
Quiz Solutions Outline
Synthesis, Analysis, and Verification 2015

for the quiz given on Wednesday, April 22nd, 2015

PLEASE SIGN AND PRINT YOUR NAME ABOVE

This exam has 5 questions.
When handing in, please hand in the sheets with questions as well as any additional sheets with solutions.

Problem 1: Relations ([14 points])

Task a) (4 points)
Not true. Consider A = {a, b, c, d}, r = {(a, b), (b, c)}, and s = {(c, d)}. Then clearly (a, d) ∈ (r∪s)∗.
On the other hand, we can compute each elements of the right-hand side. We have

r∗ = {(a, a), (b, b), (c, c), (d, d), (a, b), (b, c), (a, c), (b, c), (c, a)}

and
s∗ = {(a, a), (b, b), (c, c), (d, d), (c, d), (d, c)}

Then we have (r ◦ s) = {(c, d)}, and (s ◦ r) = ∅. None of them nor their transitive closure contains
(a, d).

Task b) (4 points)
We prove both directions.

(r ∪ s)∗ ⊆ (r∗ ◦ s∗)∗ We show that (r ∪ s) ⊆ (r∗ ◦ s∗) and the result follows by monotonicity of the ∗
operator. We have that r ⊆ r∗ = r∗ ◦∆ ⊆ r∗ ◦ s∗. We can prove that s ⊆ r∗ ◦ s∗ in a similar way.

(r∗ ◦ s∗)∗ ⊆ (r ∪ s)∗ We show that (r∗ ◦ s∗) ⊆ (r ∪ s)∗. Then we get the result by taking transitive
closures of both side and using ((r∪s)∗)∗ = (r∪s)∗. We have r∗◦s∗ ⊆ (r∪s)∗◦(s∪r)∗ = (r∪s)∗.

Task c) (3 points)
True. We have that r ∩ s ⊆ r, which implies that (r ∩ s)∗ ⊆ r∗. Similarly we get (r ∩ s)∗ ⊆ s∗, and we
conclude that (r ∩ s)∗ ⊆ r∗ ∩ s∗.

Task d) (3 points)
Not true. Consider r = {(a, b), (b, c)}, s = {(a, c)}. We can compute r∗ ⊇ {(a, b), (b, c), (a, c)} and
s∗ ⊇ {(a, c)}, so that the left-hand side contains {(a, c)}. But r ∩ s = ∅.

Problem 2: Loop Semantics with Relations ([20 points])

Task a) (4 points)
We define the precondition to execute the body CF as x < n. The formula BF represents the body and
can be defined as

x′ = x + 1 ∧ y′ = y ·m ∧m′ = m ∧ n′ = n

Note that we need to specify that variables m′ and n′ do not change.
Task b) (9 points)
Task b.1) (3 points)

x < n =⇒ (x′ = x + 1 ∧ y′ = y ·m ∧m′ = m ∧ n′ = n)

1

Repetitive applications of F lead to x ≥ n and then the premise of the implication becomes false and the
transitive closure can build the set of all transitions such that x ≥ n, which is much bigger ∆C ◦B.
Task b.2) (3 points)

x < n ∧ (x′ = x + 1 ∧ y′ = y ·m ∧m′ = m ∧ n′ = n)

Transitive closure of F corresponds to ∆C ◦B.
Task b.3) (3 points)

x < n =⇒ (x′ = x + 1 ∧ y′ = y ·m ∧m′ = m ∧ n′ = n)

x ≥ n =⇒ (x′ = x ∧ y′ = y ∧m′ = m ∧ n′ = n)

Transitive closure of F corresponds to ∆C ◦B.

Task c) (3 points)

• (7, 2, 2, 49)

• (5, -2, 0, 1)

• (2, 3, 3, 64)

Task d) (6 points)

m′ = m ∧ n′ = n ∧ x′ = max(x, n) ∧ y′ = y ·mmax(n−x,0)

Task e) (8 points)
The precondition sets the initial values of the computation variables x and y as well as the precondition
on the exponent n:

x = 0 ∧ y = 1 ∧ n > 0

The postcondition that follows:

y = mn

A sufficient loop invariant is:

x ≥ 0 ∧ x ≤ n ∧ y = mx

It is initially true since x = 0 < n and m0 = 1 = y. For each iteration, x increases so is still greater
than 0, it only increased by one if it is stricly smaller than n so will remain smaller than n. Also we have
y′ = y ·m = mx ·m = mx+1 = mx′

. The invariant is sufficient because on exit we can additionally
assume x ≥ n, which combined with x ≤ n implies that x = n and finally y = mx = mn, the
postcondition.

