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Abstract—Typically, software libraries provide API docu-
mentation, through which developers can learn how to use
libraries correctly. However, developers may still write code
inconsistent with API documentation and thus introduce bugs,
as existing research shows that many developers are reluctant
to carefully read API documentation. To find those bugs, re-
searchers have proposed various detection approaches based on
known specifications. To mine specifications, many approaches
have been proposed, and most of them rely on existing client
code. Consequently, these mining approaches would fail to mine
specifications when client code is not available. In this paper,
we propose an approach, called Doc2Spec, that infers resource
specifications from API documentation. For our approach, we
implemented a tool and conducted an evaluation on Javadocs
of five libraries. The results show that our approach infers
various specifications with relatively high precisions, recalls,
and F-scores. We further evaluated the usefulness of inferred
specifications through detecting bugs in open source projects.
The results show that specifications inferred by Doc2Spec are
useful to detect real bugs in existing projects.

I. INTRODUCTION

Nowadays, it is a common practice for software libraries
to provide developers with Application Programming In-
terface (API) documentation through online access. One
example of such API documentation is J2EE’s Javadoc1.
Developers can find much useful information such as
class/interface hierarchies and method descriptions from API
documentation and learn how to correctly use libraries.

Still, developers may write code that is inconsistent with
API documentation and produce bugs, as existing research
on developers’ behavior [29] shows that developers tend
to ignore information in API documentation. Among these
bugs, many are related to resource usages [27]. To detect
resource bugs, researchers [21] propose various approaches
that analyze resource usages, and these approaches need
specifications that describe correct usages.

As API documentation contains much information on
resource usages, it is feasible to infer resource specifications
from API documentation. For example, the description of
java.sql.ResultSet.deleteRow() is “Deletes the cur-
rent row from this ResultSet object and from the underlying
database”, whereas the description of java.sql.Result-

∗Corresponding authors.
1http://java.sun.com/javaee/5/docs/api/

Set.close() is “Releases this ResultSet object’s database
and JDBC resources immediately instead of waiting for this
to happen when it is automatically closed”. Although each
description simply describes what kind of action a method
takes on a particular resource and does not explicitly contain
any rule, an experienced developer can extract an implicit
specification deleteRow()→ close() from the preceding
two descriptions. The specification describes that close()
should be called if deleteRow() is already called since a
used resource needs to be eventually closed.

However, it is challenging to infer resource specifications
from API documentation due to two main factors: (1) it re-
quires accurate linguistic analysis since API documentation
is in natural languages; (2) it requires information from mul-
tiple method descriptions to be synthesized since resource
usages are typically implied in descriptions of multiple
methods. In this paper, we propose a novel approach, called
Doc2Spec, that infers resource specifications from existing
API documentation in natural languages. As our approach
does not need any source code from either libraries or their
clients, it is capable of inferring specifications when source
code is unavailable or insufficient. Thus, it complements
existing approaches of mining specifications from source
code (see Section III for details).

This paper makes the following main contributions:
∙ We propose a novel approach, called Doc2Spec, that

uses a Natural Language Processing (NLP) technique to
analyze natural language API documentation and infers
resource specifications.

∙ We implemented a tool for Doc2Spec and conducted
an evaluation on API documentation of five libraries.
The results show that our approach infers various
specifications with relatively high precisions, recalls,
and F-scores.

∙ We further conducted an evaluation to detect bugs using
inferred specifications. The results show that these
specifications are useful to detect previously known or
unknown bugs in open source projects.

The remainder of our paper is as follows. Section II illus-
trates our approach using an example. Section III presents
related work. Section IV presents the details of our approach.
Section V presents our evaluations. SectionVI presents ben-
efits of our approach. Section VII discusses issues of our
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Figure 1. Specification template

approach. Section VIII concludes.

II. EXAMPLE

In this section, we use a resource in J2EE named
CCIConnection to illustrate the main steps of our approach
and how to use the inferred specification to detect bugs.

Inferring specifications. Our approach consists of three
main steps to infer specifications from API documentation.

The first step is to extract method descriptions and
class/interface hierarchies from API documentation. In this
example, from J2EE’s Javadoc, our approach extracts three
method descriptions of interface javax.resource.cci.

Connection as follows:
createInteraction():“Creates an interaction associ-

ated with this connection.”
getMetaData():“Gets the information on the underlying

EIS instance represented through an active connection.”
close():“Initiates close of the connection handle at the

application level.”
The second step is to build an action-resource pair from

each method description. For a method, its action-resource
pair denotes what action the method takes on what resource.
In this example, our approach builds the action-resource
pairs for the three methods as follows:
createInteraction():⟨𝑐𝑟𝑒𝑎𝑡𝑒, 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛⟩.
getMetaData():⟨𝑔𝑒𝑡, 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛⟩.
close():⟨𝑐𝑙𝑜𝑠𝑒, 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛⟩.
As method descriptions are written in natural lan-

guages, it is difficult to define simple templates to ex-
tract action-resource pairs. In particular, the actions of
createInteraction() and getMetaData() are predi-
cate verbs, whereas the action of close() is an accusative
object. Although the resources of all the three methods are
preposition objects, there are multiple preposition objects
in one description, and the locations of these resources are
different. Here, if we simply pick those common concrete
nouns as resources, we may mix specifications of different
resources and infer false specifications (see Section VII-A
for details). Our approach leverages an NLP technique to
extract action-resource pairs accurately.

