
Repair in the Leon tool

Manos Koukoutos

LARA, EPFL, Switzerland

May 1, 2017

Manos Koukoutos Repair in the Leon tool

Problems in SAV

Verification problem:
Given a correct specification and an implementation, prove
if the implementation is correct or not (for every input)

Synthesis problem:
Given a correct specification and no implementation, come
up with a correct implementation

Repair problem:
Given a correct specification and an erroneous
implementation, come up with a correct implementation.

Specification: either a logical formula, or input-output examples.

Manos Koukoutos Repair in the Leon tool

Example: Max Heap merging as a verification problem

Input:

def merge(h1: Heap, h2: Heap) : Heap = {
require(isLegalHeap(h1) && isLegalHeap(h2))
(h1,h2) match {

case (Leaf(),) ⇒ h2
case (, Leaf()) ⇒ h1
case (Node(v1, l1, r1), Node(v2, l2, r2)) ⇒

if(v1 ≤ v2)
Node(v2, l2, merge(h1, r2))

else
Node(v1, l1, merge(r1, h2))

}
} ensuring { res ⇒
isLegalHeap(res) &&
h1.content ++ h2.content == res.content
}

Output: Correct for every input!

Manos Koukoutos Repair in the Leon tool

Example: Max Heap merging as a synthesis problem

With logical specification:

def merge(h1: Heap, h2: Heap) : Heap = {
require(isLegalHeap(h1) && isLegalHeap(h2))
choose((res: Heap) ⇒
isLegalHeap(res) &&
h1.content ++ h2.content == res.content

)
}

Manos Koukoutos Repair in the Leon tool

Example: Max Heap merging as a synthesis problem

With examples:

def merge(h1: Heap, h2: Heap) : Heap = {
require(isLegalHeap(h1) && isLegalHeap(h2))
choose((res: Heap) ⇒
((h1, h2), res) passes {

case (Leaf(), Leaf()) ⇒ Leaf()
case (Leaf(), Node(0, Leaf(), Leaf())) ⇒
Node(0, Leaf(), Leaf())

case (
Node(1, Leaf(), Leaf()),
Node(0, Leaf(), Leaf())

) ⇒
Node(
1,
Leaf(),
Node(0, Leaf(), Leaf())))}}

Output: Implementation of previous slide.

Manos Koukoutos Repair in the Leon tool

Example: Max Heap merging as a repair problem

Input:

def merge(h1: Heap, h2: Heap) : Heap = {
require(isLegalHeap(h1) && isLegalHeap(h2))
(h1,h2) match {

case (Leaf(),) ⇒ h2
case (, Leaf()) ⇒ h1
case (Node(v1, l1, r1), Node(v2, l2, r2)) ⇒

if(v1 ≥ v2)
Node(v2, l2, merge(h1, r2))

else
Node(v1, l1, merge(r1, h2))

}
} ensuring { res ⇒
isLegalHeap(res) &&
h1.content ++ h2.content == res.content
}

Output: the above code where ≥ has been replaced with ≤.

Manos Koukoutos Repair in the Leon tool

Example: Max Heap merging as a repair problem

Input:

def merge(h1: Heap, h2: Heap) : Heap = {
require(isLegalHeap(h1) && isLegalHeap(h2))
(h1,h2) match {

case (Leaf(),) ⇒ h2
case (, Leaf()) ⇒ h1
case (Node(v1, l1, r1), Node(v2, l2, r2)) ⇒

if(v1 ≥ v2)
Node(v2, l2, merge(h1, r2))

else
Node(v1, l1, merge(r1, h2))

}
} ensuring { res ⇒
isLegalHeap(res) &&
h1.content ++ h2.content == res.content
}

Output: the above code where ≥ has been replaced with ≤.

Manos Koukoutos Repair in the Leon tool

Overview of approach for Repair

A human programmer could

Write some tests, run them and classify them as “passing”
and “failing”.

Assume the code is generally correct, and some specific
part(s) are responsible for the failing tests.
In a debugger, follow the trace of a failing test until localizing
the problem to a specific code snippet

Try to find a small change that would fix the snippet. If that
fails, throw it away and write it from scratch.

Rerun the test suite (or verifier!). If there are still issues,
repeat.

Manos Koukoutos Repair in the Leon tool

Overview of approach for Repair

A human programmer could

Write some tests, run them and classify them as “passing”
and “failing”.

Assume the code is generally correct, and some specific
part(s) are responsible for the failing tests.
In a debugger, follow the trace of a failing test until localizing
the problem to a specific code snippet

Try to find a small change that would fix the snippet. If that
fails, throw it away and write it from scratch.

Rerun the test suite (or verifier!). If there are still issues,
repeat.

Manos Koukoutos Repair in the Leon tool

Overview of approach for Repair

A human programmer could

Write some tests, run them and classify them as “passing”
and “failing”.

Assume the code is generally correct, and some specific
part(s) are responsible for the failing tests.
In a debugger, follow the trace of a failing test until localizing
the problem to a specific code snippet

Try to find a small change that would fix the snippet. If that
fails, throw it away and write it from scratch.

Rerun the test suite (or verifier!). If there are still issues,
repeat.

Manos Koukoutos Repair in the Leon tool

Overview of approach for Repair

A human programmer could

Write some tests, run them and classify them as “passing”
and “failing”.

