Lecture 3: Converting Imperative Programs to Formulas

Viktor Kuncak

Verification-Condition Generation for Imperative Non-Deterministic Programs

Program can be represented by a formula relating initial and final state. Consider program with variables x, y, z
program:

$$
x=x+2 ; y=x+10
$$

relation:
formula:

$$
\begin{gathered}
\left\{\left(x, y, z, x^{\prime}, y^{\prime}, z^{\prime}\right) \mid x^{\prime}=x+2 \wedge y^{\prime}=x+12 \wedge z^{\prime}=z\right\} \\
x^{\prime}=x+2 \wedge y^{\prime}=x+12 \wedge z^{\prime}=z
\end{gathered}
$$

Specification: $z=\operatorname{old}(z) \wedge(\operatorname{old}(x)>0 \rightarrow(x>0 \wedge y>0))$ Adhering to specification is relation subset:

$$
\begin{aligned}
& \left\{\left(x, y, z, x^{\prime}, y^{\prime}, z^{\prime}\right) \mid x^{\prime}=x+2 \wedge y^{\prime}=x+12 \wedge z^{\prime}=z\right\} \\
\subseteq & \left\{\left(x, y, z, x^{\prime}, y^{\prime}, z^{\prime}\right) \mid z^{\prime}=z \wedge\left(x>0 \rightarrow\left(x^{\prime}>0 \wedge y^{\prime}>0\right)\right)\right\}
\end{aligned}
$$

or validity of the following implication:

$$
\begin{aligned}
& x^{\prime}=x+2 \wedge y^{\prime}=x+12 \wedge z^{\prime}=z \\
\rightarrow \quad & z^{\prime}=z \wedge\left(x>0 \rightarrow\left(x^{\prime}>0 \wedge y^{\prime}>0\right)\right)
\end{aligned}
$$

Imperative Presburger Arithmetic Programs

F - formulas, t - terms - as in functional programs so far
Fixed number of mutable integer variables $V=\left\{x_{1}, \ldots, x_{n}\right\}$ Imperative statements:

- $\mathbf{x}=\mathbf{t}$: change $x \in V$ to have value given by t; leave vars in $V \backslash\{x\}$ unchanged
- if(F) $\mathbf{c}_{\mathbf{1}}$ else $\mathbf{c}_{\mathbf{2}}$: if F holds, execute c_{1} else execute c_{2}
- $\mathbf{c}_{\mathbf{1}} ; \mathbf{c}_{\mathbf{2}}$: first execute c_{1}, then execute c_{2}

Statements for introducing and restricting non-determinism:

- havoc(\mathbf{x}): non-deterministically change $x \in V$ to have an arbitrary value; leave vars in $V \backslash\{x\}$ unchanged
- if $(*) \mathbf{c}_{\mathbf{1}}$ else $\mathbf{c}_{\mathbf{2}}$: arbitrarily choose to run c_{1} or c_{2}
- assume(F): block all executions where F does not hold Given such loop-free program c with conditionals, compute a polynomial-sized formula $R(c)$ of form: $\exists \bar{z} . F\left(\bar{x}, \bar{z}, \bar{x}^{\prime}\right)$ describing relation between initial values of variables x_{1}, \ldots, x_{n} and final values of variables $x_{1}^{\prime}, \ldots, x_{n}^{\prime}$

Construction Formula that Describe Relations

c - imperative command
$R(c)$ - formula describing relation between initial and final states of execution of c

If $\rho(c)$ describes the relation, then $R(c)$ is formula such that

$$
\rho(c)=\left\{\left(\bar{v}, \bar{v}^{\prime}\right) \mid R(c)\right\}
$$

$R(c)$ is a formula between unprimed variables \bar{v} and primed variables \bar{v}^{\prime}

Formula for Assignment

$$
x=t
$$

Formula for Assignment

$$
x=t
$$

$R(x=t):$

$$
x^{\prime}=t \wedge \bigwedge_{v \in V \backslash\{x\}} v^{\prime}=v
$$

Note that the formula must explicitly state which variables remain the same (here: all except x). Otherwise, those variables would not be constrained by the relation, so they could take arbitrary value in the state after the command.

Formula for if-else

After flattening,
if $(b) c_{1}$ else c_{2}

Formula for if-else

After flattening,

$$
\text { if }(b) c_{1} \text { else } c_{2}
$$

$R\left(i f(b) c_{1}\right.$ else $\left.c_{2}\right)$:

$$
\left(b \wedge R\left(c_{1}\right)\right) \vee\left(\neg b \wedge R\left(c_{2}\right)\right)
$$

Command semicolon

$$
c_{1} ; c_{2}
$$

Command semicolon

$$
c_{1} ; c_{2}
$$

Reminder about relation composition and its definition:

$$
r_{1} \circ r_{2}=\left\{(a, c) \mid \exists b \cdot(a, b) \in r_{1} \wedge(b, c) \in r_{2}\right\}
$$

Command semicolon

$$
c_{1} ; c_{2}
$$

Reminder about relation composition and its definition:

$$
r_{1} \circ r_{2}=\left\{(a, c) \mid \exists b \cdot(a, b) \in r_{1} \wedge(b, c) \in r_{2}\right\}
$$

What are $R\left(c_{1}\right)$ and $R\left(c_{2}\right)$ and in terms of which variables they are expressed?