2

Problem 3: Hoare Triples and Loop Invariants ([20 points])

Task a) (5 points)

{length > 0} r = max(m, length) {∀i.(0 ≤ i < length) =⇒ r ≥ m(i) ∧ ∃i.(0 ≤ i < length) ∧ r = m(i)}

The poscondition states that r is at greater or equals to all the elements, and at least equals to one of
them. The existential clause is needed to make sure the output is actually an element of the array and not
just some random high enough number.

Task b) (15 points)
The loop invariant is:

i ≥ 0 ∧ i ≤ length ∧ ∀k.(0 ≤ k < i) =⇒ r ≥ m(k) ∧ ∃k.(0 ≤ k ≤ i) ∧ r = m(k)

The invariant holds initially because i = 0, length > 0, and r = map(0). The forall holds vacuously
and the existential is true for k = 0.
The invariant is enough to prove the postcondition. At the end of the loop, we can further assume
i ≥ length, and combined with i ≤ length we get i = length. Instantiating the quantifier with the value
of i gives us the postcondition.
Finally we need to prove the inductive step. Suppose the invariant is true when entering the body of the
loop, we know that i < lenght so i′ = i + i ≤ length and i′ > 0. We need to prove that

(∀k.(0 ≤ k < i) =⇒ r ≥ m(k)) =⇒ (∀k.(0 ≤ k < i + 1) =⇒ r ≥ m(k))

which can be reduced to proving that r ≥ m(i + 1) at the end of the body. That fact is obvious from the
if expression. The last part of the proof is to show

(∃k.(0 ≤ k < i) ∧ r = m(k)) =⇒ (∃k.(0 ≤ k < i + 1) ∧ r = m(k))

Which follows trivially from the assumption (there already exists such a k).

Problem 4: Lattices ([21 points])

Task a) (9 points)
First we prove that the new ordering is a partial order:

Reflexivity We have ∀i ∈ I. f(i) v f(i), thus f � f .

Antisymmetry Take i ∈ I , then if by antisymmetry of (L,v) we have that f(i) v g(i) ∧ g(i) v
f(i) =⇒ f(i) = g(i), and thus f � g ∧ g � f =⇒ f = g.

Transitivity If f � g ∧ g � h, we have for any i ∈ I that f(i) v g(i) ∧ g(i) v h(i) and by transitivity
of the underlying order we get f(i) v h(i) for any i, which is the definition of f � h.

We can define the least upper bound as f t g = h, where h(i) = f(i) t g(i). Similarly f u g = h, with
h(i) = f(i) u g(i).

3

We prove that the definition of t is correct, proving for u follows the exact same technique. First we
need to show that f t g is an upper bound of {f, g}. We have for any i that f(i) v f(i) t g(i). Same
goes for g(i). So h is an upper bound to f and g.
Let us we prove that it is the least upper bound. Suppose an arbitrary upper bound h′ such that f � h′

and g � h′. So for any i, f(i) v h′(i) ∧ g(i) v h′(i), and so h′(i) is an upper bound of f(i) and
g(i). Since f(i) t g(i) is the least upper bound, it follows that f(i) t g(i) v h′(i), and, by definition,
f t g � h′, showing that f t g is the least upper bound.

Task b) (2 points)
The size of this lattice is the number of functions from I to L, which can be computed by |L||I|.

Task c) (10 points)
Suppose h((L,v)) = N . Given f and g, we have f ≺ g only if f � g and ∃i ∈ I. f(i) < g(i).
Notice that we only need one index i such that g(i) is greater than f(i) in order to have a greater function
g. Given a chain of L with x0 < x1 < . . . < xN , we can build a chain of functions where each
function is only ”bumped” by one element from the chain of xis. Formally, given fk, we define fk+1 by
selecting an element i such that fk(i) = xj < xN and replace it by fk+1(i) = xj+1. We define f0 with
f0(i) = x0, for all i. The length of such a chain is the number of time we can bump a value, which is
clearly M = N · |I|.
We now prove this is the longest chain. Suppose there exists a longer chain g0 < g1 < . . . < gM < gM+1

of length M + 1. By definition, gk < gk+1 if and only if ∃i ∈ I. gk(i) < gk+1(i). So we can clearly
build a chain of size at least N + 1 along one of the |I| indices. This would be a contradiction to the
height of the lattice (L,v).

Problem 5: Predicate Abstraction ([15 points])

a) sp#({0 ≤ x, 0 ≤ y, x ≤ y}, x = x + 1) = {0 ≤ y}

b) sp#({0 ≤ x, 0 ≤ y, x ≤ 10, x ≤ y}, (x = x + 1;x = x + 1)) = {0 ≤ x, 0 ≤ y}

c) sp#(sp#({0 ≤ x, 0 ≤ y, x ≤ 10}, x = x + 1), x = x + 1) = {0 ≤ y}

d) sp#({0 ≤ x, 0 ≤ y, x ≤ y}, (x = x + 1; y = y + 1)) = {}.
We are also losing x ≤ y since y could overflow while x does not.

4

