Lecture 12 Synthesis from Relations and Types

Viktor Kuncak

Synthesis of Functions from Relations

- We previously saw: how to convert programs into formulas
 - verification-condition generation
 - formulas describe relation between inputs and outputs
- Now: convert formulas into programs (opposite direction)

Example domain: Presburger arithmetic

Programs and Specs are Relations

program:
$$x = x + 2; y = x + 10$$
relation: $\{(x, y, z, x', y', z') \mid x' = x + 2 \land y' = x + 12 \land z' = z\}$ formula: $x' = x + 2 \land y' = x + 12 \land z' = z$

Specification:

$$z'=z\wedge(x>0\rightarrow(x'>0\wedge y'>0)$$

Adhering to specification is relation subset:

$$\{ (x, y, z, x', y', z') \mid x' = x + 2 \land y' = x + 12 \land z' = z \}$$

$$\subseteq \ \{ (x, y, z, x', y', z') \mid z' = z \land (x > 0 \to (x' > 0 \land y' > 0)) \}$$

Non-deterministic programs are a way of writing specifications

Program variables $V = \{x, y, z\}$ Formula for relation (talks only about resulting state):

$$z'=z\wedge x'>0\wedge y'>0$$

Corresponding program:

Program variables $V = \{x, y, z\}$ Formula for relation (talks only about resulting state):

$$z'=z\wedge x'>0\wedge y'>0$$

Corresponding program:

```
havoc(x, y); assume(x > 0 \land y > 0)
```

Program variables $V = \{x, y, z\}$ Formula for relation (talks only about resulting state):

$$z'=z\wedge x'>0\wedge y'>0$$

Corresponding program:

$$havoc(x, y)$$
; $assume(x > 0 \land y > 0)$

Formula for relation:

$$z' = z \land x' > x \land y' > y$$

Corresponding program?

Program variables $V = \{x, y, z\}$ Formula for relation (talks only about resulting state):

$$z'=z\wedge x'>0\wedge y'>0$$

Corresponding program:

$$havoc(x, y)$$
; $assume(x > 0 \land y > 0)$

Formula for relation:

$$z' = z \land x' > x \land y' > y$$

Corresponding program? Use local variables to store initial values.

Program variables $V = \{x, y, z\}$ Formula for relation (talks only about resulting state):

$$z'=z\wedge x'>0\wedge y'>0$$

Corresponding program:

$$havoc(x, y)$$
; $assume(x > 0 \land y > 0)$

Formula for relation:

$$z' = z \land x' > x \land y' > y$$

Corresponding program? Use local variables to store initial values.

Writing Specs Using Havoc and Assume

Global variables
$$V = \{x_1, \dots, x_n\}$$

Specification
 $F(x_1, \dots, x_n, x'_1, \dots, x'_n)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Becomes

Writing Specs Using Havoc and Assume

Global variables
$$V = \{x_1, \dots, x_n\}$$

Specification
 $F(x_1, \dots, x_n, x_1', \dots, x_n')$

Becomes

{ var
$$y_1, ..., y_n$$
;
 $y_1 = x_1; ...; y_n = x_n$;
 $havoc(x_1, ..., x_n)$;
 $assume(F(y_1, ..., y_n, x_1, ..., x_n))$ }

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Program Refinement and Equivalence

For two programs, define **refinement** $P_1 \sqsubseteq P_2$ iff

$$R(P_1) \rightarrow R(P_2)$$

is a valid formula.

(Some books use the opposite meaning of \sqsubseteq .) As usual, $P_2 \supseteq P_1$ iff $P_1 \sqsubseteq P_2$.

• $P_1 \sqsubseteq P_2$ iff $\rho(P_1) \subseteq \rho(P_2)$

Define **equivalence** $P_1 \equiv P_2$ iff $P_1 \sqsubseteq P_2 \land P_2 \sqsubseteq P_1$

•
$$P_1 \equiv P_2$$
 iff $\rho(P_1) = \rho(P_2)$

Example for $V = \{x, y\}$

{*var* x0; x0 = x; havoc(x); assume(x > x0)} $\supseteq (x = x + 1)$

Proof: Use R to compute formulas for both sides and simplify.