Command semicolon

$$
c_{1} ; c_{2}
$$

Reminder about relation composition and its definition:

$$
r_{1} \circ r_{2}=\left\{(a, c) \mid \exists b \cdot(a, b) \in r_{1} \wedge(b, c) \in r_{2}\right\}
$$

What are $R\left(c_{1}\right)$ and $R\left(c_{2}\right)$ and in terms of which variables they are expressed?
$R\left(c_{1} ; c_{2}\right) \equiv$

$$
\exists \bar{z} . \quad R\left(c_{1}\right)\left[\bar{x}^{\prime}:=\bar{z}\right] \wedge R\left(c_{2}\right)[\bar{x}:=\bar{z}]
$$

where \bar{z} are freshly picked names of intermediate states.

- a useful convention: \bar{z} refer to position in program source code

havoc

Definition of HAVOC

1. wide and general destruction: devastation
2. great confusion and disorder

Example of use:
$y=12 ; \operatorname{havoc}(x) ; \operatorname{assume}(x+x=y)$
Translation, $R(\operatorname{havoc}(x))$:

havoc

Definition of HAVOC

1. wide and general destruction: devastation
2. great confusion and disorder

Example of use:
$y=12 ; \operatorname{havoc}(x) ; \operatorname{assume}(x+x=y)$
Translation, $R(\operatorname{havoc}(x))$:

$$
\bigwedge_{v \in V \backslash\{x\}} v^{\prime}=v
$$

This again illustrates "politically correct" approach to describing the destruction of values of variables: just do not mention them.

Non-deterministic choice
if $(*) c_{1}$ else c_{2}

Non-deterministic choice

$$
\text { if }(*) c_{1} \text { else } c_{2}
$$

$R\left(\right.$ if $(*) c_{1}$ else $\left.c_{2}\right):$

$$
R\left(c_{1}\right) \vee R\left(c_{2}\right)
$$

- translation is simply a disjunction - this is why construct is interesting
- corresponds to branching in control-flow graphs

assume

$$
\operatorname{assume}(F)
$$

assume

$$
\operatorname{assume}(F)
$$

$R($ assume $(F))$:

$$
F \wedge \bigwedge_{v \in V} v^{\prime}=v
$$

assume

$$
\operatorname{assume}(F)
$$

$R($ assume $(F))$:

$$
F \wedge \bigwedge_{v \in V} v^{\prime}=v
$$

- This command does not change any state.

assume

$$
\operatorname{assume}(F)
$$

$R($ assume $(F))$:

$$
F \wedge \bigwedge_{v \in V} v^{\prime}=v
$$

- This command does not change any state.
- If F does not hold, it stops with "instantaneous success".

Example of Translation

$$
\begin{aligned}
& \text { (if }(b) x=x+1 \text { else } y=x+2) \text {; } \\
& 1 \\
& x=x+5 \\
& 2 \\
& (\text { if }(*) y=y+1 \text { else } x=y)
\end{aligned}
$$

becomes
$\exists x_{1}, y_{1}, x_{2}, y_{2} .\left(\left(b \wedge \mathbf{x}_{\mathbf{1}}=\mathbf{x}+\mathbf{1} \wedge y_{1}=y\right) \vee\left(\neg b \wedge x_{1}=x \wedge \mathbf{y}_{\mathbf{1}}=\mathbf{x}+\mathbf{2}\right)\right)$

$$
\begin{aligned}
& \wedge\left(\mathbf{x}_{\mathbf{2}}=\mathbf{x}_{\mathbf{1}}+\mathbf{5} \wedge y_{2}=y_{1}\right) \\
& \wedge\left(\left(x^{\prime}=x_{2} \wedge \mathbf{y}^{\prime}=\mathbf{y}_{2}+\mathbf{1}\right) \vee\left(\mathbf{x}^{\prime}=\mathbf{y}_{2} \wedge y^{\prime}=y_{2}\right)\right)
\end{aligned}
$$

Think of execution trace $\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right)$ where

- $\left(x_{0}, y_{0}\right)$ is denoted by (x, y)
- $\left(x_{3}, y_{3}\right)$ is denoted by $\left(x^{\prime}, y^{\prime}\right)$

Imperative Presburger Arithmetic Programs

F - formulas, t - terms - as in functional programs so far
Fixed number of mutable integer variables $V=\left\{x_{1}, \ldots, x_{n}\right\}$ Imperative statements:

- $\mathbf{x}=\mathbf{t}$: change $x \in V$ to have value given by t; leave vars in $V \backslash\{x\}$ unchanged
- if(F) $\mathbf{c}_{\mathbf{1}}$ else $\mathbf{c}_{\mathbf{2}}$: if F holds, execute c_{1} else execute c_{2}
- $\mathbf{c}_{\mathbf{1}} ; \mathbf{c}_{\mathbf{2}}$: first execute c_{1}, then execute c_{2}

Statements for introducing and restricting non-determinism:

- havoc(\mathbf{x}): non-deterministically change $x \in V$ to have an arbitrary value; leave vars in $V \backslash\{x\}$ unchanged
- if $(*) \mathbf{c}_{\mathbf{1}}$ else $\mathbf{c}_{\mathbf{2}}$: arbitrarily choose to run c_{1} or c_{2}
- assume(F): block all executions where F does not hold Given such loop-free program c with conditionals, compute a polynomial-sized formula $R(c)$ of form: $\exists \bar{z} . F\left(\bar{x}, \bar{z}, \bar{x}^{\prime}\right)$ describing relation between initial values of variables x_{1}, \ldots, x_{n} and final values of variables $x_{1}^{\prime}, \ldots, x_{n}^{\prime}$

Justifying the name for assume(F)

Compute and simplify as much as possible each of the following expressions:

