
Lecture 14
Proofs and Resolution

Compactness for Propositional Logic
Semantics for First-Order Logic

Normal Forms for Checking Satisfiability
Countable Models for First-Order Logic

Resolution for First-Order Logic

April 30, 2017

Objective

Present foundations for automated theorem provers, such as the ones used
in program verification systems.

We will show results for propositional logic and then generalize them to
first-order logic.

Procedures we present are sound (derive correct conclusion).
Less obviously, they are complete: if the theorem is true under all
interpretations, they these techniques find them eventually

I this may be surprising, given that it applies even to mathematical
statements about arbitrarily large sets, functions, and other complex
structures

I we have no bound when they are found, but the fact that for each
theorem there exists a finite proof is remarkable

Proof Systems

I Proof rules are computatable relations on finite sequences formulas.

I Given some number of assumptions, a proof rule produces new
conclusions.

I A proof tree describes the application of proof rules

I Γ ` F means that there is a proof tree with leaves Γ that derives F

I Proof steps should be computable: must be able to decide whether a
rule applies and can produce a given conclusion.

I A system of logical rules is sound iff every conclusion that it only
derives is a consequence.

I A proof system is complete when it can prove all properties that are
true.

Proof System for Propositional Logic

I Fix a countable set of propositional variables V e.g. p0, p1,
All formulas have variables from V

I Propositional interpretation is a map I : V → B, B = {true, false}
I We write I |= F if formula F is true in model I

I Let Γ be a set of formulas

I I |= Γ means ∀F ∈ Γ. I |= F

I Γ is consistent (satisfiable) if there exists I for which I |= Γ, else it is
contradictory

I Γ |= F means ∀I . (I |= Γ)→ (I |= F)

I Proof system “`” is sound iff Γ ` F implies Γ |= F

I Proof system “`” is complete iff Γ |= F implies Γ ` F

Literals and Clauses
A literal is a propositional variable, e.g., p, or its negation ¬p.
We assume a countably infinite set of propositional variables e.g. pi for
each non-negative integer i

A clause is a disjunction of literals, like ¬p ∨ ¬q ∨ r .
Using associativity and idempotence of ∨, we represent clauses as finite sets
of literals, e.g., {¬p,¬q, r}.

Each formula can be represented in disjunctive normal form (DNF) as
conjunction of clauses.

By associativity and idempotence of ∧, we can work with finite sets of
clauses.

Formula (p → q) ∧ (q → p) becomes {{¬p, q}, {¬q, p}}

We will show theorems that hold for both finite and infinite sets of clauses,
but will always keep clauses finite.

Propositional Resolution

A ∨ L ¬L ∨ B

A ∨ B

Soundness proof:

I Let I be an interpretation in which both I (A ∨ L) = true and
I (¬L ∨ B) = true

I if I (L) = true then from I (¬L ∨ B) = true we conclude I (B) = true,
so I (A ∨ B) = true

I if I (L) = false then from I (A ∨ L) = true we conclude I (A) = true, so
I (A ∨ B) = true

I In any case I (A ∨ B) = true.

Propositional Resolution on Clauses

Rule on formulas:
A ∨ L ¬L ∨ B

A ∨ B

When we represent disjunctions as sets of literals becomes:

A ∪ {L} {¬L} ∪ B

A ∪ B

To prove that a formula is valid, we prove that its negation is contradictory
by deriving an empty clause (which represents false).

Example Proof of Contradiction by Resolution

{¬p,¬q, r} {¬q, p} {q, r} {¬r}

{¬q, r}
{q}

{r}

∅

Example Proof of Contradiction by Resolution

{¬p,¬q, r} {¬q, p} {q, r} {¬r}

{¬q, r}

{q}

{r}

∅

Example Proof of Contradiction by Resolution

{¬p,¬q, r} {¬q, p} {q, r} {¬r}

{¬q, r}
{q}

{r}

∅

Example Proof of Contradiction by Resolution

{¬p,¬q, r} {¬q, p} {q, r} {¬r}

{¬q, r}
{q}

{r}

∅

Example Proof of Contradiction by Resolution

{¬p,¬q, r} {¬q, p} {q, r} {¬r}

{¬q, r}
{q}

{r}

∅

Consistency by Absence of Contradiction

Conversely, if the set is contradictory, then existentially quantifying over all
variables yields false, so applying resolution exhaustively also yields false.
Resolution is complete.
Therefore, if resolution does not yield false, the set is consistent.
{¬p,¬q, r} {¬q, p} {q, r}

(resolve all on p)

{¬q, r}

(resolve all on q)

{p, r}{r}

Further resolution attempts would only yield clauses that are subsumed
(their subsets, which are stronger, are already derived). No empty clause is
generated, so the original set is consistent (a model: p 7→ true, r 7→ true)

Compactness

Infinite set of Formulas

Suppose that we have a countably infinite set of formulas, with countably
many propositional variables

Apply resolution exhaustively to larger and larger prefixes of this infinite set
{¬p1,¬p2, p3} {¬p2, p1} {p2, p3} {p1,¬p4} ...

{¬p2, p3}

{p1, p3}{p3}

{¬p2, p3,¬p4}

{p3,¬p4}

...

Suppose we are not finding a contradiction in such way. Is the entire
infinite set consistent?
Equivalently: if a countable set is contradictory, is there always a finite
subset that is contradictory? (Note: there are ∞ many variables.)

Infinite set of Formulas

Suppose that we have a countably infinite set of formulas, with countably
many propositional variables

Apply resolution exhaustively to larger and larger prefixes of this infinite set
{¬p1,¬p2, p3} {¬p2, p1} {p2, p3} {p1,¬p4} ...

{¬p2, p3}

{p1, p3}{p3}

{¬p2, p3,¬p4}

{p3,¬p4}

...

Suppose we are not finding a contradiction in such way. Is the entire
infinite set consistent?
Equivalently: if a countable set is contradictory, is there always a finite
subset that is contradictory? (Note: there are ∞ many variables.)

Infinite set of Formulas

Suppose that we have a countably infinite set of formulas, with countably
many propositional variables

Apply resolution exhaustively to larger and larger prefixes of this infinite set
{¬p1,¬p2, p3} {¬p2, p1} {p2, p3} {p1,¬p4} ...

{¬p2, p3}

{p1, p3}{p3}

{¬p2, p3,¬p4}

{p3,¬p4}

...

Suppose we are not finding a contradiction in such way. Is the entire
infinite set consistent?
Equivalently: if a countable set is contradictory, is there always a finite
subset that is contradictory? (Note: there are ∞ many variables.)

Compactness

Theorem (Compactness for Propositional Logic.)

Let S be a set of propositional formulas. Then S is satisfiable iff every finite
subset of S is satisfiable.

Equivalently: S is contradictory iff some finite subset of S is contradictory

Remark: Compactness is a non-trivial property. In logic with infinite disjunctions it
does not hold. In such infinitary logic we could take S = {D, p1, p2, p3, . . .} where

D =
∞∨
i=1

¬pi , that is, D is equivalent to ∃i ≥ 0.¬pi . In this example, every finite

subset of S is satisfiable, but S itself is not.

Proof of Compactness

One direction is trivial: if S is satisfiable then there exists I such that
I |= S . Then for every finite subset T ⊆ S we have I |= T , so T is
satisfiable. So, the point is to show the converse.
Intuition: A finitely satisfiable set has “all finite pieces” satisfiable (using
potentially different interpretations). The question is whether we can
somehow assemble interpretations for all finite pieces T into one large
interpretation for the entire infinite set S . We will define such interpretation
by extending it, variable by variable, while preserving finite satisfiability for
interepretations that begin with values for propositional variables chosen so
far.
Let S be finitely satisfiable. Let V = {p1, p2, . . .} be the sequence of all
propositional variables for formulas in S (this set is countable by our
assumption on syntax of formulas, but can be infinite).
Given a sequence of boolean values u1, u2, . . . , un ∈ B of length n ≥ 0, by
an (u1, u2, . . . , un)-interpretation we mean an interpretation I : V → B such
that I (p1) = u1, . . . , I (pn) = un.

