Quiz Solutions Outline

Synthesis, Analysis, and Verification 2013
for the quiz given on Friday, May 3rd, 2013

Problem 1: Relations ([10 points])

Task a) (3 points)
Not true. Consider $r=\{(a, b),(b, c)\}$ and $s=\{(c, d)\}$. Then clearly $(a, d) \in(r \cup s)^{*}$. On the other hand, we can compute each elements of the right-hand side. We have

$$
r^{*}=\{(a, a),(b, b),(c, c),(a, b),(b, c),(a, c),(b, c),(c, a)\}
$$

and

$$
s^{*}=\{(a, a),(b, b),(c, c),(d, d),(c, d),(d, c)\}
$$

Then we have $(r \circ s)=\{(c, d)\}$, and $(s \circ r)=\emptyset$. None of them contains (a, d).

Task b) (3 points)

Task c) (2 points)
True. We have that $r \cap s \subseteq r$, which implies that $(r \cap s)^{*} \subseteq r^{*}$. Similarly we get $(r \cap s)^{*} \subseteq s^{*}$, and we conclude that $(r \cap s)^{*} \subseteq r^{*} \cap s^{*}$.

Task d) (2 points)
Not true. Consider $r=\{(a, b),(b, c)\}, s=\{(a, c)\}$. We can compute $r^{*}=\{(a, b),(b, c),(a, c)\}$ and $s^{*}=\{(a, c)\}$. Finally the left-hand side is equals to $\{(a, c)\}$. But $r \cap s=\emptyset$.

Problem 2: Loop Semantics with Relations ([20 points])

Task a) (3 points)

$$
r \doteq x<n \Longrightarrow\left(x^{\prime}=x+1 \wedge y^{\prime}=y \cdot m\right)
$$

Task b) (3 points)

- (7, 2, 2, 49)
- $(5,-2,0,1)$
- $(2,3,3,64)$

Task c) (6 points)

$$
m^{\prime}=m \wedge n^{\prime}=n \wedge\left(x<n \Longrightarrow x^{\prime}=n\right) \wedge\left(x \geq n \Longrightarrow x^{\prime}=x\right) \wedge y^{\prime}=m \cdot x^{\prime}
$$

Task d) (8 points)
The precondition sets the initial values of the computation variables x and y as well as the precondition on the exponent n :

$$
x=0 \wedge y=1 \wedge n>0
$$

The postcondition that follows:

$$
y=m^{n}
$$

A sufficient loop invariant is:

$$
x \geq 0 \wedge x \leq n \wedge y=m^{x}
$$

It is initially true since $x=0<n$ and $m^{0}=1=y$. For each iteration, x increases so is still greater than 0 , it only increased by one if it is stricly smaller than n so will remain smaller than n. Also we have $y^{\prime}=y \cdot m=m^{x} \cdot m=m^{x+1}=m^{x^{\prime}}$. The invariant is sufficient because on exit we can additionally assume $x \geq n$, which combined with $x \leq n$ implies that $x=n$ and finally $y=m^{x}=m^{n}$, the postcondition.

Problem 3: Hoare Triples and Loop Invariants ([20 points])

Task a) (5 points)

$$
\{\text { length }>0\} r=\max (m, \text { length })\{\forall i .(0 \leq i<\text { length }) \Longrightarrow r \geq \mathrm{m}(i) \wedge \exists i .(0 \leq i<\text { length }) \Longrightarrow r=\mathrm{m}(i)\}
$$

Task b) (15 points)
The loop invariant is:

$$
i \geq 0 \wedge i \leq \text { length } \wedge \forall k .(0 \leq k<i) \Longrightarrow r \geq m(k) \wedge \exists k .(0 \leq k \leq i) \wedge r=m(k)
$$

The invariant holds initially because $i=0$, length >0, and $r=\operatorname{map}(0)$. The forall holds vacuously and the existential is true for $k=0$.
The invariant is enough to prove the postcondition. At the end of the loop, we can further assume $i \geq$ length, and combined with $i \leq$ length we get $i=$ length. Instantiating the quantifier with the value of i gives us the postcondition.
Finally we need to prove the inductive step. Suppose the invariant is true when entering the body of the loop, we know that $i<$ lenght so $i^{\prime}=i+i \leq$ length and $i^{\prime}>0$. We need to prove that

$$
(\forall k .(0 \leq k<i) \Longrightarrow r \geq m(k)) \Longrightarrow(\forall k .(0 \leq k<i+1) \Longrightarrow r \geq m(k))
$$

which can be reduced to proving that $r \geq m(i+1)$ at the end of the body. That fact is obvious from the if expression. The last part of the proof is to show

$$
(\exists k .(0 \leq k<i) \wedge r=m(k)) \Longrightarrow(\exists k .(0 \leq k<i+1) \wedge r=m(k))
$$

Which follows trivially from the assumption (there already exists such a k).