1. $R(\operatorname{assume}(F) ; c)$

Justifying the name for assume(F)

Compute and simplify as much as possible each of the following expressions:

1. $R(\operatorname{assume}(F) ; c)=F \wedge R(c)$
2. $R(c ; \operatorname{assume}(F))$

Justifying the name for assume(F)

Compute and simplify as much as possible each of the following expressions:

1. $R(\operatorname{assume}(F) ; c)=F \wedge R(c)$
2. $R(c$; assume $(F))=R(c) \wedge F\left[\bar{x}:=\bar{x}^{\prime}\right]$
where $F\left[\bar{x}:=\bar{x}^{\prime}\right]$ denotes F with all variables replaced with primed versions

Expressing if through non-deterministic choice and assume

Expressing if through non-deterministic choice and assume

```
if (b) c1 else c2
    ||
if (*) {
    assume(b);
    c1
} else {
    assume(!b);
    c2
}
```

Indeed, apply translation to both sides and observe that generated formulas are equivalent.

Expressing assignment through havoc and assume

Expressing assignment through havoc and assume

$$
x=e
$$

havoc (x); assume $(x==e)$

Under what conditions this holds?

Expressing assignment through havoc and assume

$$
x=e
$$

havoc (x); assume $(x==e)$

Under what conditions this holds? $x \notin F V(e)$

Illustration of the problem: havoc (x); assume $(x==x+1)$

Expressing assignment through havoc and assume

$$
x=e
$$

havoc (x); assume ($x==e$)

Under what conditions this holds? $x \notin F V(e)$

Illustration of the problem: havoc (x); assume $(x==x+1)$
Luckily, we can rewrite it into $x_{\text {fresh }}=x+1 ; x=x_{\text {fresh }}$

Local Mutable Variables

Assume our global variables are $V=\{x, z\}$
Program P introduces a local variable y inside a nested block:

$$
x=x+1 ;\{\operatorname{var} y ; y=x+3 ; z=x+y+z\} ; x=x+z
$$

$R(P)$ should be a relation between (x, z) and $\left(x^{\prime}, z^{\prime}\right)$.
Each statement should be relation between variables in scope. Inside the block we have variables $V_{1}=\{x, y, z\}$. For assignment statement $c: \quad z=x+y+z$, $R(c)$ is a relation between x, y, z and $x^{\prime}, y^{\prime}, z^{\prime}$.
Convention: consider the initial values of variables to be arbitrary $R(y=x+3 ; z=x+y+z)=$

Local Mutable Variables

Assume our global variables are $V=\{x, z\}$
Program P introduces a local variable y inside a nested block:

$$
x=x+1 ;\{\operatorname{var} y ; y=x+3 ; z=x+y+z\} ; x=x+z
$$

$R(P)$ should be a relation between (x, z) and $\left(x^{\prime}, z^{\prime}\right)$.
Each statement should be relation between variables in scope. Inside the block we have variables $V_{1}=\{x, y, z\}$. For assignment statement $c: \quad z=x+y+z$, $R(c)$ is a relation between x, y, z and $x^{\prime}, y^{\prime}, z^{\prime}$.
Convention: consider the initial values of variables to be arbitrary $R(y=x+3 ; z=x+y+z)=$
$y^{\prime}=x+3 \wedge z^{\prime}=2 x+3+z \wedge x^{\prime}=x$

Local Mutable Variables

Assume our global variables are $V=\{x, z\}$
Program P introduces a local variable y inside a nested block:

$$
x=x+1 ;\{\operatorname{var} y ; y=x+3 ; z=x+y+z\} ; x=x+z
$$

$R(P)$ should be a relation between (x, z) and $\left(x^{\prime}, z^{\prime}\right)$.
Each statement should be relation between variables in scope. Inside the block we have variables $V_{1}=\{x, y, z\}$. For assignment statement $c: \quad z=x+y+z$, $R(c)$ is a relation between x, y, z and $x^{\prime}, y^{\prime}, z^{\prime}$.
Convention: consider the initial values of variables to be arbitrary $R(y=x+3 ; z=x+y+z)=$
$y^{\prime}=x+3 \wedge z^{\prime}=2 x+3+z \wedge x^{\prime}=x$
$R(\{\operatorname{var} y ; y=x+3 ; z=x+y+z\})=$

Local Mutable Variables

Assume our global variables are $V=\{x, z\}$
Program P introduces a local variable y inside a nested block:

$$
x=x+1 ;\{\operatorname{var} y ; y=x+3 ; z=x+y+z\} ; x=x+z
$$

$R(P)$ should be a relation between (x, z) and $\left(x^{\prime}, z^{\prime}\right)$.
Each statement should be relation between variables in scope. Inside the block we have variables $V_{1}=\{x, y, z\}$. For assignment statement $c: \quad z=x+y+z$, $R(c)$ is a relation between x, y, z and $x^{\prime}, y^{\prime}, z^{\prime}$.
Convention: consider the initial values of variables to be arbitrary $R(y=x+3 ; z=x+y+z)=$
$y^{\prime}=x+3 \wedge z^{\prime}=2 x+3+z \wedge x^{\prime}=x$
$R(\{\operatorname{var} y ; y=x+3 ; z=x+y+z\})=z^{\prime}=2 x+3+z \wedge x^{\prime}=x$

Local Variable Translation

$R_{V}(P)$ is formula for P in the scope that has the set of variables V For example,

$$
R_{V}(x=t)=x^{\prime}=t \wedge \bigwedge_{v \in V \backslash\{x\}} v^{\prime}=v
$$