Proof: Constructing Interpretation

We will define interpretation I ∗(pk) = vk where the sequence of values
v1, v2, . . . is given as follows:

vk+1 =

false, if for every finite T ⊆ S , there exists a

(v1, . . . , vk , false)− interpretation I such that I |= T
true, otherwise

We next show by induction the following.

FIRST PART.
Claim: For every non-negative integer k , every finite subset T ⊆ S has a
(v1, . . . , vk)-interpretation I such that I |= T .
Base case: For k = 0 the statement reduces to claim that every finite
subset of S is satisfiable, which is an assumption of the theorem.

Inductiveness and the Model

Inductive step: Assume the claim for k : every finite subset T ⊆ S has a
(v1, . . . , vk)-interpretation I such that I |= T , we show that the statement
holds for k + 1.
If vk+1 = false, the inductive statement holds by definition of vk+1. Let
vk+1 = true.
Then by definition of vk+1, there exists a finite set A ⊆ S that has no
(v1, . . . , vk , false) interpretation. We wish to show that every finite set
B ⊆ T has a (v1, . . . , vk , true)-interpretation such that I |= B. Take any
such set B. Consider the set A ∪ B. This is a finite set, so by inductive
hypothesis, it has a (v1, . . . , vk)-interpretation I . Because I |= A, which has
no (v1, . . . , vk , false)-interpretation, we have I (pk+1) = true. Therefore, I is
a (v1, . . . , vk , true)-interpretation for A ∪ B, and therefore for B. This
completes the inductive proof.

From Sequence of Interpretations to One

We have shown that for every non-negative integer k, every finite subset
T ⊆ S has a (v1, . . . , vk)-interpretation I such that I |= T . We have
defined I ∗(pk) = vk .

SECOND PART.
We finally show that I ∗ |= S . Let F ∈ S . Let FV (F) = {pi1 , . . . , pik} and
M = max(i1, . . . , ik). Then FV (F) ⊆ {p1, . . . , pM}. The set {F} is finite,
so, by the Claim, it has a v1, . . . , vM -interpretation I such that I |= F .
Because I ∗ is also a v1, . . . , vM -interpretation, and it agrees with I on all
variables in F , we have I ∗ |= F .

We have therefore shown that I ∗ makes all formulas in S true, as desired.

Why did this work?

How does this proof break if we allow infinite disjunctions? Consider the

above example S = {D, p1, p2, p3, . . .} where D =
∞∨
i=1
¬pi . The inductively

proved claim still holds, and the sequence defined must be
true, true, true, Here is why the claim holds for every k . Let k be
arbitrary and T ⊆ S be finite. Define

m = max(k,max{i | pi ∈ T})

Then consider interpretation that assigns to true all pj for j ≤ m and sets
the rest to false. Such interpretation makes D true, so if it is in the set T ,
then interpretation makes it true. Moreover, all other formulas in T are
propositional variables set to true, so the interpretation makes T true.
Thus, we see that the inductively proved statement holds even in this case.
What the infinite formula D breaks is the second part, which, from the
existence of interpretations that agree on an arbitrarily long finite prefix
derives an interpretation for infinitely many variables. Indeed, this part
explicitly refers to a finite number of variables in the formula.

Resolution for First-Order Logic

Automating First-Order Logic
First-order logic allows arbitrary relations and functions (they are defined
only through their axioms)

Useful for modeling all of math (e.g. through set theory axioms), and thus
in principle applies to all program verification problems as well.

To prove whether a property holds:

I describe the property using a formula F

I describe the functions and relations in F using a sequence of axioms S

Check if the sequence (¬F ; S) is contradictory. If yes, then F follows from S

Completeness: if F follows from S , then there is a procedure that will in
finite time find this (in general we do not know how long it will take).

I semantic notion S |= F (in all interpretation of axioms S formulas F is
true) can, in first-order logic, too, be replaced with syntactic notion
S ` F (F can be derived from S)

We give a complete syntactic inference procedure for first-order logic

First-Order Logic

Set of first-order variables x1, x2, . . .

Set of function symbols f ∈ L of arity ar(fi). Constants are of arity zero.
Used to build terms. If ar(f) = n and t1, . . . , tn are terms, then
f (t1, . . . , tn) is a term

Set of relation symbols R ∈ L of arity ar(Ri)
Used to build artomic formulas. If ar(R) = n and t1, . . . , tn are terms, then
R(t1, . . . , tn) is an atomic formula.

From atomic formulas we build quantifier-free formulas using ∧,∨,¬

From quantifier-free formulas we build quantified formulas by quantifying
over first-order variables using ∀xi , ∃xi

Example and Models
We will look at the language L = {P,R, a, f } where

I P is relation symbol of arity one
I R is relation symbol of arity two
I a is a constant
I f is a function symbol of two arguments

Consider this formula in L:

(∀x .∃y . R(x , y)) ∧
(∀x .∀y . (R(x , y)→ ∀z . R(x , f (y , z)))) ∧
(∀x . (P(x) ∨ P(f (x , a))))
→ ∀x .∃y . (R(x , y) ∧ P(y))

An interpretation is a pair (D, α) of
I the domain, D, which is a non-empty (finite or infinite) set
I the interpretation α that maps:

I each function symbol f of arity n into a function α(f) : Dn → D
I each predicate symbol P of arity n into a relation α(D) ⊆ Dn

In the above example, consider: D the set of non-negative integers
{0, 1, 2, 3, . . .}, a is 1, R(x , y) to hold iff x < y , so α(R) = {(x , y) | x < y},
P(x) to be a predicate that holds whenever x is even, and f (x , y) be x + y .

Normal Forms for First-Order Logic through Example
We will look at the language L = {P,R, a, f } where

I P is relation symbol of arity one and R rel. symbol of arity two
I a is a constant
I f is a function symbol of two arguments

Consider this formula in L:

(∀x .∃y . R(x , y)) ∧
(∀x .∀y . R(x , y)→ ∀z . R(x , f (y , z))) ∧
(∀x . P(x) ∨ P(f (x , a)))
→ ∀x .∃y . R(x , y) ∧ P(y)

We are interested in checking the validity of this formula (is it true in all
interpretations). We will check the satisfiability of the negation of this
formula (does it have a model):

¬
((

(∀x .∃y . R(x , y)) ∧

(∀x .∀y . R(x , y)→ ∀z . R(x , f (y , z))) ∧

(∀x . P(x) ∨ P(f (x , a)))
)
→ ∀x .∃y . R(x , y) ∧ P(y)

)

Negation Normal Form

In negation normal form of formula the negation applies only to atomic
formulas.
Every FOL formula can be transformed in NNF using the formulas used for
the same purpose in PL extended by two new ones:

I ¬¬F ⇔ F

I ¬⊥ ⇔ >
I ¬> ⇔ ⊥
I ¬(F1 ∧ F2)⇔ ¬F1 ∨ ¬F2

I ¬(F1 ∨ F2)⇔ ¬F1 ∧ ¬F2

I F1→ F2⇔ ¬F1 ∨ F2

I F1↔ F2⇔ (F1→ F2) ∧ (F2→ F1)

I ¬∀x .F [x]⇔ ∃x .¬F [x]

I ¬∃x .F [x]⇔ ∀x .¬F [x]

NNF of Example

¬
((

(∀x .∃y . R(x , y)) ∧

(∀x .∀y . R(x , y)→ ∀z . R(x , f (y , z))) ∧

(∀x . P(x) ∨ P(f (x , a)))
)
→ ∀x .∃y . R(x , y) ∧ P(y)