The final step is to infer automata for resources based on
action-resource pairs and class/interface hierarchies. First,
for each class/interface, our approach groups methods into
categories according to resource names and class/interface
hierarchies. In this example, the three methods are grouped
into one category since their resources are of the same name
and the three methods are declared by the same interface.
Second, in each category, our approach maps methods to
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Figure 2. Resource specifications

different types according to their actions. In this example,
our approach maps the three methods to their types as
follows:
createInteraction()→creation method.
getMetaData()→manipulation method.
close()→closure method.
Finally, in each category, our approach builds an automa-

ton based on our predefined specification template shown in
Figure 1. Figure 2 shows the inferred specification for the
resource of interest. Our approach tailors our specification
template to build the automaton shown in Figure 2 (see the
end of Section IV-C for details).

Detecting bugs. To confirm the usefulness of an inferred
specification, we need to investigate whether we can detect
bugs from violations of the specification. In this example,
we can check whether close() is eventually called in all
possible execution paths of a code snippet for violations of
the specification shown in Figure 2. In fact, we did find such
a violation in a code snippet as follows:
public float getHomeEquityRate(){

...
try{

javax.resource.cci.Connection myCon
= connFactory.getConnection();

javax.resource.cci.Interaction interaction
= myCon.createInteraction();

...
myCon.close();
...

}catch(Exception e){
e.printStackTrace();

}
}

In this code snippet, a local variable named myCon is not
closed in the exception clause. The violation is determined as
a suspected bug since unclosed connections may cause mem-
ory leaks. Such a case shows that the specification shown
in Figure 2 is useful to detect bugs. Here, although Java has
a garbage-collector-enabled platform, unclosed connections
may still cause memory leaks. For example, the Oracle 9i
JDBC Developer’s Guide and Reference [32] warn “If you
do not explicitly close your ResultSet and Statement objects,
serious memory leaks could occur.” The work proposed by
Xu and Rountev [44] also focuses on memory leaks in Java
programs.

III. RELATED WORK

In this section, we introduce related approaches and
discuss their differences from our approach.

Generating specifications. As client projects contain
many valuable usages of libraries, many approaches have
been proposed to mine specifications from client code
statically or dynamically. These mining approaches can be



divided into automata-based approaches and sequence-based
approaches based on their outputs.

For automata-based approaches, Ammons et al. [2] pro-
pose an approach and its supporting tool Strauss that uses
an extended Angluin algorithm [33] to mine automata from
execution traces that are related by traditional dataflow
dependencies. Lo and Khoo [26] improve Strauss by in-
troducing clustering techniques to refine traces before the
mining process. Kremenek et al. [23] use Bayesian learning
to match methods with a predefined automata template for
specifications. Whaley et al. [42] mine automata-like models
from execution traces and refine these models using code
analysis. Gabel and Su [16] propose a symbolic algorithm
based on binary decision diagrams to mine automata from
execution traces. Alur et al. [1] use randomly generated
test cases as clients and use Angluin’s algorithm to infer
automata from call sequences that do not throw exceptions.
Gowri et al. [18] also use a client emulator as clients,
and their approach uses some analysis results such as
objects’ relationships, internal states, and their specifications
of libraries. Cook and Wolf [8] reduce the general problem
of mining automata from execution traces to the classical
grammar inference problem, and the problem has been
proved to be NP-complete [17].

For sequence-based approaches, Engler et al. [12] use
the Z-statistic value as the support to mine frequent call
pairs from source files. Yang et al. [45] propose an algo-
rithm to mine call pairs from execution traces. Weimer and
Necula [41] propose an approach to mine and filter method
pairs from execution traces. Li and Zhou [24] use frequent
itemset mining to extract implicit programming properties
and detect their violations for detecting bugs. Livshits and
Zimmermann [25] propose an approach of mining properties
from software revision histories. Wasylkowski et al. [40] use
frequent sequence mining to mine frequent call sequences
from clients and use anomalies to detect bugs in client code.
Ramanathan et al. [34] use frequent sequence mining to
mine frequent call sequences from execution traces extracted
statically in client code. Zhong et al. [46] propose an
approach that combines clustering with sequence mining to
mine context-sensitive specifications from client code.

Most of these preceding previous approaches use existing
client code as an input. When a library is not popular or
new, its clients are difficult to find, and randomly generated
test cases may not reflect real usages of libraries. Our
previous work [38] shows that even in a popular library,
some methods or classes are rarely used. As our approach
does not need client code, it is able to infer specifications
when these methods have descriptions, complementing these
previous approaches. These inferred specifications can be
used to detect bugs when developers leverage libraries to
develop client code.

Arnout and Meyer [3] propose an approach to man-
ually extract contracts from .NET documents. Their in-

ferred contracts consist of invariant-like preconditions and
postconditions and do not capture legal call sequences as
our approach does. Tan et al. [37] propose iComment that
extracts rules from rule-containing comments in source files.
One such comment is the comment of free_irq() in
the Linux kernel: “This function must not be called from
interrupt context”. iComment first identifies rule-containing
comments using a trained decision tree and then uses a set
of templates to infer rules from these comments. In this
example, the corresponding template is “⟨𝐹𝐴⟩ must (NOT)
be called from ⟨𝐹𝐵⟩”. iComment further uses extracted rules
to find inconsistencies between comments and code. These
rules can be considered as specifications. Although both
iComment and our approach infer specifications from texts
in natural languages, our approach differs from iComment
as follows. First, our approach focuses on inferring resource
specifications from API documentation, whereas iComment
focuses on inferring general specifications from comments.
Second, each specification inferred by our approach is
implicit in multiple textual descriptions, whereas each spec-
ification inferred by iComment is explicit in one sentence.