Then define $R_{V}(\{\operatorname{var} y ; P\})=$

Local Variable Translation

$R_{V}(P)$ is formula for P in the scope that has the set of variables V For example,

$$
R_{V}(x=t)=x^{\prime}=t \wedge \bigwedge_{v \in V \backslash\{x\}} v^{\prime}=v
$$

Then define

$$
R_{V}(\{\operatorname{var} y ; P\})=\exists y, y^{\prime} \cdot R_{V \cup\{y\}}(P)
$$

Local Variable Translation

$R_{V}(P)$ is formula for P in the scope that has the set of variables V For example,

$$
R_{V}(x=t)=x^{\prime}=t \wedge \bigwedge_{v \in V \backslash\{x\}} v^{\prime}=v
$$

Then define $R_{V}(\{\operatorname{var} y ; P\})=\exists y, y^{\prime} \cdot R_{V \cup\{y\}}(P)$

Exercise: express havoc(x) using var.

Local Variable Translation

$R_{V}(P)$ is formula for P in the scope that has the set of variables V For example,

$$
R_{V}(x=t)=x^{\prime}=t \wedge \bigwedge_{v \in V \backslash\{x\}} v^{\prime}=v
$$

Then define
$R_{V}(\{\operatorname{var} y ; P\})=\exists y, y^{\prime} \cdot R_{V \cup\{y\}}(P)$
Exercise: express havoc(x) using var.

$$
R_{V}(\operatorname{havoc}(x)) \Longleftrightarrow R_{V}(\{\operatorname{var} y ; x=y\})
$$

Local Variable Translation

$R_{V}(P)$ is formula for P in the scope that has the set of variables V For example,

$$
R_{V}(x=t)=x^{\prime}=t \wedge \bigwedge_{v \in V \backslash\{x\}} v^{\prime}=v
$$

Then define
$R_{V}(\{\operatorname{var} y ; P\})=\exists y, y^{\prime} \cdot R_{V \cup\{y\}}(P)$
Exercise: express havoc(x) using var.

$$
R_{V}(\operatorname{havoc}(x)) \Longleftrightarrow R_{V}(\{\operatorname{var} y ; x=y\})
$$

Exercise: give transformation that lifts all variables to be global

Expressing Specifications as Commands

Shorthand: Havoc Multiple Variables at Once

Variables $V=\left\{x_{1}, \ldots, x_{n}\right\}$
Translation of $R\left(\right.$ havoc $\left.\left(y_{1}, \ldots, y_{m}\right)\right)$:

Shorthand: Havoc Multiple Variables at Once

Variables $V=\left\{x_{1}, \ldots, x_{n}\right\}$
Translation of $R\left(\right.$ havoc $\left.\left(y_{1}, \ldots, y_{m}\right)\right)$:

$$
\bigwedge_{v \in V \backslash\left\{y_{1}, \ldots, y_{m}\right\}} v^{\prime}=v
$$

Exercise: the resulting formula is the same as for:

$$
\operatorname{havoc}\left(y_{1}\right) ; \ldots ; \operatorname{havoc}\left(y_{m}\right)
$$

Thus, the order of distinct havoc-s does not matter.

Programs and Specs are Relations

$$
\begin{array}{rc}
\text { program: } & x=x+2 ; y=x+10 \\
\text { relation: } & \left\{\left(x, y, z, x^{\prime}, y^{\prime}, z^{\prime}\right) \mid x^{\prime}=x+2 \wedge y^{\prime}=x+12 \wedge z^{\prime}=z\right\} \\
\text { formula: } & x^{\prime}=x+2 \wedge y^{\prime}=x+12 \wedge z^{\prime}=z
\end{array}
$$

Specification:

$$
z^{\prime}=z \wedge\left(x>0 \rightarrow\left(x^{\prime}>0 \wedge y^{\prime}>0\right)\right.
$$

Adhering to specification is relation subset:

$$
\begin{aligned}
& \left\{\left(x, y, z, x^{\prime}, y^{\prime}, z^{\prime}\right) \mid x^{\prime}=x+2 \wedge y^{\prime}=x+12 \wedge z^{\prime}=z\right\} \\
\subseteq & \left\{\left(x, y, z, x^{\prime}, y^{\prime}, z^{\prime}\right) \mid z^{\prime}=z \wedge\left(x>0 \rightarrow\left(x^{\prime}>0 \wedge y^{\prime}>0\right)\right)\right\}
\end{aligned}
$$

Non-deterministic programs are a way of writing specifications

Writing Specs Using Havoc and Assume: Examples

Program variables $V=\{x, y, z\}$
Formula for relation (talks only about resulting state):

$$
z^{\prime}=z \wedge x^{\prime}>0 \wedge y^{\prime}>0
$$

Corresponding program:

Writing Specs Using Havoc and Assume: Examples

Program variables $V=\{x, y, z\}$
Formula for relation (talks only about resulting state):

$$
z^{\prime}=z \wedge x^{\prime}>0 \wedge y^{\prime}>0
$$

Corresponding program:

$$
\operatorname{havoc}(x, y) ; \operatorname{assume}(x>0 \wedge y>0)
$$

Writing Specs Using Havoc and Assume: Examples

Program variables $V=\{x, y, z\}$
Formula for relation (talks only about resulting state):

$$
z^{\prime}=z \wedge x^{\prime}>0 \wedge y^{\prime}>0
$$

Corresponding program:

$$
\operatorname{havoc}(x, y) ; \operatorname{assume}(x>0 \wedge y>0)
$$

Formula for relation:

$$
z^{\prime}=z \wedge x^{\prime}>x \wedge y^{\prime}>y
$$

Corresponding program?