)
becomes:

(∀x .∃y . R(x , y)) ∧
(∃x .∃y . ¬R(x , y) ∨ ∀z . R(x , f (y , z))) ∧
(∀x . P(x) ∨ P(f (x , a))) ∧
(∃x .∀y . ¬R(x , y) ∨ ¬P(y))

Prenex Normal Form

Prenex normal form has all quantifiers in front.
Prenex normal form (PNF) is a formula of the form

Q1x1.Q2x2. . . .Qnxn.G

where Qi ∈ {∀,∃} and G has no quantifiers.
Any FOL formula can be transformed to PNF. First convert it to NNF, then
if several quantified variables or free variables have the same name rename
them to fresh names, and finaly use the following formulas:

I (∀x .F) ∨ G ⇔ ∀x .(F ∨ G)

I (∀x .F) ∧ G ⇔ ∀x .(F ∧ G)

I (∃x .F) ∨ G ⇔ ∃x .(F ∨ G)

I (∃x .F) ∧ G ⇔ ∃x .(F ∧ G)

PNF of Example

(∀x .∃y . R(x , y)) ∧
(∃x .∃y . ¬R(x , y) ∨ ∀z . R(x , f (y , z))) ∧
(∀x . P(x) ∨ P(f (x , a))) ∧
(∃x .∀y . ¬R(x , y) ∨ ¬P(y))

becomes (applying to each conjunct separately):

(∀x1.∃y1. R(x1, y1)) ∧
(∃x2.∃y2. ∀z . ¬R(x2, y2) ∨ R(x2, f (y2, z))) ∧
(∀x3. P(x3) ∨ P(f (x3, a))) ∧
(∃x4.∀y4. ¬R(x4, y4) ∨ ¬P(y4))

Skolem Normal Form

Let P : D × D → {true, false} be a predicate with two arguments.
Note that

∃x .∀y .P(y , x)→ ∀u.∃v .P(u, v)

but converse implication does not hold (take as P relation ≤ or > on
natural numbers).
In general, we have this theorem:

∀u.∃v .P(u, v)↔ ∃g .∀u.P(u, g(u))

where g : D → D is a function.
Proof:
(←): For each u we take f (u) as the witness v .
(→): We know there exists a witness v for each u. We define f to map u
to one such witness v . (To prove that this is possible requires //axiom of
choice// from set theory.)
Note also that satisfiability of formula F expresses existential quantification
over function symbols and relation symbols.

Skolemization

Definition: Skolemization is the result of applying this transformation

∀x1, . . . , xn.∃y .F ; ∀x1, . . . , xn.subst({y 7→ g(x1, . . . , xn)})(F)

to the entire PNF formula to eliminate all existential quantifiers. Above, g
is a fresh function symbol. Denote snf (F) the result of applying
skolemization to formula F .

Lemma: A set of formulas S in prenex normal form is satisfiable iff the set
{snf (F) | F ∈ S} is satisfiable.

SNF for Example

(∀x1.∃y1. R(x1, y1)) ∧
(∃x2.∃y2. ∀z . ¬R(x2, y2) ∨ R(x2, f (y2, z))) ∧
(∀x3. P(x3) ∨ P(f (x3, a))) ∧
(∃x4.∀y4. ¬R(x4, y4) ∨ ¬P(y4))

becomes:

(∀x .R(x , g(x))) ∧
(∀x .∀y .∀z . ¬R(x , y) ∨ R(x , f (y , z))) ∧
(∀x . P(x) ∨ P(f (x , a))) ∧
(∀y . ¬R(c , y) ∨ ¬P(y))

Note: it is better to do PNF and SNF //for each conjunct independently//.

CNF and Sets of Clauses

Let snf (F) be ∀x1, . . . , xn.F . Convert F to conjunctive normal form
C1 ∧ . . . ∧ Cm. Then snf (F) is equivalent to

(∀x1, . . . , xn.C1) ∧ . . . ∧ (∀x1, . . . , xn.Cm)

where each Ci is a disjunction of first-order literals. We call Ci

//(first-order) clause//. For a given formula F , denote the set of such
clauses in conjunctive normal form of snf (pnf (F)) by clauses(F).
We omit universal quantifiers because all variables are universally
quantified. We use a convention to denote variables by x , y , z , . . . and
constants by a, b, c ,
Theorem: The set S is satisfiable iff the set⋃

F∈S
clauses(F)

is satisfiable.

Clauses for Example

We obtain that satisfiability of the original formula reduces to the
satisfiability of the set of clauses {C1,C2,C3,C4}
where

I C1 denotes {R(x , g(x))}
I C2 denotes {R(x , y),R(x , f (y , z)))}
I C3 denotes {P(x),P(f (x , a))}
I C4 denotes {¬R(c , y),¬P(y)}

Another Example: Irreflexive Dense Linear Orders

Let L = {less} be binary relation (”strictly less”). We consider the
following axioms for irreflexive partial order that is total and dense:

IRef ≡ ∀x . ¬less(x , x)
Tra ≡ ∀x . ∀y . ∀z . less(x , y) ∧ less(y , z)→ less(x , z)

Total ≡ ∀x .∀y . x 6= y → less(x , y) ∨ less(y , x)
Dense ≡ ∀x .∀y . less(x , y)→ ∃z . less(x , z) ∧ less(z , y)

Clauses for these axioms are (one set per line):

¬less(x1, x1)
¬less(x2, y2),¬less(y2, z2), less(x2, z2)
x3 = y3, less(x3, y3), less(y3, x3)
¬less(x4, y4), less(x4, f (x4, y4))
¬less(x4, y4), less(f (x4, y4), y4)

Another Example: Irreflexive Dense Linear Orders

Let L = {less} be binary relation (”strictly less”). We consider the
following axioms for irreflexive partial order that is total and dense:

IRef ≡ ∀x . ¬less(x , x)
Tra ≡ ∀x . ∀y . ∀z . less(x , y) ∧ less(y , z)→ less(x , z)

Total ≡ ∀x .∀y . x 6= y → less(x , y) ∨ less(y , x)
Dense ≡ ∀x .∀y . less(x , y)→ ∃z . less(x , z) ∧ less(z , y)

Clauses for these axioms are (one set per line):

¬less(x1, x1)
¬less(x2, y2),¬less(y2, z2), less(x2, z2)
x3 = y3, less(x3, y3), less(y3, x3)
¬less(x4, y4), less(x4, f (x4, y4))
¬less(x4, y4), less(f (x4, y4), y4)

Example Formula in First-Order Logic
model of a formula = interpretation (structure) that makes a formula true

¬
(

(∀x .∃y . R(x , y)) ∧
(∀x .∀y . (R(x , y)⇒ ∀z . R(x , f (y , z)))) ∧
(∀x . (P(x) ∨ P(f (x , a))))
⇒ ∀x .∃y . (R(x , y) ∧ P(y))

)

After normal form and Skolemization we obtain these first-order clauses:

R(x , g1(x))
¬R(x , y) ∨ R(x , f (y , z))
P(x) ∨ P(f (x , a))
¬R(c0, y) ∨ ¬P(y)

I variables are implicitly ∀ quantified; there are no ∃ quantifiers

I each clause is disjunction of literals (atomic formulas or their negation)

I from any model of these clauses we can obtain model for the original
formula (just ignore interpretation of Skolem constants g1, c0)

Do given universally quantified formulas have a model?