NLP in software engineering. As many software engi-
neering activities involve natural languages, it is feasible to
leverage NLP techniques to assist these activities. Kof [22]
uses part-of-speech (POS) tagging to identify missing ob-
jects and actions in requirement documents. Sawyer et
al. [35] use POS and semantic tagging to support require-
ment synthesis from documents. Fantechi et al. [13] use
syntactic parsing to analyze uses cases from requirement
documents. Shepherd et al. [36] use various NLP techniques
such as stemming and POS tagging to locate and understand
action-oriented concerns. Our approach uses NLP techniques
to infer specifications from API documentation, and API
documentation is quite different in contents and structures
from other documents such as requirement documents.

Improving documents. Buse and Weimer [5] propose
an approach to generate comments for exception clauses
via code analysis. Dekel and Herbsleb [10], [11] propose
eMoose that pushes and highlights those rule-containing
sentences from API documentation for developers. Their
approach improves the quality of documentation, whereas
our approach infers specifications from API documentation
and detects bugs in code.

IV. APPROACH

The overview of our approach is shown in Figure 3.
Our approach focuses on API documentation in the form
of Javadoc. Javadoc2 is an industrial tool to generate API
documentation for libraries in Java. In this paper, we also
use “Javadoc” to denote API documentation generated by
this tool. Figure 4 shows several pieces of J2SE’s Javadoc.
We next present detailed steps of our approach.

2http://java.sun.com/j2se/javadoc/
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Figure 3. Overview of our approach

A. Javadoc analysis

The first step of our approach is to extract method de-
scriptions and class/interface hierarchies from Javadocs. As
shown in Figure 4, in Javadocs, method descriptions are un-
der the topic “Method Summary”, and class/interface hierar-
chies are under the topics “Class Hierarchy” and “Interface
Hierarchy”. As Javadocs are in a structured HTML format,
these topics are easy to locate. Specifically, for each method
in a class, our approach locates the topic “Method Summary”
by searching for the anchor name “method summary”. Some
methods may have no descriptions, and our approach ignores
these methods (see Section VII for details). To extract
class/interface hierarchies, our approach first searches for
the file named “package-tree.html” in the directory of each
package, and then locates the topics “Class Hierarchy” and
“Interface Hierarchy” through text matching.

B. NLP analysis

The second step of our approach is to build an action-
resource pair from each method’s description through NLP
analysis. In NLP, the problem of identifying words belonging
to a predefined category in a document is known as Named
Entity Recognition (NER) [6]. In the literature, researchers
have proposed rule-based approaches, dictionary-based ap-
proaches, and machine-learning-based approaches to recog-
nize those entities. In particular, rule-based approaches [28]
use hand-crafted rules. A typical application of rule-based
approaches is to recognize email addresses where entities are
clearly defined through capital letters, symbols, and digits.
Dictionary-based approaches [7] use a large collection of
names as a dictionary for entities. A typical application of
dictionary-based approaches is to recognize baseball players
where a baseball site3 has a list of all players. Machine-
learning-based approaches [48] use mature machine learning
techniques and various characteristics (e.g., capitalization,
digitalization, and contexts) for recognition.

As it is difficult to build hand-crafted rules or dictionaries
for actions and resources, we choose machine-learning-
based approaches for actions and resources. In particular,
our approach uses the NER based on Hidden Markov Model
(HMM) since it is reported to perform better than other
machine-learning-based approaches [48].

In NER, HMM is a five-tuple {Ω𝑠,Ω𝑜, 𝜋, 𝐴,𝐵} where

3http://mlb.com

Figure 4. Javadoc of J2SE

∙ Ω𝑠 = {𝑠1, . . . , 𝑠𝑛} is the finite set of states. In our
approach, these states include action, resource, and
other.

∙ Ω𝑜 = {𝑜1, . . . , 𝑜𝑛} is the set of observations. In our
approach, 𝑜𝑖 = ⟨𝑤𝑖, 𝑓𝑖⟩ where 𝑤𝑖 is a word and
𝑓𝑖 = ⟨𝐹𝑊

𝑖 , 𝐹𝑀
𝑖 , 𝐹𝑃𝑂𝑆

𝑖 ⟩. Here, 𝐹𝑊 denotes the word
feature such as capitalization and digitalization; 𝐹𝑀

denotes the morphological feature such as prefix and
suffix; 𝐹𝑃𝑂𝑆 denotes the part-of-speech feature such
as nouns, verbs, prepositions, adverbs, and adjectives.

∙ 𝜋 ∈ Ω𝑠 is the initial state. In our approach, 𝜋 denotes
the state of the first word of each method description.

∙ 𝐴 : Ω𝑠 × Ω𝑠 → [0, 1] is the probability distribution
on state transitions. For example, 𝐴(𝑎𝑐𝑡𝑖𝑜𝑛, 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒)
denotes the probability of a transition from action to
resource.

∙ 𝐵 : Ω𝑠 × Ω𝑜 → [0, 1] is the probability dis-
tribution on state symbol emissions. For example,
𝐵(𝑎𝑐𝑡𝑖𝑜𝑛, ⟨𝑐𝑙𝑜𝑠𝑒, 𝑓⟩) denotes the probability of ob-
serving ⟨𝑐𝑙𝑜𝑠𝑒, 𝑓⟩ when it is in the state action.

Our approach first uses the Baum-Welch algorithm [4]
to train the parameters (𝐴 and 𝐵) from manually tagged
method descriptions. The training process builds a model
that describes characteristics of actions and resources. After
training, our approach then uses the Viterbi algorithm [39]
to tag method descriptions with scores based on the trained
model.