Assume the code is generally correct, and some specific
part(s) are responsible for the failing tests.
In a debugger, follow the trace of a failing test until localizing
the problem to a specific code snippet

Try to find a small change that would fix the snippet. If that
fails, throw it away and write it from scratch.

Rerun the test suite (or verifier!). If there are still issues,
repeat.

Manos Koukoutos Repair in the Leon tool

Stages of the repair algorithm

Test generation and (trace) minimization

Fault Localization

Synthesis of similar expressions

Verification of the solution

Manos Koukoutos Repair in the Leon tool

Test generation and verification

Our algorithm needs at least one failing test, which leads to
erroneous program execution
We obtain tests from various sources:

Input-output examples given by the user

Enumeration of programs

Counterexamples from SMT solver

Manos Koukoutos Repair in the Leon tool

Trace minimization

In the presence of recursive functions, a given test may fail within
one of its recursive invocations.

def merge(h1: Heap, h2: Heap) : Heap = {
require(isLegalHeap(h1) && isLegalHeap(h2))
(h1,h2) match {

case (Leaf(),) ⇒ h1 // Buggy
...
}

(N, N)

(N, L)

(L, L)

A failing test should also be blamed for the failure of all other tests
that invoke it transitively.
In this case, only (Leaf(), Leaf()) is maintained as a failing example.

Manos Koukoutos Repair in the Leon tool

Trace minimization

In the presence of recursive functions, a given test may fail within
one of its recursive invocations.

def merge(h1: Heap, h2: Heap) : Heap = {
require(isLegalHeap(h1) && isLegalHeap(h2))
(h1,h2) match {

case (Leaf(),) ⇒ h1 // Buggy
...
}

(N, N)

(N, L)

(L, L)

A failing test should also be blamed for the failure of all other tests
that invoke it transitively.
In this case, only (Leaf(), Leaf()) is maintained as a failing example.

Manos Koukoutos Repair in the Leon tool

Error Localization

Follow the trace of failing tests to find in which branch of the
program they lead us.

Suppose we have identified as failing tests:
Node(1, Leaf(), Leaf()), Node(0, Leaf(), Leaf())

Node(2, Leaf(), Leaf()), Node(0, Leaf(), Leaf())

(h1,h2) match {
case (Leaf(),) ⇒ h2
case (, Leaf()) ⇒ h1
case (Node(v1, l1, r1), Node(v2, l2, r2)) ⇒

if(v1 ≥ v2)
Node(v2, l2, merge(h1, r2))

else
Node(v1, l1, merge(r1, h2))

}

Manos Koukoutos Repair in the Leon tool

Error Localization

A realistic set of failing tests is
Node(1, Leaf(), Leaf()), Node(0, Leaf(), Leaf())

Node(0, Leaf(), Leaf()), Node(1, Leaf(), Leaf())

(h1,h2) match {
case (Leaf(),) ⇒ h2
case (, Leaf()) ⇒ h1
case (Node(v1, l1, r1), Node(v2, l2, r2)) ⇒

if(v1 ≥ v2)
Node(v2, l2, merge(h1, r2))

else
Node(v1, l1, merge(r1, h2))

}

Manos Koukoutos Repair in the Leon tool

Focusing on if-condition

Do we need to focus on the condition? In testing terms,
is there an alternative condition which makes all tests succeed?

To find out, replace the condition with havoc and run the tests,
i.e. nondeterministically consider both branches of the if for each
test.

If testing succeeds now,
i.e. there exists a valid execution exists for each failing test,
it means that the answer to the question is true.

Manos Koukoutos Repair in the Leon tool

Focusing on if-condition

Do we need to focus on the condition? In testing terms,
is there an alternative condition which makes all tests succeed?

To find out, replace the condition with havoc and run the tests,
i.e. nondeterministically consider both branches of the if for each
test.

If testing succeeds now,
i.e. there exists a valid execution exists for each failing test,
it means that the answer to the question is true.

Manos Koukoutos Repair in the Leon tool

Focusing on if-condition

Do we need to focus on the condition? In testing terms,
is there an alternative condition which makes all tests succeed?

To find out, replace the condition with havoc and run the tests,
i.e. nondeterministically consider both branches of the if for each
test.

If testing succeeds now,
i.e. there exists a valid execution exists for each failing test,
it means that the answer to the question is true.

Manos Koukoutos Repair in the Leon tool

Synthesis - Term Grammars

We have localized the error on the if-condition. Now, we have to
synthesize an alternative solution.

We describe interesting programs with a term grammar. For repair,
the grammar should describe small variations to the original
program and simple arbitrary programs.
E.g.

Boolean ::= Int ≥ v2 | v1 ≥ Int| v2 ≥ v1 | true | false | ...

Manos Koukoutos Repair in the Leon tool

Synthesis - The CEGIS algorithm

Once we have a grammar representing interesting programs, we
can synthesize a solution with the CEGIS algorithm.
Basic idea of CEGIS:

1 Use concrete tests to filter out candidate programs.

2 From those remaining, pick one and send it to the verifier.

3 If verification successful, we are done

4 Otherwise, the verifier generates a counterexample.
Add it to the set of tests and jump back to (1).
(note: step (1) will now filter out more programs)

CEGIS will generate v2 ≥ v1 and verify it as the correct solution

Manos Koukoutos Repair in the Leon tool

Demos!

Manos Koukoutos Repair in the Leon tool