Example Formula in First-Order Logic
model of a formula = interpretation (structure) that makes a formula true

¬
(

(∀x .∃y . R(x , y)) ∧
(∀x .∀y . (R(x , y)⇒ ∀z . R(x , f (y , z)))) ∧
(∀x . (P(x) ∨ P(f (x , a))))
⇒ ∀x .∃y . (R(x , y) ∧ P(y))

)
After normal form and Skolemization we obtain these first-order clauses:

R(x , g1(x))
¬R(x , y) ∨ R(x , f (y , z))
P(x) ∨ P(f (x , a))
¬R(c0, y) ∨ ¬P(y)

I variables are implicitly ∀ quantified; there are no ∃ quantifiers

I each clause is disjunction of literals (atomic formulas or their negation)

I from any model of these clauses we can obtain model for the original
formula (just ignore interpretation of Skolem constants g1, c0)

Do given universally quantified formulas have a model?

Example Formula in First-Order Logic
model of a formula = interpretation (structure) that makes a formula true

¬
(

(∀x .∃y . R(x , y)) ∧
(∀x .∀y . (R(x , y)⇒ ∀z . R(x , f (y , z)))) ∧
(∀x . (P(x) ∨ P(f (x , a))))
⇒ ∀x .∃y . (R(x , y) ∧ P(y))

)
After normal form and Skolemization we obtain these first-order clauses:

R(x , g1(x))
¬R(x , y) ∨ R(x , f (y , z))
P(x) ∨ P(f (x , a))
¬R(c0, y) ∨ ¬P(y)

I variables are implicitly ∀ quantified; there are no ∃ quantifiers

I each clause is disjunction of literals (atomic formulas or their negation)

I from any model of these clauses we can obtain model for the original
formula (just ignore interpretation of Skolem constants g1, c0)

Do given universally quantified formulas have a model?

Finding a Smaller Model
Small model theorems in logic: “if a given set of formulas has a model,
then it has a model of a particular kind (e.g. small)”

I First place to look for smaller models: substructures

Given a structure (interpretation) (D, α) a substructure is (D ′, α′) where

I D ′ ⊆ D

I for elements in D ′, α′ defines the relations and functions in the same
way, so α′(R) = α(R) ∩ (D ′)n for n = ar(R), and
α′(f)(x1, ..., xn) = α(f)(x1, ..., xn) for n = ar(f)

I (D ′, α′) is a valid interpretation, in particular, it maps function symbols
of arity n to total functions on (D ′)n → D ′

Observation: Given (D, α), a substructure is uniquely given by its domain
D ′ ⊆ D. The domain D ′ defines a substructure if and only if it is closed
under the interpretation of all function symbols f :∧

f ∈LF

∀x1, ..., xn ∈ D ′. α(f)(x1, ..., xn) ∈ D ′

Examples of Substructures

L = {f , a, b,T} where

I f , a, b are functions symbols of arity 2, 0, 0, respectively; LF = {f , a, b}
I T is a binary relation symbol

(D, α) is given by D = R (real numbers) and

I α(a) = 0, α(b) = 1

I α(f)(x , y) = x + y

I α(T) = {(x , y)|x ≤ y}
How do substructures look like?

I The set D ′1 = {1, 2, . . .} is not a substructure because α(a) /∈ D ′.

I Then the set D ′2 = {0, 1, 2} does not form a substructure because it is
not closed under addition, e.g. 1 + 2 /∈ D ′2.

I The set of integers D ′3 = Z induces a substructure because:
(i) α(a) ∈ Z, (ii) α(b) ∈ Z, and (iii) x , y ∈ Z⇒ x + y ∈ Z.

Examples of Substructures

L = {f , a, b,T} where

I f , a, b are functions symbols of arity 2, 0, 0, respectively; LF = {f , a, b}
I T is a binary relation symbol

(D, α) is given by D = R (real numbers) and

I α(a) = 0, α(b) = 1

I α(f)(x , y) = x + y

I α(T) = {(x , y)|x ≤ y}
How do substructures look like?

I The set D ′1 = {1, 2, . . .} is not a substructure because α(a) /∈ D ′.

I Then the set D ′2 = {0, 1, 2} does not form a substructure because it is
not closed under addition, e.g. 1 + 2 /∈ D ′2.

I The set of integers D ′3 = Z induces a substructure because:
(i) α(a) ∈ Z, (ii) α(b) ∈ Z, and (iii) x , y ∈ Z⇒ x + y ∈ Z.

Examples of Substructures

L = {f , a, b,T} where

I f , a, b are functions symbols of arity 2, 0, 0, respectively; LF = {f , a, b}
I T is a binary relation symbol

(D, α) is given by D = R (real numbers) and

I α(a) = 0, α(b) = 1

I α(f)(x , y) = x + y

I α(T) = {(x , y)|x ≤ y}
How do substructures look like?

I The set D ′1 = {1, 2, . . .} is not a substructure because α(a) /∈ D ′.

I Then the set D ′2 = {0, 1, 2} does not form a substructure because it is
not closed under addition, e.g. 1 + 2 /∈ D ′2.

I The set of integers D ′3 = Z induces a substructure because:
(i) α(a) ∈ Z, (ii) α(b) ∈ Z, and (iii) x , y ∈ Z⇒ x + y ∈ Z.

Examples of Substructures

L = {f , a, b,T} where

I f , a, b are functions symbols of arity 2, 0, 0, respectively; LF = {f , a, b}
I T is a binary relation symbol

(D, α) is given by D = R (real numbers) and

I α(a) = 0, α(b) = 1

I α(f)(x , y) = x + y

I α(T) = {(x , y)|x ≤ y}
How do substructures look like?

I The set D ′1 = {1, 2, . . .} is not a substructure because α(a) /∈ D ′.

I Then the set D ′2 = {0, 1, 2} does not form a substructure because it is
not closed under addition, e.g. 1 + 2 /∈ D ′2.

I The set of integers D ′3 = Z induces a substructure because:
(i) α(a) ∈ Z, (ii) α(b) ∈ Z, and (iii) x , y ∈ Z⇒ x + y ∈ Z.

Universal Formulas Stay True in Substructures

Consider a universal formula, with only universal quantifiers (e.g. after
Skolemization)

∀x1, ..., xn. G (x1, ..., xn)

where G is quantifier free. Suppose this formula is true in (D, α). This
means

∀e1, ..., en ∈ D. JG (x1, ..., xn)Kα[xi :=ei]
n
i=1

Let (D ′, α) be a substructure of (D, α). Then from D ′ ⊆ D follows also

∀e1, ..., en ∈ D ′. JG (x1, ..., xn)Kα[xi :=ei]
n
i=1

so the formula remains true in substructure.

Theorem
If a set of universal first-order formulas is true in a structure, then it is true
in each of its substructures.

Our goal: find a small substructure

Universal Formulas Stay True in Substructures

Consider a universal formula, with only universal quantifiers (e.g. after
Skolemization)

∀x1, ..., xn. G (x1, ..., xn)

where G is quantifier free. Suppose this formula is true in (D, α). This
means

∀e1, ..., en ∈ D. JG (x1, ..., xn)Kα[xi :=ei]
n
i=1

Let (D ′, α) be a substructure of (D, α). Then from D ′ ⊆ D follows also

∀e1, ..., en ∈ D ′. JG (x1, ..., xn)Kα[xi :=ei]
n
i=1

so the formula remains true in substructure.

Theorem
If a set of universal first-order formulas is true in a structure, then it is true
in each of its substructures.

Our goal: find a small substructure

Universal Formulas Stay True in Substructures

Consider a universal formula, with only universal quantifiers (e.g. after
Skolemization)

∀x1, ..., xn. G (x1, ..., xn)

where G is quantifier free. Suppose this formula is true in (D, α). This
means

∀e1, ..., en ∈ D. JG (x1, ..., xn)Kα[xi :=ei]
n
i=1

Let (D ′, α) be a substructure of (D, α). Then from D ′ ⊆ D follows also

∀e1, ..., en ∈ D ′. JG (x1, ..., xn)Kα[xi :=ei]
n
i=1

so the formula remains true in substructure.