For each method description, our approach chooses the
action and the resource both with the highest scores to build
the action-resource pair for the method. Here, descriptions
of some methods may not contain actions and resources.
One such description is “This method is not supported in the
RtfWriter”. Our approach does not tag actions and resources
for these descriptions since no words in these descriptions
have common characteristics of actions or resources. Our
approach does not build action-resource pairs for these
methods and ignores them in the third step.
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C. Automata inference

The final step of our approach is to infer automata
for resources from action-resource pairs and class/interface
hierarchies. For each class/interface, our approach first
groups methods declared by the class/interface or the
class/interface’s superclasses/superinterfaces into categories
since a class and its superclass may access one resource.
In each category, resources of methods are of the same
name. For example, Figure 5 shows an interface hierarchy
involving three interfaces. Our approach builds the action-
resource pairs from the method descriptions as follows:
java.nio.channels.Channel.close()

⟨𝑐𝑙𝑜𝑠𝑒, 𝑐ℎ𝑎𝑛𝑛𝑒𝑙⟩ ←“Closes this channel.”
java.nio.channels.GatheringByteChannel.write()

⟨𝑤𝑟𝑖𝑡𝑒, 𝑐ℎ𝑎𝑛𝑛𝑒𝑙⟩←‘Writes a sequence of bytes to this
channel from the given buffers.”
java.nio.channels.ReadableByteChannel.read()

⟨𝑟𝑒𝑎𝑑, 𝑐ℎ𝑎𝑛𝑛𝑒𝑙⟩←“Reads a sequence of bytes from
this channel into the given buffer.”

Here, “buffer” is not recognized as a resource because its
score is lower than “channel” in these two descriptions. Our
approach next groups the methods for the three interfaces as
follows:
java.nio.channels.GatheringByteChannel

{write(), close()}
java.nio.channels.ReadableByteChannel

{read(), close()}
java.nio.channels.Channel

{close()}
Our approach puts these methods into categories based

on their resource names and interface inheritances. Our
approach does not group read() and write() into one
category since their declaring interfaces are not subinterface
and superinterface. To distinguish resources in different
categories, we use “resource name@class/interface name”
to denote the resource of one category for a class/interface.

After grouping, our approach further maps methods in
each category to our predefined types according to their
actions. In our approach, we predefine five types of methods:
creation, lock, manipulation, unlock, and closure:

Creation methods: represent actions that create or return
created resources (e.g., create, open, and connect).

Lock methods: represent actions that lock created re-
sources (e.g., lock and acquire).

Manipulation methods: represent actions that manipulate
created resources (e.g., get, set, and various other actions).

Unlock methods: represent actions that unlock locked
resources (e.g., unlock and release).

Closure methods: represent actions that release created
resources (e.g., destroy, close, and free).

In each category, our approach maps its methods to
the preceding types. If a method’s action is within the
representative actions, our approach simply maps the method
to the type. Otherwise, our approach maps the method by
synonyms of its action using a synonym dictionary (i.e.,
WordNet [14]). If using synonyms still fails to resolve a
method’s action, we map the method into a manipulation
method since there can be various types of manipulations
on a resource.

Our approach then builds an automaton for each cate-
gory based on our predefined specification template (see
Section VII-C for the discussion on extensions of the speci-
fication template). In each category, our approach associates
methods of each type to the type’s corresponding transition
in the specification template. In practice, some resources
may have no methods of specific types and their automata
need to be tailored. Our approach deletes transitions without
any associated methods from our template and merges
corresponding states. In the example shown in Section II, as
the resource has no lock methods, our approach deletes the
transition labeled with “lock” and merges the exiting state
and the entering state of the transition into one state. Our
approach also deletes the transition labeled with “unlock”
and merges the corresponding states since the resource has
no unlock methods either. Thus, our approach builds the
automaton shown in Figure 2 from the specification template
shown in Figure 1. Here, some resources have only one type
of method, and their inferred automata have only one state
consequently. Our approach discards these automata since
they are not helpful to detect bugs.

V. EVALUATIONS

We implemented a tool for our approach and conducted
a series of evaluations using the tool. Our evaluations focus
on two aspects of our approach: the performance of docu-
mentation analysis and specification inference (Section V-A)
and the quality of inferred specifications (Section V-B).

In our evaluations, we manually tagged actions and re-
sources for the descriptions of 687 methods in the J2SE
Javadoc in one day, and trained Doc2Spec using these tagged
descriptions in about ten seconds. We then used the trained
Doc2Spec to infer resource specifications for five libraries:
J2SE4, J2EE5, JBoss6, iText7, and Oracle JDBC driver8. We
conducted all the evaluations on a PC with an Intel Pentium
2.26 GHz CPU and 1512M memory running Windows 2000
professional.

4http://java.sun.com/javase/
5http://java.sun.com/javaee/
6http://www.JBoss.org
7http://www.lowagie.com/iText/
8http://tinyurl.com/6nj4x
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Table I
PERFORMANCE OF DOC2SPEC

Lib Version #M #D #Spec DT ST
J2SE 5.0 25675 23829 3250 400.2 2357.2
J2EE 5.0 5670 5611 83 95.7 151.4
JBoss 4.0.5 26053 13869 373 430.4 140.0
iText 2.1.3 5846 4299 243 112.2 52.4

Oracle 10.1.0.5 2140 1916 32 28.3 22.4
Total 65384 49524 3981 1067.0 2723.4

A. Performance

To evaluate the performance of Doc2Spec, we recorded
related data during documentation analysis and specification
inference for each library, and Table I shows the results.
Column “Lib” lists the names of the five used libraries. In the
rest of the paper, we use “Oracle” to denote Oracle JDBC
driver. For each library, column “#M” lists the number of
methods. Column “#D” lists the number of methods with
descriptions. Column “#Spec” lists the number of inferred
resource specifications. Column “DT” lists the time used to
extract method descriptions and class/interface hierarchies
in seconds. Column “ST” lists the time used to infer specifi-
cations based on the extracted information in seconds. Row
“Total” lists total numbers for these columns.