Writing Specs Using Havoc and Assume: Examples

Program variables $V=\{x, y, z\}$
Formula for relation (talks only about resulting state):

$$
z^{\prime}=z \wedge x^{\prime}>0 \wedge y^{\prime}>0
$$

Corresponding program:

$$
\operatorname{havoc}(x, y) ; \operatorname{assume}(x>0 \wedge y>0)
$$

Formula for relation:

$$
z^{\prime}=z \wedge x^{\prime}>x \wedge y^{\prime}>y
$$

Corresponding program?
Use local variables to store initial values.

Writing Specs Using Havoc and Assume: Examples

Program variables $V=\{x, y, z\}$
Formula for relation (talks only about resulting state):

$$
z^{\prime}=z \wedge x^{\prime}>0 \wedge y^{\prime}>0
$$

Corresponding program:

$$
\operatorname{havoc}(x, y) ; \operatorname{assume}(x>0 \wedge y>0)
$$

Formula for relation:

$$
z^{\prime}=z \wedge x^{\prime}>x \wedge y^{\prime}>y
$$

Corresponding program?
Use local variables to store initial values.
\{ var $\times 0$; var y 0 ;
$x 0=x ; y 0=y$;
havoc (x, y);
assume $(x>x 0 \& \& y>y 0)$

Writing Specs Using Havoc and Assume

Global variables $V=\left\{x_{1}, \ldots, x_{n}\right\}$
Specification

$$
F\left(x_{1}, \ldots, x_{n}, x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right)
$$

Becomes

Writing Specs Using Havoc and Assume

Global variables $V=\left\{x_{1}, \ldots, x_{n}\right\}$
Specification

$$
F\left(x_{1}, \ldots, x_{n}, x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right)
$$

Becomes

$$
\begin{aligned}
& \left\{\operatorname{var} y_{1}, \ldots, y_{n}\right. \text {; } \\
& y_{1}=x_{1} ; \ldots ; y_{n}=x_{n} ; \\
& \text { havoc }\left(x_{1}, \ldots, x_{n}\right) \text {; } \\
& \left.\operatorname{assume}\left(F\left(y_{1}, \ldots, y_{n}, x_{1}, \ldots, x_{n}\right)\right)\right\}
\end{aligned}
$$

Program Refinement and Equivalence

For two programs, define refinement $P_{1} \sqsubseteq P_{2}$ iff

$$
R\left(P_{1}\right) \rightarrow R\left(P_{2}\right)
$$

is a valid formula.
(Some books use the opposite meaning of \sqsubseteq.)
As usual, $P_{2} \sqsupseteq P_{1}$ iff $P_{1} \sqsubseteq P_{2}$.

- $P_{1} \sqsubseteq P_{2}$ iff $\rho\left(P_{1}\right) \subseteq \rho\left(P_{2}\right)$

Define equivalence $P_{1} \equiv P_{2}$ iff $P_{1} \sqsubseteq P_{2} \wedge P_{2} \sqsubseteq P_{1}$

- $P_{1} \equiv P_{2}$ iff $\rho\left(P_{1}\right)=\rho\left(P_{2}\right)$

Example for $V=\{x, y\}$

$$
\{\operatorname{var} x 0 ; x 0=x ; \operatorname{havoc}(x) ; \operatorname{assume}(x>x 0)\} \sqsupseteq(x=x+1)
$$

Proof: Use R to compute formulas for both sides and simplify.

Program Refinement and Equivalence

For two programs, define refinement $P_{1} \sqsubseteq P_{2}$ iff

$$
R\left(P_{1}\right) \rightarrow R\left(P_{2}\right)
$$

is a valid formula.
(Some books use the opposite meaning of \sqsubseteq.)
As usual, $P_{2} \sqsupseteq P_{1}$ iff $P_{1} \sqsubseteq P_{2}$.

- $P_{1} \sqsubseteq P_{2}$ iff $\rho\left(P_{1}\right) \subseteq \rho\left(P_{2}\right)$

Define equivalence $P_{1} \equiv P_{2}$ iff $P_{1} \sqsubseteq P_{2} \wedge P_{2} \sqsubseteq P_{1}$

- $P_{1} \equiv P_{2}$ iff $\rho\left(P_{1}\right)=\rho\left(P_{2}\right)$

Example for $V=\{x, y\}$

$$
\{\operatorname{var} x 0 ; x 0=x ; \operatorname{havoc}(x) ; \operatorname{assume}(x>x 0)\} \sqsupseteq(x=x+1)
$$

Proof: Use R to compute formulas for both sides and simplify.

$$
x^{\prime}=x+1 \wedge y^{\prime}=y \rightarrow x^{\prime}>x \wedge y^{\prime}=y
$$

Stepwise Refinement Methodology

Start form a possibly non-deterministic specification P_{0} Refine the program until it becomes deterministic and efficiently executable.

$$
P_{0} \sqsupseteq P_{1} \sqsupseteq \ldots \sqsupseteq P_{n}
$$

Example:

$$
\begin{array}{ll}
& \operatorname{havoc}(x) ; \operatorname{assume}(x>0) ; \text { havoc }(y) ; \text { assume }(x<y) \\
\sqsupseteq & \text { havoc }(x) ; \operatorname{assume}(x>0) ; y=x+1 \\
\sqsupseteq & x=42 ; y=x+1 \\
\sqsupseteq & x=42 ; y=43
\end{array}
$$