Theorem
If a set of universal first-order formulas is true in a structure, then it is true
in each of its substructures.

Our goal: find a small substructure

Smallest Substructure

(D, α) is given by D = R (real numbers) and

I α(a) = 0, α(b) = 1

I α(f)(x , y) = x + y

I α(T) = {(x , y)|x ≤ y}
Let D ′ be a substructure. Which elements must it contain?

I 0, 1 (interpretations of constants)

I 0 + 1, 1 + 0, 1 + 1 (adding up constants), so 2 ∈ D ′

I 2 + 1 = 3 ∈ D ′

I every non-negative integer

Define: D0 = ∅, Di+1 = {0, 1} ∪ {x + y |x , y ∈ Di} i.e.
Di+1 = {α(a), α(b)} ∪ {α(f)(x , y)|x , y ∈ Di}. Let D∗ =

⋃
i≥0

Di

Least fixpoint of function H(Dk) = {α(a), α(b)} ∪ {α(f)(x , y)|x , y ∈ Dk}
Evey set Di is finite. D∗ is countable: can enumerate elements of D1,
followed by the elements of D2, D3,... establishing bijection with N

Smallest Substructure

(D, α) is given by D = R (real numbers) and

I α(a) = 0, α(b) = 1

I α(f)(x , y) = x + y

I α(T) = {(x , y)|x ≤ y}
Let D ′ be a substructure. Which elements must it contain?

I 0, 1 (interpretations of constants)

I 0 + 1, 1 + 0, 1 + 1 (adding up constants), so 2 ∈ D ′

I 2 + 1 = 3 ∈ D ′

I every non-negative integer

Define: D0 = ∅, Di+1 = {0, 1} ∪ {x + y |x , y ∈ Di} i.e.
Di+1 = {α(a), α(b)} ∪ {α(f)(x , y)|x , y ∈ Di}. Let D∗ =

⋃
i≥0

Di

Least fixpoint of function H(Dk) = {α(a), α(b)} ∪ {α(f)(x , y)|x , y ∈ Dk}
Evey set Di is finite. D∗ is countable: can enumerate elements of D1,
followed by the elements of D2, D3,... establishing bijection with N

Smallest Substructure

(D, α) is given by D = R (real numbers) and

I α(a) = 0, α(b) = 1

I α(f)(x , y) = x + y

I α(T) = {(x , y)|x ≤ y}
Let D ′ be a substructure. Which elements must it contain?

I 0, 1 (interpretations of constants)

I 0 + 1, 1 + 0, 1 + 1 (adding up constants), so 2 ∈ D ′

I 2 + 1 = 3 ∈ D ′

I every non-negative integer

Define: D0 = ∅, Di+1 = {0, 1} ∪ {x + y |x , y ∈ Di} i.e.
Di+1 = {α(a), α(b)} ∪ {α(f)(x , y)|x , y ∈ Di}. Let D∗ =

⋃
i≥0

Di

Least fixpoint of function H(Dk) = {α(a), α(b)} ∪ {α(f)(x , y)|x , y ∈ Dk}
Evey set Di is finite. D∗ is countable: can enumerate elements of D1,
followed by the elements of D2, D3,... establishing bijection with N

Smallest Substructure

(D, α) is given by D = R (real numbers) and

I α(a) = 0, α(b) = 1

I α(f)(x , y) = x + y

I α(T) = {(x , y)|x ≤ y}
Let D ′ be a substructure. Which elements must it contain?

I 0, 1 (interpretations of constants)

I 0 + 1, 1 + 0, 1 + 1 (adding up constants), so 2 ∈ D ′

I 2 + 1 = 3 ∈ D ′

I every non-negative integer

Define: D0 = ∅, Di+1 = {0, 1} ∪ {x + y |x , y ∈ Di} i.e.
Di+1 = {α(a), α(b)} ∪ {α(f)(x , y)|x , y ∈ Di}. Let D∗ =

⋃
i≥0

Di

Least fixpoint of function H(Dk) = {α(a), α(b)} ∪ {α(f)(x , y)|x , y ∈ Dk}
Evey set Di is finite. D∗ is countable: can enumerate elements of D1,
followed by the elements of D2, D3,... establishing bijection with N

Smallest Substructure

(D, α) is given by D = R (real numbers) and

I α(a) = 0, α(b) = 1

I α(f)(x , y) = x + y

I α(T) = {(x , y)|x ≤ y}
Let D ′ be a substructure. Which elements must it contain?

I 0, 1 (interpretations of constants)

I 0 + 1, 1 + 0, 1 + 1 (adding up constants), so 2 ∈ D ′

I 2 + 1 = 3 ∈ D ′

I every non-negative integer

Define: D0 = ∅, Di+1 = {0, 1} ∪ {x + y |x , y ∈ Di} i.e.
Di+1 = {α(a), α(b)} ∪ {α(f)(x , y)|x , y ∈ Di}. Let D∗ =

⋃
i≥0

Di

Least fixpoint of function H(Dk) = {α(a), α(b)} ∪ {α(f)(x , y)|x , y ∈ Dk}
Evey set Di is finite. D∗ is countable: can enumerate elements of D1,
followed by the elements of D2, D3,... establishing bijection with N

Smallest Substructure

(D, α) is given by D = R (real numbers) and

I α(a) = 0, α(b) = 1

I α(f)(x , y) = x + y

I α(T) = {(x , y)|x ≤ y}
Let D ′ be a substructure. Which elements must it contain?

I 0, 1 (interpretations of constants)

I 0 + 1, 1 + 0, 1 + 1 (adding up constants), so 2 ∈ D ′

I 2 + 1 = 3 ∈ D ′

I every non-negative integer

Define: D0 = ∅, Di+1 = {0, 1} ∪ {x + y |x , y ∈ Di} i.e.

Di+1 = {α(a), α(b)} ∪ {α(f)(x , y)|x , y ∈ Di}. Let D∗ =
⋃
i≥0

Di

Least fixpoint of function H(Dk) = {α(a), α(b)} ∪ {α(f)(x , y)|x , y ∈ Dk}
Evey set Di is finite. D∗ is countable: can enumerate elements of D1,
followed by the elements of D2, D3,... establishing bijection with N

Smallest Substructure

(D, α) is given by D = R (real numbers) and

I α(a) = 0, α(b) = 1

I α(f)(x , y) = x + y

I α(T) = {(x , y)|x ≤ y}
Let D ′ be a substructure. Which elements must it contain?

I 0, 1 (interpretations of constants)

I 0 + 1, 1 + 0, 1 + 1 (adding up constants), so 2 ∈ D ′

I 2 + 1 = 3 ∈ D ′

I every non-negative integer

Define: D0 = ∅, Di+1 = {0, 1} ∪ {x + y |x , y ∈ Di} i.e.
Di+1 = {α(a), α(b)} ∪ {α(f)(x , y)|x , y ∈ Di}.

Let D∗ =
⋃
i≥0

Di

Least fixpoint of function H(Dk) = {α(a), α(b)} ∪ {α(f)(x , y)|x , y ∈ Dk}
Evey set Di is finite. D∗ is countable: can enumerate elements of D1,
followed by the elements of D2, D3,... establishing bijection with N

Smallest Substructure

(D, α) is given by D = R (real numbers) and

I α(a) = 0, α(b) = 1

I α(f)(x , y) = x + y

I α(T) = {(x , y)|x ≤ y}
Let D ′ be a substructure. Which elements must it contain?