From the results in Table I, we have the following
observations. First, for all the five libraries, both the time
used to extract method descriptions and the time used to
infer specifications are acceptable. Second, the time used to
infer specifications of J2SE is much longer than the time
of other libraries. We suspect the reason to be that there
are much more inferred specifications for J2SE. Finally, for
each library, the time used to extract method descriptions
is largely proportional to the number of methods in the
library. This observation indicates that extraction of method
descriptions and class/interface hierarchies in Doc2Spec is
scalable.

Another notable issue is that each library has some meth-
ods without descriptions. Although only a small percentage
of the total methods do not have descriptions in J2SE, J2EE,
and Oracle, there are many methods without descriptions in
JBoss and iText. We further discuss the impact of methods
without descriptions on our approach in Section VII.

B. Quality of Inferred Specifications

Figure 6 shows six example inferred specifications. In
a specification, the text box shows the resource and the
automaton shows the call relationship of the related methods.
To evaluate whether our approach infers various accurate
specifications, we next present the statistics of the inferred
specifications. As these inferred resource specifications are
formal compared with documentation in natural languages,
it is possible to use these specifications to detect bugs. To
evaluate the usefulness of the inferred specifications, we next
also present the results of using these specifications to detect
bugs in open source projects.

1) Statistics of inferred resource specifications: Table I
shows the basic statistics of the inferred resource specifica-
tions. To analyze the distribution of specifications in each
library, we further present Figures 7 and 8. In the two
figures, the vertical axes show the names of the libraries,
and horizontal axes show percentages of specifications that
involve specific numbers of methods or classes/interfaces.
For example, the black bar of “J2SE” in Figure 7 shows that
69.1% of the specifications inferred from Javadoc of J2SE
have 2 or 3 methods. Overall, the results indicate that our
approach is able to infer various and complex specifications,
although most of the inferred specifications involve only one
or two classes/interfaces and fewer than five methods.

To further investigate whether inferred specifications are
accurate, we compared these inferred specifications with
a golden standard. To prepare a golden standard for each
library, we first grouped the class/interface hierarchies in the
library, so that the hierarchies in each group are of the same
maximum depth of inheritance. For each library, we then
randomly selected one hierarchy from each group and manu-
ally built resource specifications for all the classes/interfaces
within these selected hierarchies based on manually reading
their Javadocs. Table II shows the results. Column “#H” lists
the number of selected hierarchies in each library. Column
“#S” lists the number of manually built specifications for
each selected hierarchy. In statistical classification [30],
Precision for a category is the number of true positives
divided by the total number of items labeled as belonging to
the positive category, Recall is the number of true positives



Figure 7. Percentages of specifications that involve specific numbers of
methods

Figure 8. Percentages of specifications that involve specific numbers of
classes/interfaces

divided by the total number of items that actually belong to
the positive category, and F-score is the weighted harmonic
mean of Precision and Recall. In our comparison, Precision,
Recall, and F-score are defined as follows.

𝑃𝑟𝑒𝑐𝑖𝑠𝑜𝑛 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+ 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
(1)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+ 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
(2)

𝐹−𝑠𝑐𝑜𝑟𝑒 = 2× 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
(3)

In the preceding formulae, true positives represent those
transitions that exist in both the inferred specifications and
the golden standard; false positives represent those transi-
tions that exist in the inferred specifications but not in the
golden standard; false negatives represent those transitions
that exist in the golden standard but not in the inferred
specifications. We choose to calculate these statistical values
by transitions since each transition can be used to detect bugs
instead of a whole specification.

The results show that our approach achieves relatively
high precisions, recalls, and F-scores on all these libraries.
The results also show that to infer specifications from a
library, our approach does not require the training corpora
to be from the same library because our approach achieves
similar precisions, recalls, and F-scores for all the five
libraries although we tagged method descriptions of only
J2SE as the training corpora. A potential explanation lies in
that most developers of API documentation follow a similar
style to write Javadocs of libraries. Consequently, users of
our approach can rely on a set of universal training corpora
to deal with Javadocs instead of taking on the burden of

preparing training corpora before taking advantage of our
approach.

In summary, the statistics of resource specifications in-
ferred by Doc2Spec show that our approach is able to infer
various resource specifications from Javadocs of the five
libraries and our approach is able to achieve relatively high
precisions, recalls, and F-scores on specification inference.

2) Usefulness of inferred resource specifications: We
further used the specifications inferred by Doc2Spec to
detect bugs in open source projects to evaluate the usefulness
of these specifications.

We implemented an infrastructure to automate our eval-
uation. For a specification, our infrastructure first searches
for the specification’s related code snippets from the Internet
using Google code search engine9 (GCSE) and downloads
these code snippets to local directories. For a method in a
specification, our infrastructure uses the method name and
the full name of the method’s declaring class as the query of
GCSE to search for related code snippets. To parse partial
code of downloaded code snippets, our infrastructure uses a
partial parser [9] to resolve class types and to build control-
flow graphs. Our infrastructure uses inter-procedural analysis
but limits the analysis within the same class since code
snippets from GCSE are partial. Finally, our infrastructure
checks whether the downloaded code snippets violate the
inferred specification using the resolved types and the built
control-flow graphs. In particular, if a resource is declared
by a method as a local variable, our infrastructure checks the
method’s control-flow graph using the following criteria:

O/M: A manipulated resource should be already created
if a resource has manipulation methods and cre-
ation methods.

O/C: A created resource should eventually be closed
if a resource has creation methods and closure
methods.

L/U: A locked resource should eventually be unlocked if
a resource has lock methods and unlock methods.