In the last step program equivalence holds as well

Monotonicity with Respect to Refinement

Theorem: if $P_{1} \sqsubseteq P_{2}$ then $\left(P_{1} ; P\right) \sqsubseteq\left(P_{2} ; P\right)$

Monotonicity with Respect to Refinement

Theorem: if $P_{1} \sqsubseteq P_{2}$ then $\left(P_{1} ; P\right) \sqsubseteq\left(P_{2} ; P\right)$
Version for relations: $\left(p_{1} \subseteq p_{2}\right) \rightarrow\left(p_{1} \circ p\right) \subseteq\left(p_{2} \circ p\right)$

Monotonicity with Respect to Refinement

Theorem: if $P_{1} \sqsubseteq P_{2}$ then $\left(P_{1} ; P\right) \sqsubseteq\left(P_{2} ; P\right)$
Version for relations: $\left(p_{1} \subseteq p_{2}\right) \rightarrow\left(p_{1} \circ p\right) \subseteq\left(p_{2} \circ p\right)$
Theorem: if $P_{1} \sqsubseteq P_{2}$ then $\left(P ; P_{1}\right) \sqsubseteq\left(P ; P_{2}\right)$

Monotonicity with Respect to Refinement

Theorem: if $P_{1} \sqsubseteq P_{2}$ then $\left(P_{1} ; P\right) \sqsubseteq\left(P_{2} ; P\right)$
Version for relations: $\left(p_{1} \subseteq p_{2}\right) \rightarrow\left(p_{1} \circ p\right) \subseteq\left(p_{2} \circ p\right)$
Theorem: if $P_{1} \sqsubseteq P_{2}$ then $\left(P ; P_{1}\right) \sqsubseteq\left(P ; P_{2}\right)$
Version for relations: $\left(p_{1} \subseteq p_{2}\right) \rightarrow\left(p \circ p_{1}\right) \subseteq\left(p \circ p_{2}\right)$
Theorem: if $P_{1} \sqsubseteq P_{2}$ and $Q_{1} \sqsubseteq Q_{2}$ then

$$
\left(\text { if }(*) P_{1} \text { else } Q_{1}\right) \sqsubseteq\left(\text { if }(*) P_{2} \text { else } Q_{2}\right)
$$

Monotonicity with Respect to Refinement

Theorem: if $P_{1} \sqsubseteq P_{2}$ then $\left(P_{1} ; P\right) \sqsubseteq\left(P_{2} ; P\right)$
Version for relations: $\left(p_{1} \subseteq p_{2}\right) \rightarrow\left(p_{1} \circ p\right) \subseteq\left(p_{2} \circ p\right)$
Theorem: if $P_{1} \sqsubseteq P_{2}$ then $\left(P ; P_{1}\right) \sqsubseteq\left(P ; P_{2}\right)$
Version for relations: $\left(p_{1} \subseteq p_{2}\right) \rightarrow\left(p \circ p_{1}\right) \subseteq\left(p \circ p_{2}\right)$
Theorem: if $P_{1} \sqsubseteq P_{2}$ and $Q_{1} \sqsubseteq Q_{2}$ then

$$
\left(\text { if }(*) P_{1} \text { else } Q_{1}\right) \sqsubseteq\left(\text { if }(*) P_{2} \text { else } Q_{2}\right)
$$

Version for relations:
$\left(p_{1} \subseteq p_{2}\right) \wedge\left(q_{1} \subseteq q_{2}\right) \quad \rightarrow \quad\left(p_{1} \cup q_{1}\right) \subseteq\left(p_{2} \cup q_{2}\right)$

Checking Commutativity of Commands

Associativity of Commands

Under what conditions on commands c_{1}, c_{2} is

$$
c_{1} ;\left(c_{2} ; c_{3}\right) \equiv\left(c_{1} ; c_{2}\right) ; c_{3}
$$

Associativity of Commands

Under what conditions on commands c_{1}, c_{2} is

$$
c_{1} ;\left(c_{2} ; c_{3}\right) \equiv\left(c_{1} ; c_{2}\right) ; c_{3}
$$

always

Commutativity of Commands

Under what conditions on commands c_{1}, c_{2} is

$$
c_{1} ; c_{2} \equiv c_{2} ; c_{1}
$$

Commutativity of Commands

Under what conditions on commands c_{1}, c_{2} is

$$
c_{1} ; c_{2} \equiv c_{2} ; c_{1}
$$

In general, when the resulting relations are equal and formulas equivalent, i.e. iff

$$
R\left(c_{1} ; c_{2}\right) \Longleftrightarrow R\left(c_{2} ; c_{1}\right)
$$

is a valid formula (true for all variables).

Commutativity of Commands

Under what conditions on commands c_{1}, c_{2} is

$$
c_{1} ; c_{2} \equiv c_{2} ; c_{1}
$$

In general, when the resulting relations are equal and formulas equivalent, i.e. iff

$$
R\left(c_{1} ; c_{2}\right) \Longleftrightarrow R\left(c_{2} ; c_{1}\right)
$$

is a valid formula (true for all variables).
Example: does this hold?

$$
(x=x+1 ; y=x+2) \equiv(y=x+2 ; x=x+1)
$$

Show formulas for each sides

Commutativity of Commands

Under what conditions on commands c_{1}, c_{2} is

$$
c_{1} ; c_{2} \equiv c_{2} ; c_{1}
$$

In general, when the resulting relations are equal and formulas equivalent, i.e. iff

$$
R\left(c_{1} ; c_{2}\right) \Longleftrightarrow R\left(c_{2} ; c_{1}\right)
$$

is a valid formula (true for all variables).
Example: does this hold?