I 0, 1 (interpretations of constants)

I 0 + 1, 1 + 0, 1 + 1 (adding up constants), so 2 ∈ D ′

I 2 + 1 = 3 ∈ D ′

I every non-negative integer

Define: D0 = ∅, Di+1 = {0, 1} ∪ {x + y |x , y ∈ Di} i.e.
Di+1 = {α(a), α(b)} ∪ {α(f)(x , y)|x , y ∈ Di}. Let D∗ =

⋃
i≥0

Di

Least fixpoint of function H(Dk) = {α(a), α(b)} ∪ {α(f)(x , y)|x , y ∈ Dk}
Evey set Di is finite. D∗ is countable: can enumerate elements of D1,
followed by the elements of D2, D3,... establishing bijection with N

Smallest Substructure

(D, α) is given by D = R (real numbers) and

I α(a) = 0, α(b) = 1

I α(f)(x , y) = x + y

I α(T) = {(x , y)|x ≤ y}
Let D ′ be a substructure. Which elements must it contain?

I 0, 1 (interpretations of constants)

I 0 + 1, 1 + 0, 1 + 1 (adding up constants), so 2 ∈ D ′

I 2 + 1 = 3 ∈ D ′

I every non-negative integer

Define: D0 = ∅, Di+1 = {0, 1} ∪ {x + y |x , y ∈ Di} i.e.
Di+1 = {α(a), α(b)} ∪ {α(f)(x , y)|x , y ∈ Di}. Let D∗ =

⋃
i≥0

Di

Least fixpoint of function H(Dk) = {α(a), α(b)} ∪ {α(f)(x , y)|x , y ∈ Dk}

Evey set Di is finite. D∗ is countable: can enumerate elements of D1,
followed by the elements of D2, D3,... establishing bijection with N

Smallest Substructure

(D, α) is given by D = R (real numbers) and

I α(a) = 0, α(b) = 1

I α(f)(x , y) = x + y

I α(T) = {(x , y)|x ≤ y}
Let D ′ be a substructure. Which elements must it contain?

I 0, 1 (interpretations of constants)

I 0 + 1, 1 + 0, 1 + 1 (adding up constants), so 2 ∈ D ′

I 2 + 1 = 3 ∈ D ′

I every non-negative integer

Define: D0 = ∅, Di+1 = {0, 1} ∪ {x + y |x , y ∈ Di} i.e.
Di+1 = {α(a), α(b)} ∪ {α(f)(x , y)|x , y ∈ Di}. Let D∗ =

⋃
i≥0

Di

Least fixpoint of function H(Dk) = {α(a), α(b)} ∪ {α(f)(x , y)|x , y ∈ Dk}
Evey set Di is finite. D∗ is countable: can enumerate elements of D1,
followed by the elements of D2, D3,... establishing bijection with N

Definition of Smallest Substructure
Language L with function symbols LF ⊆ L.

D0 = ∅

Di+1 =
⋃

f ∈LF

{α(f)(x1, ..., xn)|x1, ..., xn ∈ Di}

D∗ =
⋃
i≥0

Di

Note: Di for i ≥ 1 includes the interpretations of all constants, which are
functions of arity n = 0

Theorem

I D∗ is the domain of the smallest substructure of (D, α)
I D∗ is

I always countable
I non-empty ⇔ L contains at least one constant symbol
I finite when L has no function symbols except for constants

Countable Model Theorem

Lemma
A set of universal first-order formulas has a model if and only if it has a
countable model.

Proof.
Let (D, α) be a model. Then D∗ induces a countable sub-structure.
Because all formulas are universal, they remain true in D∗.

Theorem
A set of first-order formulas has a model if and only if it has a countable
model.

Proof.
Let the set of formulas have a model. Transform the formulas into normal
form and skolemize them to eliminate existential quantifiers, which
introduces a countable number of skolem functions. Then there is a model
for the resulting set of universal formulas as well. By previous lemma, then
there is also a countable model. Ignoring the interpretation of Skolem
constants, we obtain a countable model for the original formula.

Example: Dense Orders

Consider these axioms, which define dense linear orders without upper
bound:

∀x .¬T (x , x)
∀x∀y∀z .T (x , y) ∧ T (y , z)⇒ T (x , z)
∀x∀y .(T (x , y)⇒ ∃z .(T (x , z) ∧ T (z , y)))
∀x∃y .T (x , y)

Real numbers with strict inequality < interpreting relation symbol T are a
model of these axioms. Find one countable non-empty model using our
construction.

Skolemizing the existential quantifier for density using g(x , y) and for
no-bound with h(x):

¬T (x , x)
¬T (x , y) ∨ ¬T (y , z) ∨ T (x , z)
¬T (x , y) ∨ (T (x , g(x , y)) ∧ T (g(x , y), y))
T (x , h(x))

Example: Dense Orders

Consider these axioms, which define dense linear orders without upper
bound:

∀x .¬T (x , x)
∀x∀y∀z .T (x , y) ∧ T (y , z)⇒ T (x , z)
∀x∀y .(T (x , y)⇒ ∃z .(T (x , z) ∧ T (z , y)))
∀x∃y .T (x , y)

Real numbers with strict inequality < interpreting relation symbol T are a
model of these axioms. Find one countable non-empty model using our
construction.
Skolemizing the existential quantifier for density using g(x , y) and for
no-bound with h(x):

¬T (x , x)
¬T (x , y) ∨ ¬T (y , z) ∨ T (x , z)
¬T (x , y) ∨ (T (x , g(x , y)) ∧ T (g(x , y), y))
T (x , h(x))

Finding Non-Empty Countable Model

¬T (x , x)
¬T (x , y) ∨ ¬T (y , z) ∨ T (x , z)
¬T (x , y) ∨ (T (x , g(x , y)) ∧ T (g(x , y), y))
T (x , h(x))

Theorem ensures we can find interpretation of g , h.
One possibility:

g(x , y) = (x + y)/2 h(y) = y + 1
Since we have no constant and do not wish to have an empty domain, just
pick any element as the starting point. Say, 0.
Apply closure under operations. Here they are all Skolem operations, but in
general we use all operations we have, original or Skolem. Describe the set
generated in this way.
Answer: The set of all non-negative numbers representable in binary
notation b1...bp.d1...dq, that is:{ p

2k
| p, k ∈ N

}
Note that this is a countable set. Try also g(x , y) = x + 1/(1 + y − x)

Finding Non-Empty Countable Model

¬T (x , x)
¬T (x , y) ∨ ¬T (y , z) ∨ T (x , z)
¬T (x , y) ∨ (T (x , g(x , y)) ∧ T (g(x , y), y))
T (x , h(x))

Theorem ensures we can find interpretation of g , h.
One possibility: g(x , y) = (x + y)/2 h(y) = y + 1
Since we have no constant and do not wish to have an empty domain, just
pick any element as the starting point.

Say, 0.
Apply closure under operations. Here they are all Skolem operations, but in
general we use all operations we have, original or Skolem. Describe the set
generated in this way.
Answer: The set of all non-negative numbers representable in binary
notation b1...bp.d1...dq, that is:{ p

2k
| p, k ∈ N

}
Note that this is a countable set. Try also g(x , y) = x + 1/(1 + y − x)

Finding Non-Empty Countable Model

¬T (x , x)
¬T (x , y) ∨ ¬T (y , z) ∨ T (x , z)
¬T (x , y) ∨ (T (x , g(x , y)) ∧ T (g(x , y), y))
T (x , h(x))

Theorem ensures we can find interpretation of g , h.
One possibility: g(x , y) = (x + y)/2 h(y) = y + 1
Since we have no constant and do not wish to have an empty domain, just
pick any element as the starting point. Say, 0.
Apply closure under operations. Here they are all Skolem operations, but in
general we use all operations we have, original or Skolem. Describe the set
generated in this way.

