the preprocessing stage). On the other hand,the complexity of generating a structure if there is no call to Special() (once the preprocessingis done and using the boustrophedonic algorithm) is O(n lognM (log 1" )), since the valuelog 1" represents the number of bits of the mantissa of oating-point numbers. Hence theaverage-case complexity of the algorithm is O(n lognM (log 1" )) +O(n4") �O(n2M (n logn)).In the preprocessing, O(n) approximate coe�cients of size O(log 1" ) are computed, whilein the case where Special() is called | which occurs with probability O(n4") | O(n) exactcoe�cients of size O(n logn) are computed. Therefore the average space complexity isO(n log 1" + n6" logn). 2The above result is particularly interesting if there is a possibility to adjust the computerprecision (i.e. the length of the mantissa) according to n. In this case, the following easycorollary holds.Corollary 4.4 If " = O(1=n7), thenC1(n; ") = O(n log2 n):This corollary holds even with na��ve arithmetics M (n) = O(n2).5 Experimental results.In this section, we demonstrate the e�ciency of the original method presented in this paper.We will show �rst the accordance of oating-point approximations obtained with Proposi-tion 3.2, then study the failure probability of the exact uniform random generation algorithmof Section 4, i.e. the probability one has to restart the whole computation using an arbitraryINRIA



Uniform Random Generation of Decomposable Structures Using Floating-Point Arithmetic 13precision arithmetic, and the e�ciency of the quasi-random generation algorithm comparedto existing packages such as Combstruct.We take as example Motzkin trees, whose random generation was already considered inthe literature [1]. Motzkin (or unary-binary) trees are de�ned by the speci�cationM = Z+ Z �M + Z �M �M;or in standard formwithM = T4: T0 = Z; T1 = T0�T3; T2 = T4�T4; T3 = T2+T4; T4 = T0+T1.Accuracy. Let Mn denote the number of Motzkin trees of size n. Due to the exponentialgrowth of Mn (M700 is too large to �t in a double which is limited to 10308 or so), wehad to write a special interval arithmetic library using a double as mantissa (53 signi�cantbits) and an int as exponent (32 bits). Instead of using the result of Prop. 3.2, whichenables one to compute only a lower bound of the coe�cients, we have computed both lowerand upper oating-point bounds using the rounding functions provided by the IEEE 754standard. The approximations obtained are much better, since they depend on the actualspeci�cation. We proceeded in three di�erent ways: (i) �rst by the usual quadratic method,accumulating convolutions cn =P akbn�k from the left to the right; (ii) secondly using thesame quadratic method, but accumulating convolutions from the middle terms to the leftand right; (iii) using the linear recurrenceMn = 2n� 1n+ 1 Mn�1 + 3n� 6n+ 1 Mn�2satis�ed by the numbers Mn. Such a recurrence exists for any context-free grammar(i.e. when only the union and product constructions are used), and it can be computedfrom the grammar using the Gfun package [16]. Thanks to the IEEE 754 standard, thecomputed lower and upper bounds are guaranteed to be exact, but di�er according to theway of computation.The following table indicates for di�erent sizes the accuracy7 � lg "4;n with "4;n as inProposition 3.2 for the nonterminal T4 = M , i.e. the number of common correct bits betweenthe lower and upper bounds, obtained with each of the three ways of computing Mn.n Mn �lg"14;n �lg"24;n �lg"34;n1000 2 � 10472 38:5 40:7 40:12000 1 � 10949 37:0 39:5 39:05000 6 � 102379 35:0 38:0 37:510000 8 � 104764 33:5 36:8 36:5Fit 53:5� 1:5lgn 52:3� 1:2lgn 51:0� 1:1lgnWe can conclude from this table that method (ii) is slightly better than method (i). Thiscan be explained by the fact that the coe�cients Mn grow like ann�3=2, which holds for7We denote by lg the binary logarithm.RR n�0123456789