M/C: A manipulated resource should be closed eventu-
ally if a resource has manipulation methods and
closure methods. This criterion is necessary be-
cause a resource may not have creation methods.
In such a circumstance, the criteria O/M and O/C
are not applicable.

If a resource is declared by a class as a field, our
infrastructure checks whether two types of methods involved
in the criteria are both called in the class’s methods. For
example, if a class declares a file as a field and opens the
file in a method of the class, the class should also close
the file in some method of the class. Otherwise, the class
contains an “O/C” violation. Note that this requirement may
be too strict and thus cause false positives.

9http://www.google.com/codesearch



Table III
RESULTS OF FOUND VIOLATIONS AND SUSPECTED BUGS AMONG THEM

Library API clients
Violations Suspected bugs False positives

O/C L/U M/C O/M O/C L/U M/C O/M Spec Partial Strict Doc
J2SE 46 32 3 47 0 2 0 9 0 4 17 16 34
J2EE 23 8 2 32 0 2 0 14 0 2 8 6 10
JBoss 45 27 62 101 0 4 11 31 0 7 59 34 44
iText 9 11 0 4 0 4 0 0 0 0 4 2 5

Oracle 15 20 0 34 0 11 0 12 0 0 13 11 7
Total 138 383 100 283

2009-5-13

1

if (log isDebugEnabled()) log debug("Retrieving " + url);

protected byte[] getBytes(URL url) throws IOException {

InputStream in = new BufferedInputStream(url.openStream()); 

WebServer.java (version 2.4.11) WebServer.java (version 4.2.0)

protected byte[] getBytes(URL url) throws IOException { 

InputStream in = new BufferedInputStream(url.openStream()); 

log debug("Retrieving "+url toString());

return out.toByteArray(); 

}

in.close();

ByteArrayOutputStream out = new ByteArrayOutputStream(); 

byte[] tmp = new byte[1024]; 

int bytes; 

while ((bytes = in.read(tmp)) != -1) { 

out.write(tmp, 0, bytes); 

}

if (log.isDebugEnabled())   log.debug( Retrieving + url);log.debug( Retrieving +url.toString());

ByteArrayOutputStream out = new ByteArrayOutputStream(); 

byte[] tmp = new byte[1024]; 

int bytes; 

while ((bytes = in.read(tmp)) != -1) { 

out.write(tmp, 0, bytes); 

}

return out.toByteArray(); 

}

}

Figure 9. A confirmed bug in the JBoss application server

Table II
PRECISIONS, RECALLS, AND F-SCORES OF INFERRED SPECIFICATIONS

Library #H #S Precision Recall F-score
J2SE 8 41 80.2% 82.2% 81.2%
J2EE 7 30 70.7% 79.3% 74.8%
JBoss 8 37 81.5% 74.0% 77.6%
iText 6 22 86.5% 85.2% 85.8%

Oracle 5 17 82.3% 86.2% 84.2%

We manually inspected violations detected by our infras-
tructure. Among the violations, we identified those that we
were able to determine not to be bugs. We refer to these
identified violations as false positives. Furthermore, we in-
vestigated the possible reasons that cause the false positives.
We refer to the remaining violations as suspected bugs. Due
to human factors for determining bugs, these suspected bugs
may contain both false and real bugs. We further analyze the
causes of these suspected bugs. Table III shows the results.
Column “API clients” lists the number of client projects with
violations. These API clients are all from released versions
of mature software. Column “Violations” lists the number of
code snippets with found violations. Its sub-columns list the
number of violations detected by the corresponding criterion.
Column “Suspected bugs” lists the number of code snippets
with suspected bugs. Similar to Column “Violations”, sub-
columns of column “Suspected bugs” list the number of sus-
pected bugs detected by the corresponding criterion. Column
“False positives” lists the number of false positives, and its
sub-columns list the numbers of false positives caused by
different factors. In particular, sub-column “Spec” represents
false positives caused by incorrectly inferred specifications.
Sub-column “Partial” represents false positives caused by
the imprecision of partial analysis. Sub-column “Strict”
represents false positives caused by the strict requirement
in our infrastructure to detect bugs. For example, it is

possible that a class returns the file to other classes and
lets other classes close the file, and such a situation causes
false positives. Sub-column “Doc” represents false positives
caused by flaws in API documentation (see Section VII-C
for such an example). From the results in Table III, we have
the following observations. First, our infrastructure detected
383 violations in total, including 283 false positives. That
is to say, 73.9% of the found violations are false positives
(see Section VII-B for the discussion on the false positive
rate). Second, most of the found violations are “O/C” and
“M/C” violations, and we did not find any “O/M” violation.
We suspect the reason to be that most code snippets from
open source projects may have been tested by developers.
As “O/M” violations can cause serious problems such as
exceptions that are easy to observe, developers may have
found these violations and fixed them, whereas other viola-
tions may cause problems such as memory leaks that are not
easy to observe. Third, as shown in sub-column “Spec” of
Table III, incorrectly inferred specifications are not the main
factor of false positives. Finally, many false positives are
caused by flaws in API documentation. This factor seems to
reflect a disadvantage of our approach. However, as these
false positives can draw library developers’ attention to
flaws in API documentation, these library developers may
use the reported violations to improve the quality of API
documentation (see Section VI for details).