$$
(x=x+1 ; y=x+2) \equiv(y=x+2 ; x=x+1)
$$

Show formulas for each sides-not equivalent:

$$
x^{\prime}=x+1 \wedge y^{\prime}=x+3 \quad x^{\prime}=x+1 \wedge y^{\prime}=x+2
$$

Examples of Commutativity of Commands

Show the formula for each example and check if the commutativity equivalence holds

Example 1:

$$
(x=2 * x+7 * z ; y=5 * y+z) \equiv(y=5 * y+z ; x=2 * x+7 * z)
$$

Examples of Commutativity of Commands

Show the formula for each example and check if the commutativity equivalence holds

Example 1:
$(x=2 * x+7 * z ; y=5 * y+z) \equiv(y=5 * y+z ; x=2 * x+7 * z)$
Can you state a generalization of the above example?

Examples of Commutativity of Commands

Show the formula for each example and check if the commutativity equivalence holds

Example 1:
$(x=2 * x+7 * z ; y=5 * y+z) \equiv(y=5 * y+z ; x=2 * x+7 * z)$
Can you state a generalization of the above example? Example 2:

$$
(x=x+1 ; x=x+5) \equiv(x=x+5 ; x=x+1)
$$

Examples of Commutativity of Commands

Show the formula for each example and check if the commutativity equivalence holds

Example 1:
$(x=2 * x+7 * z ; y=5 * y+z) \equiv(y=5 * y+z ; x=2 * x+7 * z)$
Can you state a generalization of the above example? Example 2:

$$
(x=x+1 ; x=x+5) \equiv(x=x+5 ; x=x+1)
$$

Requires knowing properties of + .

Preserving Domain in Refinement

What is the domain of a relation?

Given relation $r \subseteq A \times B$ for any sets A, B, we define domain of r as

$$
\operatorname{dom}(r)=\{a \mid \exists b .(a, b) \in r\}
$$

when r is a total function, then $\operatorname{dom}(r)=A$

- a typical case if r is an entire program

Let $r=\left\{\left(\bar{x}, \bar{x}^{\prime}\right) \mid F\right\}, F V(F) \subseteq \operatorname{Var} \cup \operatorname{Var}^{\prime}, \operatorname{Var}^{\prime}=\left\{x^{\prime} \mid x \in \operatorname{Var}\right\}$. Then, $\operatorname{dom}(r)=\left\{\bar{x} \mid \exists \bar{x}^{\prime} . F\right\}$

- computing domain $=$ existentially quantifying over primed vars

Example: for $\operatorname{Var}=\{x, y\}, R(x=x+1)=x^{\prime}=x+1 \wedge y^{\prime}=y$. The formula for the domain is: $\exists x^{\prime}, y^{\prime} . x^{\prime}=x+1 \wedge y^{\prime}=y$, which, after one-pint rule, reduces to true.

- All assignments have true as domain.

Preserving Domain

It is not interesting program development step $P \sqsupseteq P^{\prime}$ is P^{\prime} is false, or is false for most inputs.
Example (Var $=\{x, y\}$)

$$
(\operatorname{havoc}(x) ; \operatorname{assume}(x+x=y)) \sqsupseteq(\operatorname{assume}(y=6) ; x=3)
$$

Refinement $P \sqsupseteq Q$, ensures $R(Q) \rightarrow R(P)$. A consequence is $\left(\exists \bar{x}^{\prime} \cdot R(Q)\right) \rightarrow\left(\exists \bar{x}^{\prime} . R(P)\right)$.
We additionally wish to preserve the domain of the relation between $\bar{x}, \bar{x}^{\prime}$

- if P has some execution from \bar{x} ending in \bar{x}^{\prime}
- then Q should also have some execution, ending in some (possibly different) \bar{x}^{\prime} (even if it has fewer choices)

$$
\left(\exists \bar{x}^{\prime} \cdot R(P)\right) \leftrightarrow\left(\exists \bar{x}^{\prime} \cdot R(Q)\right)
$$

So, we want relations to be smaller or equal, but domains equal.

Domains in the Example

Consider our example $P \sqsupseteq P^{\prime}$

$$
(\operatorname{havoc}(x) ; \operatorname{assume}(x+x=y)) \quad(\operatorname{assume}(y=6) ; x=3)
$$

- $R(P)=$

Domains in the Example

Consider our example $P \sqsupseteq P^{\prime}$

$$
(\operatorname{havoc}(x) ; \operatorname{assume}(x+x=y)) \sqsupseteq(\operatorname{assume}(y=6) ; x=3)
$$

- $R(P)=x^{\prime}+x^{\prime}=y^{\prime} \wedge y^{\prime}=y$
- $R\left(P^{\prime}\right)=$

Domains in the Example

Consider our example $P \sqsupseteq P^{\prime}$

$$
(\operatorname{havoc}(x) ; \operatorname{assume}(x+x=y)) \sqsupseteq(\operatorname{assume}(y=6) ; x=3)
$$

- $R(P)=x^{\prime}+x^{\prime}=y^{\prime} \wedge y^{\prime}=y$
- $R\left(P^{\prime}\right)=x^{\prime}=3 \wedge y^{\prime}=6 \wedge y^{\prime}=y$

Does $P \sqsupseteq P^{\prime}$ really hold?