14 Alain Denise , Paul Zimmermannmost data structures having an algebraic generating function like various kinds of trees,and therefore the middle terms in the convolutions are smaller than the outer terms by afactor of about n3=2. Another conclusion is that in all three cases the accuracy is betterthan the worst-case of c� 2lgn given by Proposition 3.2. The linear recurrence even gives aquasi-linear behaviour.Special Calls. The following table indicates the proportion of random generations whichrequired calls to Special() for several experiments with the algorithm using oating-pointintervals, still for Motzkin trees. For size 105 for instance, only 7 random generations over103 called the Special() function. n Special() calls104 1=10000 � 0:0001105 7=1000 � 0:0072 � 105 17=500 � 0:0345 � 105 64=200 � 0:32106 95=100 � 0:95It appears from this table that the bound of 6mn4" which follows from Prop. 4.2 is verypessimistic. The actual failure probability seems to behave quadratically with n.E�ciency. The following table compares the ADZ method with the Maple implementationof the standard algorithm in the Combstruct package [17], for the generation of Motzkintrees. The column \count" gives the time (in seconds on an Ultra Sparc machine) requiredfor the preprocessing, while the column \draw" the average time for one random generation(over 100 generations). The entry NA stands for a computing time greater than two hours.n Maple/Combstruct ADZ methodcount draw count draw100 0:9=0:04 0:08 0:03=0:00 0:002200 3:7=0:1 0:18 0:08=0:01 0:005500 61=0:45 0:65 0:55=0:01 0:0121000 613=2:0 2:66 2:3=0:02 0:0282000 4468=5:7 9:7 9:8=0:04 0:0565000 NA=35: 82 66=0:08 0:16310000 NA=162 586 282=0:18 0:411Fit n3:6=n2:3 n3:2 n2:0=n1:2 n1:1In the \count" column, the times on the left were obtained with the default O(n2) method,and those on the right with the linear recurrence computed by the Gfun package [16], aftertyping `combstruct/usegfun`:=true in Maple. INRIA



Uniform Random Generation of Decomposable Structures Using Floating-Point Arithmetic 156 Conclusion and open questionsIn this paper, we have extended to certi�ed oating-point computations the recursive me-thod for the random generation of decomposable structures. This extension enables one togenerate an object of size n in quasi-linear expected time and space, after a preprocessingof time O(n2+"), and O(n1+") in the context-free case. This method only improves theaverage-complexity. The worst-case complexity remains the same as the standard algorithmwith integer arithmetic, both in time and space, as the standard algorithm is called whenthe one with oating-point arithmetic fails.In addition to the nice theoretical bounds, the new method also behaves very well inpractice, as shown by the experimental �gures from Section 5.Nevertheless, some open questions and places for improvements remain. It would beinteresting to analyze exactly the bit-complexity of the standard algorithm. (It will dependon the speci�cation.) Another problem is that the standard oating-point numbers on 64bits cannot be used for large sizes, because the coe�cients become too big. A possiblesolution that would be interesting to study is the following. Instead of computing oating-point approximations for the coe�cients tk;n, store the values tk;n=�nk where �k is the radiusof convergence from the generating function associated to the kth nonterminal. In such away, only the polynomial part | which is much smaller | would be stored.Now the important points (at least for us): How to design an on-line version of thealgorithm using oating-point arithmetics ? In the context-free case, how to compute the(simplest) recurrences for the coe�cients e�ciently from the grammar ? In the general case,does a recurrence like that found by Euler for partition numbers exist for all decomposablestructures ? How to guess and prove such a recurrence ?Acknowledgement. We thank Laurent Alonso for giving us the original idea to useoating-point arithmetic, Philippe Flajolet and Jean-Guy Penaud for their active supportduring the redaction of this paper.References[1] Alonso, L. Uniform generation of a Motzkin word. Theoretical Comput. Sci. 134(1994), 529{536.[2] Alonso, L., R�emy, J.-L., and Schott, R. A linear-time algorithm for the generationof trees. Algorithmica 17 (1997), 162{182.[3] Arnold, D. B., and Sleep, M. R. Uniform random generation of balanced paren-thesis strings. ACM Trans. Program. Lang. Syst. 2, 1 (Jan. 1980), 122{128.[4] Char, B. W., Geddes, K. O., Gonnet, G. H., Leong, B. L., Monagan, M. B.,and Watt, S. M. Maple V: Language Reference Manual. Springer-Verlag, 1991.RR n�0123456789
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