Answer: The set of all non-negative numbers representable in binary
notation b1...bp.d1...dq, that is:{ p

2k
| p, k ∈ N

}
Note that this is a countable set. Try also g(x , y) = x + 1/(1 + y − x)

Finding Non-Empty Countable Model

¬T (x , x)
¬T (x , y) ∨ ¬T (y , z) ∨ T (x , z)
¬T (x , y) ∨ (T (x , g(x , y)) ∧ T (g(x , y), y))
T (x , h(x))

Theorem ensures we can find interpretation of g , h.
One possibility: g(x , y) = (x + y)/2 h(y) = y + 1
Since we have no constant and do not wish to have an empty domain, just
pick any element as the starting point. Say, 0.
Apply closure under operations. Here they are all Skolem operations, but in
general we use all operations we have, original or Skolem. Describe the set
generated in this way.
Answer: The set of all non-negative numbers representable in binary
notation b1...bp.d1...dq, that is:{ p

2k
| p, k ∈ N

}
Note that this is a countable set.

Try also g(x , y) = x + 1/(1 + y − x)

Finding Non-Empty Countable Model

¬T (x , x)
¬T (x , y) ∨ ¬T (y , z) ∨ T (x , z)
¬T (x , y) ∨ (T (x , g(x , y)) ∧ T (g(x , y), y))
T (x , h(x))

Theorem ensures we can find interpretation of g , h.
One possibility: g(x , y) = (x + y)/2 h(y) = y + 1
Since we have no constant and do not wish to have an empty domain, just
pick any element as the starting point. Say, 0.
Apply closure under operations. Here they are all Skolem operations, but in
general we use all operations we have, original or Skolem. Describe the set
generated in this way.
Answer: The set of all non-negative numbers representable in binary
notation b1...bp.d1...dq, that is:{ p

2k
| p, k ∈ N

}
Note that this is a countable set. Try also g(x , y) = x + 1/(1 + y − x)

Herbrand (Term) Model: A Generic Countable Model
Instead of looking at arbitrary countable domains and functions on them,
we show we can consider a more special class of structures: ground term
models.
In these models the domain the set of expressions (group terms) built from
constants and function symbols, and operations as just constructors.
Remember (D, α) is given by D = R (real numbers) and

I α(a) = 0, α(b) = 1

I α(f)(x , y) = x + y

I α(T) = {(x , y)|x ≤ y}
The smallest substructure is given by D0 = ∅,
Di+1 = {0, 1} ∪ {x + y |x , y ∈ Di}, D∗ =

⋃
i≥0

Di .

This is precisely the set of values of all expressions built from 0, 1 and +.
In general, the least substructure is the set of values of ground terms:

D∗ = {JtKα | t ∈ GTL}

GTL is the set of all ground terms (terms without variables) in language L

Values of Ground Terms Induce Smallest Substructure

GTL is the least set such that if f ∈ L, ar(f) = n (n ≥ 0) and
t1, ..., tn ∈ GTL then f (t1, ..., tn) ∈ GTL.
In other words, define GT 0 = ∅ and

GT i+1 = {f (t1, ..., tn) | f ∈ L ∧ t1, ..., tn ∈ GT i}

Then the set of all ground terms is
⋃

i≥0 GT
i

I GT i is the set of terms of height (depth) at most i − 1

Compare to: D0 = ∅, Di+1 =
⋃

f ∈LF {α(f)(x1, ..., xn)|x1, ..., xn ∈ Di}

By induction we prove easily

Di = {JtKα | t ∈ GT i}

Therefore, D∗ = {JtKα | t ∈ GTL}
How to define meaning of f ∈ L as function GT n

L → GTL

Values of Ground Terms Induce Smallest Substructure

GTL is the least set such that if f ∈ L, ar(f) = n (n ≥ 0) and
t1, ..., tn ∈ GTL then f (t1, ..., tn) ∈ GTL.
In other words, define GT 0 = ∅ and

GT i+1 = {f (t1, ..., tn) | f ∈ L ∧ t1, ..., tn ∈ GT i}

Then the set of all ground terms is
⋃

i≥0 GT
i

I GT i is the set of terms of height (depth) at most i − 1

Compare to: D0 = ∅, Di+1 =
⋃

f ∈LF {α(f)(x1, ..., xn)|x1, ..., xn ∈ Di}
By induction we prove easily

Di = {JtKα | t ∈ GT i}

Therefore, D∗ = {JtKα | t ∈ GTL}

How to define meaning of f ∈ L as function GT n
L → GTL

Values of Ground Terms Induce Smallest Substructure

GTL is the least set such that if f ∈ L, ar(f) = n (n ≥ 0) and
t1, ..., tn ∈ GTL then f (t1, ..., tn) ∈ GTL.
In other words, define GT 0 = ∅ and

GT i+1 = {f (t1, ..., tn) | f ∈ L ∧ t1, ..., tn ∈ GT i}

Then the set of all ground terms is
⋃

i≥0 GT
i

I GT i is the set of terms of height (depth) at most i − 1

Compare to: D0 = ∅, Di+1 =
⋃

f ∈LF {α(f)(x1, ..., xn)|x1, ..., xn ∈ Di}
By induction we prove easily

Di = {JtKα | t ∈ GT i}

Therefore, D∗ = {JtKα | t ∈ GTL}
How to define meaning of f ∈ L as function GT n

L → GTL

Interpreting Functions on Ground Terms

Given a language L we are defining an interpretation (GTL, αH). If there
are no constants, invent a fresh constant a0 and add it into L.
For function symbols f , we just let

αH(f)(t1, ..., tn) = f (t1, ..., tn)

because we can always build a larger term.
This definition does not depend on the original model (D, α).

We next want to define αH(R) for each relation symbols R ∈ L
Idea: define the truth value following the truth value in (D, α)

αH(R) = {(t1, ..., tn) | (Jt1Kα, ..., JtnKα) ∈ α(R)}

To determine if relation holds on ground terms, just check if it holds on
their values.
It is in this step that we used the original structure (D, α) to define the new
structure (GTL, αH). We postponed evaluation to relations.

Revisiting Example of Dense Orders

¬T (x , x)
¬T (x , y) ∨ ¬T (y , z) ∨ T (x , z)
¬T (x , y) ∨ (T (x , g(x , y)) ∧ T (g(x , y), y))
T (x , h(x))

Use the model (R, α) in which T is <, g(x , y) = (x + y)/2, h(y) = y + 1
to define Herbrand model (GTL, αH). Add fresh constant c.
Define

I αH(c)

I αH(g)

I αH(h)

I αH(T)

Example: why a formula holds in the ground model

Now use this definition of αH(T).
Take any formula, say

¬T (x , y) ∨ (T (x , g(x , y)) ∧ T (g(x , y), y))

We wonder if it holds in (GTL, αH). Let x , y , z ∈ GTL. Say x = c ,
y = h(c). Why does

¬T (c , h(c)) ∨ (T (c , g(c, h(c))) ∧ T (g(c , h(c)), h(c)))

hold?

Because the same formula holds in the original structure. We defined
JT KαH so that

(c , h(c)) ∈ JT KαH ⇔ (JcKα, Jh(c)Kα) ∈ JT Kα

Example: why a formula holds in the ground model

Now use this definition of αH(T).
Take any formula, say

¬T (x , y) ∨ (T (x , g(x , y)) ∧ T (g(x , y), y))

We wonder if it holds in (GTL, αH). Let x , y , z ∈ GTL. Say x = c ,
y = h(c). Why does

¬T (c , h(c)) ∨ (T (c , g(c, h(c))) ∧ T (g(c , h(c)), h(c)))

hold?
Because the same formula holds in the original structure. We defined
JT KαH so that

(c , h(c)) ∈ JT KαH ⇔ (JcKα, Jh(c)Kα) ∈ JT Kα

Herbrand Model is a Model of Same Universal Formulas

Lemma
For every quantifier-free formula G (x1, ..., xn), if αH(xi) = ti then

JG (x1, ..., xn)KαH ⇔ JG (x1, ..., xn)Kα[xi :=α(ti)]
n
i=1

Proof by induction, using the definition of αH(R) in the base cases.