To better validate the suspected bugs, we used the follow-
ing procedure to determine whether they are real bugs. First,
we checked the latest version of the project to determine
whether a suspected bug is already fixed. If so, we deemed
that we found a previously known real bug. For example,
with our infrastructure, we found a suspected bug of an
unclosed input stream in the JBoss application server when
we use specifications inferred from J2SE’s Javadoc to find



bugs. We checked JBoss’s latest version and confirmed that
this suspected bug is a real bug. In particular, the left code
snippet of Figure 9 shows the found suspected bug, and the
right code snippet of Figure 9 shows how the suspected bug
is fixed. Second, if a suspected bug of a project is not fixed
even in the latest version, we submitted the suspected bug
as a bug report to the project’s bug repository or contacted
the project’s developers through emails. If developers of
the project confirmed that the suspected bug is a real bug,
we deemed that we found a previously unknown bug. If
developers of the project confirmed that a suspected bug is
not a bug, we deemed it as a false bug. For those bug reports
or bug-reporting emails that developers of the project have
not responded yet, we deemed them as pending bugs.

Table IV shows the results. Column “Susp.” lists the total
number of suspected bugs. Column “Confirmed” lists the
number of confirmed bugs, and its sub-columns list the
numbers of previously known and unknown bugs. Column
“False” lists the number of suspected bugs that the devel-
opers confirmed as false bugs. Column “Pending” lists the
number of suspected bugs whose reports developers have not
responded yet. The results of Table IV show that we found
35 confirmed real bugs, including 5 previously unknown
bugs. We next describe the details of some confirmed bugs
and pending bugs10.

Unclosed resources in normal code. For example, we
found a previously known bug in a code snippet of the
Apache Lucene project11 since its developer does not close
a local variable named reader.

protected DocData getNextDocData()throws ...{
...
BufferedReader reader = new BufferedReader(

new FileReader(f));
String dateStr = reader.readLine();
...
return dd;

}

Another previously known bug was found in the code
snippet of the Spring Framework project12 since its devel-
oper does not close a local variable named producer.

protected void doSend(Session session, Destination
destination, MessageCreator messageCreator) throws ...{

MessageProducer producer =
createProducer(session, destination);

...
doSend(producer, message);
...

}

protected void doSend(MessageProducer producer, Message
message) throws ...{

...
producer.send(message);
...

}

10Our infrastructure found these bugs in Aug., 2008. As the GCSE’s
repository evolves quickly, many URLs of buggy snippets have now become
invalid, so we do not provide these URLs from GCSE here.

11http://lucene.apache.org
12http://www.springframework.org

We found a pending bug in the code snippet of the Globus
project13 since its developer does not close a local variable
named ix.
public String ejbCreate(...) throws ...{

try{
Interaction ix = this.jmCon.createInteraction();
...
Record oRec = ix.execute(iSpec, iRec);
Iterator iterator = ((IndexedRecord)oRec).iterator();
this.primaryKey = (String)iterator.next();
return this.primaryKey;

} catch (ResourceException rex) {
throw new EJBException("ejbCreate: " + ...);

}
}

We suspected this pending bug as a real bug since we
found that in the same code snippet, the developer does close
ix in another method as follows.
public void cancel() throws ...{

try{
Interaction ix = this.jmCon.createInteraction();
...
Record oRec = ix.execute(iSpec, iRec);
...
ix.close();
return;

} catch (ResourceException rex) {
throw new EJBException("cancel(): " + ...);

}
}

Unclosed resources in exception handling. For example,
we found a previously unknown bug in a code snippet of the
project TopX14 since its developer does not close rRset in
its exception block. This bug is not fixed even in the latest
version and is confirmed by the developers of TopX through
emails.
public double getMinimumScore(){

...
try{

rRset = mStmt.executeQuery("...");
...
rRset.close();

} catch (SQLException e) {
e.printStackTrace();

}
}

We found a pending bug in a code snippet of the SIM-PL
project15 since its developer does not close document in its
exception block either.
public double save(...) throws ...{

...
try{

...
com.lowagie.text.Document document

= new com.lowagie.text.Document(new
com.lowagie.text.Rectangle(bb.width, bb.height));

...
document.open();
...
document.close();

} catch (DocumentException ex) {
throw new IOException(ex.toString());

}

13http://www.globus.org
14http://topx.sourceforge.net
15http://www.science.uva.nl/amstel/SIM-PL/



Table IV
CONFIRMATION OF SUSPECTED BUGS

Library Susp.
Confirmed

False PendingKnown Unknown
J2SE 11 9 0 1 1
J2EE 16 7 0 1 8
JBoss 46 14 1 4 27
iText 4 0 0 0 4

Oracle 23 0 4 0 19
Total 100 30 5 6 59

}

In summary, using specifications inferred by Doc2Spec,
we found various previously known and unknown bugs that
are related to resource usages in open source projects. The
results demonstrate the usefulness of our inferred specifi-
cations, because developers did produce source code that
is inconsistent with the resource usages described in API
documentation.

C. Threats to Validity

The threat to external validity includes the representative-
ness of the subjects in true practice. Although we applied our
approach on Javadocs of five open source and commercial
libraries, our approach is evaluated only on Javadocs of
these limited libraries. The threat could be reduced by more
evaluations on more subjects in future work. The threat
to internal validity includes human factors for determining
bugs. To reduce the threat, we inspected bugs carefully
and contacted developers to confirm these bugs. The threats
could be further reduced by involving more experienced
developers in future evaluations.

VI. BENEFITS

To our knowledge, our work is the first approach that
infers specifications from API documentation. In this sec-
tion, we analyze the benefits of our approach over existing
approaches or practices.

Mining specifications from client code. Our previous
work [38] shows that coldspots are quite common in li-
braries. Coldspots of libraries represent those methods and
classes that are rarely used by existing client code. In
particular, our previous studies [38] show that in eight
widely used libraries, coldspots are all more than the sums of
hotspots and neutrals. Approaches that mine specifications
from existing client code may have difficulties of mining
specifications for those coldspots, whereas our approach
does not need any client code, complementing these ap-
proaches.