Program Refinement and Equivalence

For two programs, define **refinement** $P_1 \sqsubseteq P_2$ iff

$$R(P_1) \rightarrow R(P_2)$$

is a valid formula.

(Some books use the opposite meaning of \sqsubseteq .) As usual, $P_2 \supseteq P_1$ iff $P_1 \sqsubseteq P_2$.

• $P_1 \sqsubseteq P_2$ iff $\rho(P_1) \subseteq \rho(P_2)$

Define **equivalence** $P_1 \equiv P_2$ iff $P_1 \sqsubseteq P_2 \land P_2 \sqsubseteq P_1$

•
$$P_1 \equiv P_2$$
 iff $\rho(P_1) = \rho(P_2)$

Example for $V = \{x, y\}$

 $\{var \ x0; x0 = x; havoc(x); assume(x > x0)\} \supseteq (x = x + 1)$

Proof: Use R to compute formulas for both sides and simplify.

$$x' = x + 1 \land y' = y \ \rightarrow \ x' > x \land y' = y$$

Stepwise Refinement Methodology

Start form a possibly non-deterministic specification P_0 Refine the program until it becomes deterministic and efficiently executable.

$$P_0 \sqsupseteq P_1 \sqsupseteq \ldots \sqsupseteq P_n$$

Example:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

In the last step program equivalence holds as well

Preserving Domain in Refinement

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

What is the domain of a relation?

Given relation $r \subseteq A \times B$ for any sets A, B, we define domain of r as

$$dom(r) = \{a \mid \exists b. (a, b) \in r\}$$

when r is a total function, then dom(r) = A

 \blacktriangleright a typical case if r is an entire program

Let $r = \{(\bar{x}, \bar{x}') \mid F\}$, $FV(F) \subseteq Var \cup Var'$, $Var' = \{x' \mid x \in Var\}$. Then, $dom(r) = \{\bar{x} \mid \exists \bar{x}'.F\}$

computing domain = existentially quantifying over primed vars

Example: for $Var = \{x, y\}$, $R(x = x + 1) = x' = x + 1 \land y' = y$. The formula for the domain is: $\exists x', y'. x' = x + 1 \land y' = y$, which, after one-pint rule, reduces to true.

All assignments have true as domain.

Preserving Domain

It is not interesting program development step $P \sqsupseteq P'$ is P' is false, or is false for most inputs. Example ($Var = \{x, y\}$)

$$(havoc(x); assume(x + x = y)) \supseteq (assume(y = 6); x = 3)$$

Refinement $P \supseteq Q$, ensures $R(Q) \rightarrow R(P)$. A consequence is $(\exists \bar{x}'.R(Q)) \rightarrow (\exists \bar{x}'.R(P))$.

We additionally wish to preserve the domain of the relation between \bar{x},\bar{x}'

- if *P* has some execution from \bar{x} ending in \bar{x}'
- ▶ then Q should also have some execution, ending in some (possibly different) x̄' (even if it has fewer choices)
 (∃x̄'.R(P)) ↔ (∃x̄'.R(Q))

So, we want relations to be smaller or equal, but domains equal.

Consider our example $P \sqsupseteq P'$

 $(havoc(x); assume(x + x = y)) \supseteq (assume(y = 6); x = 3)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$\blacktriangleright$$
 $R(P) =$

Consider our example $P \sqsupseteq P'$

 $(havoc(x); assume(x + x = y)) \supseteq (assume(y = 6); x = 3)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Consider our example $P \sqsupseteq P'$

 $(havoc(x); assume(x + x = y)) \supseteq (assume(y = 6); x = 3)$

•
$$R(P) = x' + x' = y' \land y' = y$$

• $R(P') = x' = 3 \land y' = 6 \land y' = y$

Does $P \sqsupseteq P'$ really hold?