Theorem (Herbrand)

Let (D, α) be a model of a set S of universal first-order formulas in the
language L containing at least one constant. Then (GTL, αH) is also a
model of these formulas.

Proof. Let F ∈ S be of the form ∀x1, ..., xn.G (x1, ..., xn). Then F holds in
(D, α). Let t1, ..., tn ∈ GTL be arbitrary. Then by the above lemma,

JG (x1, ..., xn)KαH [xi :=ti]
n
i=1 ⇔ JG (x1, ..., xn)Kα[xi :=α(ti)]

Last formula is true because F holds in (D, α). So, F holds in (GTL, αH).

Viewing Herbrand Model as Propositional Model

Set S of universal formulas. Suppose we write universal variables as free
variables. There is a model (D, α) if and only if there is Herbrand model
(GTL, αH).
How do we check if a set S has some Herbrand model? Function symbol
interpretations are fixed. Need to check if there exists interpretation of each
relation symbol R such that

∀G ∈ S .∀t1, ..., tn ∈ GTL. JG [x1 := t1, ..., xn := tn]KαH = true

Expand all these universal quantifiers:

S ′ = {G [x1 := t1, ..., xn := tn] | G ∈ S}

Then S holds in GTL if and only if S ′ holds in GTL. We have countable
domain GTL and allow countable sets, so we instantiated.
S ′ has no variables, so it is like a propositional model.

Propositions with Long Names

For each relation symbol R define Herbrand atoms (ground instances):

HA = {R(t1, ..., tn) | ar(R) = n, t1, ..., tn ∈ GTL}

Then S ′ is a set of propositional formulas over the countable set HA.
Moreover, S ′ has a model if and only if each finite subset of S ′ has a model
(compactness).
A finite subset has a model if and only if propositional resolution does not
derive empty clause.

A set of FOL formulas is unsatisfiable if and only if for its
skolemization there is a finite subset of ground instances on which
resolution derives empty clause.

Naive Semidecision Procedure for FOL Satisfiability

For increasingly large size N = 0, 1, 2, . . .:

1. instantiate a set of clauses with all terms of size up to N

2. check if the resulting finite set of propositional formulas is satisfiable
(can use resolution, or a SAT solver)

Resolution for FOL

Instead of instantiating and then doing resolution on all propositional
(ground) instances, do resolution using unification on first-order clauses.

A Resolution-Based Prover: E by Stephan Schulz

The web page with easy installation instructions and manual:

I http://www4.informatik.tu-muenchen.de/~schulz/E/E.html

Theorem proving problems, links to competition, other provers:

I http://www.tptp.org

http://www4.informatik.tu-muenchen.de/~schulz/E/E.html
http://www.tptp.org

Give Our Example to Automated Prover

Our example in math:

¬
(

(∀x .∃y . R(x , y)) ∧
(∀x .∀y . (R(x , y)⇒ ∀z . R(x , f (y , z)))) ∧
(∀x . (P(x) ∨ P(f (x , a))))
⇒ ∀x .∃y . (R(x , y) ∧ P(y))

)
Our example in TPTP ASCII format:

fof(ax1,axiom, ![X]: ?[Y]: r(X,Y)).

fof(ax2,axiom, ![X]: ![Y]: (r(X,Y) => ![Z]: r(X,f(Y,Z)))).

fof(ax3,axiom, ![X]: (p(X) | p(f(X,a)))).

fof(c,conjecture, ![X]: ?[Y]: (r(X,Y) & p(Y))).

∧ ∨ ¬ ⇒ ⇔ ∀ ∃
& | ∼ => <=> ! ?

Example Formula in First-Order Logic
model of a formula = interpretation (structure) that makes a formula true

¬
(

(∀x .∃y . R(x , y)) ∧
(∀x .∀y . (R(x , y)⇒ ∀z . R(x , f (y , z)))) ∧
(∀x . (P(x) ∨ P(f (x , a))))
⇒ ∀x .∃y . (R(x , y) ∧ P(y))

)
After normal form and Skolemization we obtain these first-order clauses:

R(x , g1(x))
¬R(x , y) ∨ R(x , f (y , z))
P(x) ∨ P(f (x , a))
¬R(c0, y) ∨ ¬P(y)

I variables are implicitly ∀ quantified; there are no ∃ quantifiers

I each clause is disjunction of literals (atomic formulas or their negation)

I from any model of these clauses we can obtain model for the original
formula (just ignore interpretation of Skolem constants g1, c0)

Applying Resolution

1 R(x , g1(x))

2 ¬R(x , y) ∨ R(x , f (y , z))

3 P(x) ∨ P(f (x , a))

4 ¬R(c0, y) ∨ ¬P(y)

5 (1,2): R(x , f (g1(x), z))

6 (1,4): ¬P(g1(c0))

7 (3,6): P(f (g1(c0), a))

8 : ¬R(c0, f (g1(c0), a))

9 : ∅

Proof found!

Applying Resolution

1 R(x , g1(x))

2 ¬R(x , y) ∨ R(x , f (y , z))

3 P(x) ∨ P(f (x , a))

4 ¬R(c0, y) ∨ ¬P(y)

5 (1,2): R(x , f (g1(x), z))

6 (1,4): ¬P(g1(c0))

7 (3,6): P(f (g1(c0), a))

8 : ¬R(c0, f (g1(c0), a))

9 : ∅

Proof found!

Applying Resolution

1 R(x , g1(x))

2 ¬R(x , y) ∨ R(x , f (y , z))

3 P(x) ∨ P(f (x , a))

4 ¬R(c0, y) ∨ ¬P(y)

5 (1,2): R(x , f (g1(x), z))

6 (1,4): ¬P(g1(c0))

7 (3,6): P(f (g1(c0), a))

8 : ¬R(c0, f (g1(c0), a))

9 : ∅

Proof found!

Applying Resolution

1 R(x , g1(x))

2 ¬R(x , y) ∨ R(x , f (y , z))

3 P(x) ∨ P(f (x , a))

4 ¬R(c0, y) ∨ ¬P(y)

5 (1,2): R(x , f (g1(x), z))

6 (1,4): ¬P(g1(c0))

7 (3,6): P(f (g1(c0), a))

8 : ¬R(c0, f (g1(c0), a))

9 : ∅

Proof found!

Applying Resolution

1 R(x , g1(x))

2 ¬R(x , y) ∨ R(x , f (y , z))

3 P(x) ∨ P(f (x , a))

4 ¬R(c0, y) ∨ ¬P(y)

5 (1,2): R(x , f (g1(x), z))

6 (1,4): ¬P(g1(c0))

7 (3,6): P(f (g1(c0), a))

8 : ¬R(c0, f (g1(c0), a))

9 : ∅

Proof found!

Applying Resolution

1 R(x , g1(x))

2 ¬R(x , y) ∨ R(x , f (y , z))

3 P(x) ∨ P(f (x , a))

4 ¬R(c0, y) ∨ ¬P(y)

5 (1,2): R(x , f (g1(x), z))

6 (1,4): ¬P(g1(c0))

7 (3,6): P(f (g1(c0), a))

8 : ¬R(c0, f (g1(c0), a))

9 : ∅

Proof found!

Applying Resolution

1 R(x , g1(x))

2 ¬R(x , y) ∨ R(x , f (y , z))

3 P(x) ∨ P(f (x , a))

4 ¬R(c0, y) ∨ ¬P(y)

5 (1,2): R(x , f (g1(x), z))

6 (1,4): ¬P(g1(c0))

7 (3,6): P(f (g1(c0), a))

8 : ¬R(c0, f (g1(c0), a))

9 : ∅

Proof found!