Inferring specifications from comments. Tan et al. [37]
proposed the first approach that infers rules from comments
within source code. We used all the rule templates listed
in Table 2 of their paper [37] to query the API documen-
tation of J2SE 1.5, and we found only 11 exactly matched
sentences. Padioleau et al. [31] report that iComment [37]
leveraged only 1% of comments since most comments do

not explicitly contain rules. Our approach is able to infer var-
ious specifications from API documentation, complementing
their approaches.

Detecting bugs in API documentation. As shown in
Table III, many false positives are caused by bugs in API
documentation. For example, Figure 6a shows an inferred
specification for the resource socket@java.net.Socket.
When we used this specification to find bugs, we found
that in many code snippets, close() is not called after
connect(). We further checked these code snippets, and
we found that in the J2SE library, a socket is often associated
with an input stream. When the input stream is closed, the
socket is automatically closed. As this usage is contrary
to normal expectations, some developer has submitted a
bug report to the J2SE bug database16 (see Bug #4118429
for details). This reported bug is confirmed as a real bug
by J2SE developers. Although we count these violations
as false positives in Table III, our observation suggests
that our approach can also be used to find bugs in API
documentation.

VII. DISCUSSION AND FUTURE WORK

In this section, we discuss various issues that are related
to our approach: resource analysis, false positive rate, and
extensions of our approach.

A. Resource analysis

One class/interface may have more than one resource. For
each resource, our approach infers an automaton. For exam-
ple, Figure 6c and Figure 6d show two inferred specifications
for one class WebModuleFactory. If we simply select those
common concrete nouns as resources, we would mix the two
automata and infer a false specification because from their
documentation17 the descriptions of the four methods use
the same common concrete noun “JSR-77”. In addition, we
found that some resources of different names refer to the
same resource. For example, “Document”, “RtfDocument”,
and “RTF document” refer to the same resource in the
document for com.lowagie.text.rtf.RtfWriter2. The
current implementation of Doc2Spec cannot group methods
of the three resources into one category yet. In NLP, the
problem of resolving noun phrases to one real-world entity
is known as coreference resolution [19]. We plan to leverage
these techniques to infer better specifications in future work.

B. False positive rate

As shown in Table III, the false positive rate of our
approach is 73%. It is reasonable due to four factors.
First, some found bugs in documentation are interpreted
as “false positive” instead of “true positive”. Second, we
use all inferred specifications for detecting bugs instead
of using some selected specifications as some previous

16http://bugs.sun.com/bugdatabase/
17http://tinyurl.com/5zyrah



work [45] did. Third, static checkers typically produce
high false positive rate (e.g., 76% reported by Williams
and Hollingsworth [43]). In addition, due to the intrinsic
difficulty in parsing partial code, the resolved types and
the built control-flow graphs are not fully accurate. As a
result, our approach may cause more false positives than
traditional static checkers. Finally, even under the negative
impact of the preceding factors, our false positive rate is
comparable with other approaches (e.g., 63% reported by
Tan et al. [37]). Indeed, reducing false positives is quite
important, and we plan to reduce our false positive rate in
our future work. For example, some descriptions contain
words such as “has to be closed”. If our approach takes
these words into consideration, we may further reduce false
positives of our approach.

C. Extensions

Bugs in local code bases. In this paper, we developed an
infrastructure to check code snippets returned from GCSE.
The infrastructure helps us detect various violations to show
the usefulness of inferred specifications. To help developers
find bugs using inferred specifications, we plan to adapt
our bug-detection infrastructure also for local code bases in
future work. As our evaluations confirm that our approach
infers various useful specifications to detect real bugs, we
expect the adapted infrastructure to be useful for developers
to detect bugs in local code bases. Our adapted infrastructure
could produce fewer false positives as it does not have to
rely on partial analysis for local code bases whose source
files are often complete. Furthermore, for local code bases,
we can use version information to improve bug detection.

Mining specification templates. Our approach relies on
a predefined specification template for inferring resource
specifications. In practice, some resource usages may be
quite complicated and cannot be instantiated with our pre-
defined template. As discussed in Section III, there are
many approaches that mine rich specifications from various
data. We plan to mine specification templates from existing
specifications mined by those approaches. After mining
specification templates, we can further improve our approach
to mine more complicated resource usages.

Other API documentation and descriptions. API doc-
umentation other than Javadocs may follow different con-
ventions to describe actions and resources. In addition, de-
scriptions of parameters, return values, and exception throws
may also contain useful information to infer specifications.
We need to tag specific training corpora for other API
documentation that follows quite different conventions. We
also need to extend our HMM model to deal with other
descriptions and explore whether these descriptions help our
specification inference in future work.

Analyzing library code. Library code analysis may help
infer specifications for methods without descriptions. In par-
ticular, Fry et al. [15] propose an approach that can extract

verb-direct object pairs from method signatures. We plan
to adapt their approach to extract action-resource pairs from
method signatures for methods without descriptions in future
work. Library code analysis may also be useful for methods
with descriptions. In particular, our previous work [47] infers
specifications from library code statically. Some analysis
results may be used to supplement the information from
Javadocs. Library code analysis can also help find bugs
either in libraries or in Javadocs as Einar and Bjarte [20]
proposed.

VIII. CONCLUSION

Developers may still produce bugs related to resources
even when correct usages of these resources are already
described in API documentation. In this paper, we propose
a novel approach that infers resource specifications from
existing API documentation. We conducted an evaluation
on Javadocs of five widely used libraries. The results show
that our approach infers various specifications with relatively
high precisions, recalls, and F-scores. We further conducted
an evaluation to use inferred specifications to detect bugs.
The results show that resource specifications inferred by our
approach are useful to detect real bugs in practice.
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