Consider our example $P \sqsupseteq P'$

 $(havoc(x); assume(x + x = y)) \supseteq (assume(y = 6); x = 3)$

Now consider the right hand side:

domain of P is

Consider our example $P \supseteq P'$

 $(havoc(x); assume(x + x = y)) \supseteq (assume(y = 6); x = 3)$

Now consider the right hand side:

- domain of P is $\exists x', y'.x' + x' = y \land y' = y$
- equivalent to:

Consider our example $P \sqsupseteq P'$

 $(havoc(x); assume(x + x = y)) \supseteq (assume(y = 6); x = 3)$

Now consider the right hand side:

- domain of P is $\exists x', y'.x' + x' = y \land y' = y$
- equivalent to: y%2 = 0
- domain of P is:

Consider our example $P \sqsupseteq P'$

 $(havoc(x); assume(x + x = y)) \supseteq (assume(y = 6); x = 3)$

Now consider the right hand side:

- domain of P is $\exists x', y'.x' + x' = y \land y' = y$
- equivalent to: y%2 = 0
- domain of P is: $\exists x', y'.x' = 3 \land y' = 6 \land y' = y$

equivalent to:

Consider our example $P \sqsupseteq P'$

 $(havoc(x); assume(x + x = y)) \supseteq (assume(y = 6); x = 3)$

Now consider the right hand side:

- domain of P is $\exists x', y'.x' + x' = y \land y' = y$
- equivalent to: y%2 = 0
- domain of P is: $\exists x', y'.x' = 3 \land y' = 6 \land y' = y$
- equivalent to: y = 6

Does domain formula of P' imply the domain formula of P?

Consider our example $P \sqsupseteq P'$

 $(havoc(x); assume(x + x = y)) \supseteq (assume(y = 6); x = 3)$

Now consider the right hand side:

- domain of P is $\exists x', y'.x' + x' = y \land y' = y$
- equivalent to: y%2 = 0
- domain of P is: $\exists x', y'.x' = 3 \land y' = 6 \land y' = y$
- equivalent to: y = 6

Does domain formula of P' imply the domain formula of P? no

Preserving Domain: Exercise

Given P:

$$havoc(x)$$
; $assume(x + x = y)$

Find P_1 and P_2 such that

- $\blacktriangleright P \sqsupseteq P_1 \sqsupseteq P_2$
- no two programs among P, P_1, P_2 are equivalent
- programs P, P_1 and P_2 have equivalent domains
- the relation described by P_2 is a partial function

Complete Functional Synthesis

Synthesis from Relations

Software Synthesis Procedures Viktor Kuncak, Mikaël Mayer, Ruzica Piskac, Philippe Suter Communications of the ACM, Vol. 55 No. 2, Pages 103-111 http://doi.org/10.1145/2076450.2076472

Example of Synthesis

Input:

```
val (hours, minutes, seconds) = choose((h: Int, m: Int, s: Int) => (
h * 3600 + m * 60 + s == totsec
&& 0 <= m && m < 60
&& 0 <= s && s < 60))
```

Output:

```
val (hours, minutes, seconds) = {
val loc1 = totsec div 3600
val num2 = totsec + ((-3600) * loc1)
val loc2 = min(num2 div 60, 59)
val loc3 = totsec + ((-3600) * loc1) + (-60 * loc2)
  (loc1, loc2, loc3)
}
```

Complete Functional Synthesis

Domain-preserving refinement algorithm that produces a partial function

- assignment: res = choose x. F
- corresponds to: {var x; assume(F); res = x}
- we refine it preserving domain into: assume(D); res = t (where t does not have 'choose')

More abstractly, given formula F and variable x find

formula D

term t not containing x

such that, for all free variables:

• $D \rightarrow F[x := t]$ (t is a term such that refinement holds)

• $D \iff \exists x.F$ (*D* is the domain, says when *t* is correct)

Consequence of the definition: $D \iff F[x := t]$

From Quantifier Elimination to Synthesis

Quantifier Elimination

If \bar{y} is a tuple of variables not containing x, then

$$\exists x.(x = t(\bar{y}) \land F(x, \bar{y})) \iff F(t(\bar{y}), \bar{y})$$

Synthesis

choose
$$x.(x = t(\bar{y}) \land F(x, \bar{y}))$$

gives:

- precondition $F(t(\bar{y}), \bar{y})$, as before, but also
- program that realizes x, in this case, $t(\bar{y})$

Handling Disjunctions

We had

 $\exists x.(F_1(x) \lor F_2(x))$

is equivalent to

 $(\exists x.F_1(x)) \lor (\exists x.F_2(x))$

Now:

choose
$$x.(F_1(x) \lor F_2(x))$$

becomes:

if
$$(D_1)$$
 (choose x. $F_1(x)$) else (choose x. $F_2(x)$)

where D_1 is the domain, equivalent to $\exists x.F_1(x)$ and computed while computing *choose* $x.F_1(x)$.