Domains in the Example

Consider our example $P \sqsupseteq P^{\prime}$

$$
(\operatorname{havoc}(x) ; \operatorname{assume}(x+x=y)) \sqsupseteq(\operatorname{assume}(y=6) ; x=3)
$$

- $R(P)=x^{\prime}+x^{\prime}=y^{\prime} \wedge y^{\prime}=y$
- $R\left(P^{\prime}\right)=x^{\prime}=3 \wedge y^{\prime}=6 \wedge y^{\prime}=y$

Does $P \sqsupseteq P^{\prime}$ really hold? yes
Now consider the right hand side:

- domain of P is

Domains in the Example

Consider our example $P \sqsupseteq P^{\prime}$

$$
(\operatorname{havoc}(x) ; \operatorname{assume}(x+x=y)) \sqsupseteq(\operatorname{assume}(y=6) ; x=3)
$$

- $R(P)=x^{\prime}+x^{\prime}=y^{\prime} \wedge y^{\prime}=y$
- $R\left(P^{\prime}\right)=x^{\prime}=3 \wedge y^{\prime}=6 \wedge y^{\prime}=y$

Does $P \sqsupseteq P^{\prime}$ really hold? yes
Now consider the right hand side:

- domain of P is $\exists x^{\prime}, y^{\prime} \cdot x^{\prime}+x^{\prime}=y \wedge y^{\prime}=y$
- equivalent to:

Domains in the Example

Consider our example $P \sqsupseteq P^{\prime}$

$$
(\operatorname{havoc}(x) ; \operatorname{assume}(x+x=y)) \sqsupseteq(\operatorname{assume}(y=6) ; x=3)
$$

- $R(P)=x^{\prime}+x^{\prime}=y^{\prime} \wedge y^{\prime}=y$
- $R\left(P^{\prime}\right)=x^{\prime}=3 \wedge y^{\prime}=6 \wedge y^{\prime}=y$

Does $P \sqsupseteq P^{\prime}$ really hold? yes
Now consider the right hand side:

- domain of P is $\exists x^{\prime}, y^{\prime} \cdot x^{\prime}+x^{\prime}=y \wedge y^{\prime}=y$
- equivalent to: $y \% 2=0$
- domain of P is:

Domains in the Example

Consider our example $P \sqsupseteq P^{\prime}$

$$
(\operatorname{havoc}(x) ; \operatorname{assume}(x+x=y)) \quad(\operatorname{assume}(y=6) ; x=3)
$$

- $R(P)=x^{\prime}+x^{\prime}=y^{\prime} \wedge y^{\prime}=y$
- $R\left(P^{\prime}\right)=x^{\prime}=3 \wedge y^{\prime}=6 \wedge y^{\prime}=y$

Does $P \sqsupseteq P^{\prime}$ really hold? yes
Now consider the right hand side:

- domain of P is $\exists x^{\prime}, y^{\prime} \cdot x^{\prime}+x^{\prime}=y \wedge y^{\prime}=y$
- equivalent to: $y \% 2=0$
- domain of P is: $\exists x^{\prime}, y^{\prime} \cdot x^{\prime}=3 \wedge y^{\prime}=6 \wedge y^{\prime}=y$
- equivalent to:

Domains in the Example

Consider our example $P \sqsupseteq P^{\prime}$

$$
(\operatorname{havoc}(x) ; \operatorname{assume}(x+x=y)) \quad(\operatorname{assume}(y=6) ; x=3)
$$

- $R(P)=x^{\prime}+x^{\prime}=y^{\prime} \wedge y^{\prime}=y$
- $R\left(P^{\prime}\right)=x^{\prime}=3 \wedge y^{\prime}=6 \wedge y^{\prime}=y$

Does $P \sqsupseteq P^{\prime}$ really hold? yes
Now consider the right hand side:

- domain of P is $\exists x^{\prime}, y^{\prime} \cdot x^{\prime}+x^{\prime}=y \wedge y^{\prime}=y$
- equivalent to: $y \% 2=0$
- domain of P is: $\exists x^{\prime}, y^{\prime} . x^{\prime}=3 \wedge y^{\prime}=6 \wedge y^{\prime}=y$
- equivalent to: $y=6$

Does domain formula of P^{\prime} imply the domain formula of P ?

Domains in the Example

Consider our example $P \sqsupseteq P^{\prime}$

$$
(\operatorname{havoc}(x) ; \operatorname{assume}(x+x=y)) \quad(\operatorname{assume}(y=6) ; x=3)
$$

- $R(P)=x^{\prime}+x^{\prime}=y^{\prime} \wedge y^{\prime}=y$
- $R\left(P^{\prime}\right)=x^{\prime}=3 \wedge y^{\prime}=6 \wedge y^{\prime}=y$

Does $P \sqsupseteq P^{\prime}$ really hold? yes
Now consider the right hand side:

- domain of P is $\exists x^{\prime}, y^{\prime} \cdot x^{\prime}+x^{\prime}=y \wedge y^{\prime}=y$
- equivalent to: $y \% 2=0$
- domain of P is: $\exists x^{\prime}, y^{\prime} . x^{\prime}=3 \wedge y^{\prime}=6 \wedge y^{\prime}=y$
- equivalent to: $y=6$

Does domain formula of P^{\prime} imply the domain formula of P ? no

Preserving Domain: Exercise

Given P :

$$
\operatorname{havoc}(x) ; \operatorname{assume}(x+x=y)
$$

Find P_{1} and P_{2} such that

- $P \sqsupseteq P_{1} \sqsupseteq P_{2}$
- no two programs among P, P_{1}, P_{2} are equivalent
- programs P, P_{1} and P_{2} have equivalent domains
- the relation described by P_{2} is a partial function