Problem 4: Lattices ([15 points])

Task a) (5 points)
First we prove that the new ordering is a partial order:
Reflexivity We have $\forall i \in I . f(i) \sqsubseteq f(i)$, thus $f \preceq f$.
Antisymmetry Take $i \in I$, then if by antisymmetry of (L, \sqsubseteq) we have that $f(i) \sqsubseteq g(i) \wedge g(i) \sqsubseteq$ $f(i) \Longrightarrow f(i)=g(i)$, and thus $f \preceq g \wedge g \preceq f \Longrightarrow f=g$.

Transitivity If $f \preceq g \wedge g \preceq h$, we have for any $i \in I$ that $f(i) \sqsubseteq g(i) \wedge g(i) \sqsubseteq h(i)$ and by transitivity of the underlying order we get $f(i) \sqsubseteq h(i)$ for any i, which is the definition of $f \preceq h$.

We can define the least upper bound as $f \sqcup g=h$, where $h(i)=f(i) \sqcup g(i)$. Similarly $f \sqcap g=h$, with $h(i)=f(i) \sqcap g(i)$.
We prove that the definition of \sqcup is correct, proving for \sqcap follows the exact same technique. First we need to show that $f \sqcup g$ is an upper bound of $\{f, g\}$. We have for any i that $f(i) \sqsubseteq f(i) \sqcup g(i)$. Same goes for $g(i)$. So h is an upper bound to f and g.
Let us we prove that it is the least upper bound. Suppose an arbitrary upper bound h^{\prime} such that $f \preceq h^{\prime}$ and $g \preceq h^{\prime}$. So for any $i, f(i) \sqsubseteq h^{\prime}(i) \wedge g(i) \sqsubseteq h^{\prime}(i)$, and so $h^{\prime}(i)$ is an upper bound of $f(i)$ and $g(i)$. Since $f(i) \sqcup g(i)$ is the least upper bound, it follows that $f(i) \sqcup g(i) \sqsubseteq h^{\prime}(i)$, and, by definition, $f \sqcup g \preceq h^{\prime}$, showing that $f \sqcup g$ is the least upper bound.

Task b) (2 points)

The size of this lattice is the number of functions from I to L, which can be computed by $|L|^{|I|}$.

Task c) (8 points)
Suppose $h((L, \sqsubseteq))=N$. Given f and g, we have $f \prec g$ only if $f \preceq g$ and $\exists i \in I . f(i) \sqsubset g(i)$. Notice that we only need to have one value in the range of g being greater than f. Given a chain of L with $x_{1} \sqsubset x_{2} \sqsubset \ldots \sqsubset x_{N}$, we can build a chain of functions where each function is only "bumped" by one element from the chain of x_{i} s. Formally, given f_{k}, we defined f_{k+1} by selecting an element i such that $f_{k}(i)=x_{j} \sqsubset x_{N}$ and replace it by $f_{k}(i)=x_{j+1}$. We define f_{1} with $f_{1}(i)=x_{1}$, for all i. The length of such a chain is the number of time we can bump a value, which is clearly $N \cdot|I|$.

Problem 5: Predicate Abstraction ([15 points])

a) $\mathrm{sp}^{\#}(\{0 \leq x, 0 \leq y, x \leq y\}, x=x+1)=\{0 \leq y\}$
b) $\operatorname{sp}^{\#}(\{0 \leq x, 0 \leq y, x \leq 10, x \leq y\},(x=x+1 ; x=x+1))=\{0 \leq x, 0 \leq y\}$
c) $\operatorname{sp}^{\#}\left(\operatorname{sp}^{\#}(\{0 \leq x, 0 \leq y, x \leq 10\}, x=x+1), x=x+1\right)=\{0 \leq y\}$
d) $\operatorname{sp}^{\#}(\{0 \leq x, 0 \leq y, x \leq y\},(x=x+1 ; y=y+1))=\{ \}$.

We are also losing $x \leq y$ since y could overflow while x does not.