Framework for Synthesis Procedures

We define the framework as a transformation

- from specification formula F to
- the maximal domain D where the result x can be found, and the program t that computes the result

 $\langle D \mid t \rangle$ denotes: the domain (formula) D and program (term) tMain transformation relation \vdash

choose
$$x.F \vdash \langle D \mid t \rangle$$

means

• $D \rightarrow F[x := t]$ (t is a term such that refinement holds)

• $D \iff \exists x.F$ (D is the domain, says when t is correct) Because F[x := t] implies $\exists x.F$, the above definition implies that D, F[x := t] and $\exists x.F$ are all equivalent.

Rule for Synthesizing Conditionals

$$\frac{\textit{choose } x.F_1 \vdash \langle D_1 \mid t_1 \rangle \quad \textit{choose } x.F_2 \vdash \langle D_2 \mid t_2 \rangle}{\textit{choose } x.(F_1 \lor F_2) \ \vdash \ \langle D_1 \lor D_2 \mid \textit{if } (D_1) \ t_1 \textit{ else } t_2 \rangle}$$

To synthesize the thing below the — , synthesize the things above and put the pieces together.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Test Terms Methods for Presburger Arithmetic Synthesis

Recall that the most complex step in QE for PA was replacing

 $\exists x.F_1(x)$

with

$$\bigvee_{k=1}^{L}\bigvee_{i=1}^{N}F_{1}(a_{k}+i)$$

Now we transform *choose* x. $F_1(x)$ first into:

choose
$$x$$
. $\bigvee_{k=1}^{L}\bigvee_{i=1}^{N}(x=a_{k}+i\wedge F_{1}(x))$

Then apply:

Test Terms Methods for Presburger Arithmetic Synthesis

Recall that the most complex step in QE for PA was replacing

 $\exists x.F_1(x)$

with

$$\bigvee_{k=1}^{L}\bigvee_{i=1}^{N}F_{1}(a_{k}+i)$$

Now we transform *choose* x. $F_1(x)$ first into:

choose
$$x$$
. $\bigvee_{k=1}^{L}\bigvee_{i=1}^{N}(x=a_{k}+i\wedge F_{1}(x))$

Then apply:

rule for conditionals

Test Terms Methods for Presburger Arithmetic Synthesis

Recall that the most complex step in QE for PA was replacing

 $\exists x.F_1(x)$

with

$$\bigvee_{k=1}^{L}\bigvee_{i=1}^{N}F_{1}(a_{k}+i)$$

Now we transform *choose* x. $F_1(x)$ first into:

choose
$$x$$
. $\bigvee_{k=1}^{L}\bigvee_{i=1}^{N}(x=a_{k}+i\wedge F_{1}(x))$

Then apply:

- rule for conditionals
- one-point rule

Synthesis using Test Terms

choose x.
$$\bigvee_{k=1}^{L}\bigvee_{i=1}^{N}(x=a_{k}+i\wedge F_{1})$$

produces the same precondition as the result of QE, and the generated term is:

$$if (F_1[x := a_1 + 1]) a_1 + 1$$

$$elseif (F_1[x := a_1 + 2]) a_1 + 2$$

...

$$elseif (F_1[x := a_k + i]) a_k + i$$

...

$$elseif (F_1[x := a_L + N]) a_L + N$$

Linear search over the possible values, taking the first one that works.

This could be optimized in many cases.

Synthesizing a Tuple of Outputs

$$\frac{\textit{choose } x.F \vdash \langle D_1 \mid t_1 \rangle \quad \textit{choose } y.D_1 \vdash \langle D_2 \mid t_2 \rangle}{\textit{choose } (x,y).F \vdash \langle D_2 \mid (t_1[y := t_2], \ t_2) \rangle}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Note that y can appear inside D_1 and t_1 , but not in D_2 or t_2

Substitution of Variables

In quantifier elimination, we used a step where we replace $M \cdot x$ with y. Let F be a formula in which x occurs only in the form $M \cdot x$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

What is the corresponding rule?

Substitution of Variables

In quantifier elimination, we used a step where we replace $M \cdot x$ with y. Let F be a formula in which x occurs only in the form $M \cdot x$.

What is the corresponding rule?

 $\frac{\textit{choose } y.(F[(M \cdot x) := y] \land (M|y)) \vdash \langle D \mid t \rangle}{\textit{choose } x.F \vdash \langle D \mid t[y := t/M] \rangle}$

Automated Checks for Specifications: Uniqueness

Suppose we wish to give a warning if the specification F allows two different solutions.

Let the variables in scope be denoted by z and consider the synthesis problem:

choose x. F

What is the verification condition that checks whether the solution for x is unique?

Automated Checks for Specifications: Uniqueness

Suppose we wish to give a warning if the specification F allows two different solutions.

Let the variables in scope be denoted by z and consider the synthesis problem:

choose x. F

What is the verification condition that checks whether the solution for x is unique? Solution is **not** unique if this PA formula is satisfiable:

Automated Checks for Specifications: Uniqueness

Suppose we wish to give a warning if the specification F allows two different solutions.

Let the variables in scope be denoted by z and consider the synthesis problem:

choose x. F

What is the verification condition that checks whether the solution for x is unique? Solution is **not** unique if this PA formula is satisfiable:

$$F \wedge F[x := y] \wedge x \neq y$$

If we find such x, y, z we report z as an example input for which there are two possible outputs, x and y.

Automated Checks for Specifications: Totality

Suppose we wish to give a warning if in some cases the solution does not exist.

Let the variables in scope be denoted by z and consider the synthesis problem:

choose x. F

What is the verification condition that checks if there are cases when no solution x exists?

Automated Checks for Specifications: Totality

Suppose we wish to give a warning if in some cases the solution does not exist.

Let the variables in scope be denoted by z and consider the synthesis problem:

choose x. F

What is the verification condition that checks if there are cases when no solution x exists? Check satisfiability of this PA formula:

 $\neg \exists x.F$

If there is a satisfying value for this formula, z, report it as an example for which no solution for x exists.

Synthesis of Functions of a Given Type

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Type Judgments and Questions

In environment Γ , expression *e* has type T:

 $\Gamma \vdash e : T$

After defining this relation inductively using type rules, we can ask different types of questions:

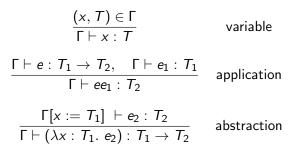
		given	task
type checking	Γ⊢ e : <i>T</i>	Г, е, Т	check if $\Gamma \vdash e : T$
type inference	Γ⊢ e : ?	Г, е	find T s.t. $\Gamma \vdash e : T$
type inhabitation	Γ⊢?: <i>Τ</i>	Г, Т	find e s.t. $\Gamma \vdash e : T$

Inhabitation can be used for type-directed completion: in a given program context, can we construct the expression of a given type?

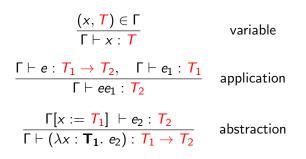
Also, type T can be viewed as a proposition, program e as a proof. Inhabitation asks if the proposition T has some proof e(if it is a theorem, usually in some constructive logic). Simply Typed Lambda Calculus (Church Style)

 ee_1 means e applied to e_1 ; in Scala: $e(e_1)$

 λx : $T_1.e$ is anonymous function, in Scala: $(x:T_1) \Rightarrow e$



Type Checking is Easy and Types Unique



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Which Cases of Inhabitation are Difficult?

$$\begin{aligned} &\frac{(x,T)\in \Gamma}{\Gamma\vdash x:T} & \text{variable} \\ &\frac{\Gamma\vdash e:T_1\to T_2, \quad \Gamma\vdash e_1:T_1}{\Gamma\vdash ee_1:T_2} & \text{application} \\ &\frac{\Gamma[x:=T_1]\vdash e_2:T_2}{\Gamma\vdash (\lambda x:T_1.e_2):T_1\to T_2} & \text{abstraction} \end{aligned}$$

Suppose that we are equally happy with any of the possible terms of a given type.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Which Cases of Inhabitation are Difficult?

$$\begin{aligned} &\frac{(x,T)\in \Gamma}{\Gamma\vdash x:T} & \text{variable} \\ &\frac{\Gamma\vdash e:T_1\to T_2, \quad \Gamma\vdash e_1:T_1}{\Gamma\vdash ee_1:T_2} & \text{application} \\ &\frac{\Gamma[x:=T_1]\vdash e_2:T_2}{\Gamma\vdash (\lambda x:T_1.e_2):T_1\to T_2} & \text{abstraction} \end{aligned}$$

Suppose that we are equally happy with any of the possible terms of a given type.

Challenge: in application rule, T_1 can be arbitrarily complex type; we would need to guess it.

Approaches to Solve the Difficulty

For more complex type systems, the problem is undecidable

- we can choose to restrict our search to expressions e of some bounded size
- the problem becomes decidable if type checking is decidable: can try all terms up to given size

In our simple case of simply typed lambda calculus: there is a **terminating algorithm** that solves type inhabitation problem (in deterministic singly exponential time and polynomial space), without requiring any bound on the size of *e*.

Key Idea: Long Normal Form of Lambda Terms

Reductions preserve types of terms. Apply them to get normal form.

Beta reduction: $(\lambda x.e_1)e_2 \longrightarrow \text{subst}(e_1, x, e_2)$

If applied exhaustively ensures that left side of application is never a lambda.

This process can blow up, but terminates ("strong normalization").

Result: applications have the form $fe_1 \dots e_n$ where f is a variable.

Key Idea: Long Normal Form of Lambda Terms

Eta expansion: when *e* has type $T_1 \rightarrow T_2$ then: $e \longrightarrow (\lambda x : T_1.e_1x)$ Strategy: replace partially applied type variables by adding missing arguments.

Given

$$f:T_1\to (T_2\to\ldots(T_n\to T))$$

where T is not a function type, if k < n then replace

 $fe_1 \dots e_k$

that is not of the form $fe_1 \ldots e_k e_{k+1}$ by

 $\lambda x_{k+1} \cdot \lambda x_{k+2} \cdot \ldots \lambda x_n$. fe₁ ... e_k x_{k+1} ... x_n

As a result, application is always to a variable and applies all of its arguments that the type permits.

Type Rules for Long Normal Form Terms

full variable application $(n \ge 0)$, if T is non-function type:

$$\frac{(f, T_1 \to \ldots \to T_n \to T) \in \Gamma, \quad \Gamma \vdash e_1 : T_1, \ \ldots \ \Gamma \vdash e_n : T_n}{\Gamma \vdash fe_1 \ldots e_n : T}$$

abstraction:

$$\frac{\Gamma \uplus \{(x_1, T_1), \dots, (x_n, T_n) \vdash e : T \\ \overline{\Gamma \vdash (\lambda x_1 : T_1, \dots, x_n : T_n \cdot e) : T_1 \to \dots \to T_n \to T}$$

- if there is a term of given type, this calculus derives some equivalent term of this type
- applying rules backwards generates queries with types that appear somewhere in environment or the query (possibly inside the syntactically larger types)
- ▶ there is no need to explore query $\Gamma \vdash ?: T$ if a query $\Gamma' \vdash ?: T$ was already asked for $dom(\Gamma) \subseteq dom(\Gamma')$

Using Inhabitation to Generate Suggestions

Tihomir Gvero, Viktor Kuncak, Ivan Kuraj, and Ruzica Piskac. Complete completion using types and weights. In ACM SIGPLAN PLDI, 2013. https://doi.org/10.1145/2499370.2462192

- optimize representation to ignore duplicate arguments of the same type to check inhabitation (succinct terms)
- extend the algorithm to enumerate terms of given type
- instead of ordering terms by size, assign cost for each variable (cost of term is sum of its variables)
- map synthesis of Scala and Java code to lambda calculus
- statistically estimate the cost of variables from code corpus