Lecture 3: Converting Imperative Programs
to Formulas

Viktor Kuncak

Verification-Condition Generation for Imperative

Non-Deterministic Programs

Program can be represented by a formula relating initial and final
state. Consider program with variables x, y, z

program: x=x4+2;y=x+10
relation: {(x,y,z,x,y",2') | X' =x+2ANy =x+ 12727 =z}
formula: X =x+2ANy' =x+12NZ =2z

Specification: z = old(z) A (old(x) >0 — (x >0 Ay > 0))
Adhering to specification is relation subset:

{(X,y,Z,X,,yI,Zl) | X/:X+2/\y/:X+12/\Z/:Z}
C {(xy,z,x,y,Z) | Z=zA(x>0—= (X >0Ay >0))}

or validity of the following implication:

X =x4+2Ny' =x+12ANZ =z
- Z=zA(x>0—= (X >0Ay >0))

Imperative Presburger Arithmetic Programs

F - formulas, t - terms - as in functional programs so far
Fixed number of mutable integer variables V = {x1,...,x,}
Imperative statements:

» x = t: change x € V to have value given by t; leave vars in
V'\ {x} unchanged

» if(F)cy else ca: if F holds, execute ¢ else execute ¢
» C1;Cy: first execute ¢q, then execute ¢
Statements for introducing and restricting non-determinism:

» havoc(x): non-deterministically change x € V to have an
arbitrary value; leave vars in V' \ {x} unchanged
» if(x) c1 else cy: arbitrarily choose to run ¢; or o
» assume(F): block all executions where F does not hold
Given such loop-free program c with conditionals, compute a
polynomial-sized formula R(c) of form: 3z.F(x, z, x") describing
relation between initial values of variables xi, ..., x, and final

values of variables x1,...,x},

Construction Formula that Describe Relations

c - imperative command

R(c) - formula describing relation between initial and final states
of execution of ¢

If p(c) describes the relation, then R(c) is formula such that

p(c) ={(v.7) | R(c)}

R(c) is a formula between unprimed variables v and primed
variables v/

Formula for Assignment

Formula for Assignment

Note that the formula must explicitly state which variables remain
the same (here: all except x). Otherwise, those variables would
not be constrained by the relation, so they could take arbitrary
value in the state after the command.

Formula for if-else

After flattening,
if(b) c1 else ¢z

Formula for if-else

After flattening,
if(b) c1 else ¢z

R(if(b) c1 else c):

(bAR(c1))V (mb A R(c))

Command semicolon

€1, @

Command semicolon

L, @

Reminder about relation composition and its definition:

rnor={(ac)|3b.(a,b) €rA(bc)€Enr}

Command semicolon

L, @

Reminder about relation composition and its definition:
rnor ={(a,c)|3b.(a,b) € 1 N(b,c) € n}

What are R(c1) and R(cz) and in terms of which variables they are
expressed?

Command semicolon

€1, @2
Reminder about relation composition and its definition:
rnor ={(a,c)|3b.(a,b) € 1 N(b,c) € n}

What are R(c1) and R(cz) and in terms of which variables they are

expressed?
R(ci1; @) =

3z. R(a)[x' = Z] A R(c)[x := 2]

where Z are freshly picked names of intermediate states.
» a useful convention: Z refer to position in program source code

havoc

Definition of HAVOC
1. wide and general destruction: devastation
2. great confusion and disorder

Example of use:
y = 12; havoc(x); assume(x + x = y)

Translation, R(havoc(x)):

havoc

Definition of HAVOC
1. wide and general destruction: devastation
2. great confusion and disorder

Example of use:
y = 12; havoc(x); assume(x + x = y)

Translation, R(havoc(x)):
/\ vVi=v
veV\{x}

This again illustrates “politically correct” approach to describing
the destruction of values of variables: just do not mention them.

Non-deterministic choice

if(x) c1 else &

Non-deterministic choice

if(x) c1 else &

R(if (%) c1 else cp):
R(Cl) V R(C2)

» translation is simply a disjunction — this is why construct is
interesting

» corresponds to branching in control-flow graphs

assume

assume(F)

assume

assume(F)

F/\/\v’:v

R(assume(F)):

assume

assume(F)

F/\/\v’:v

» This command does not change any state.

R(assume(F)):

assume

assume(F)

F/\/\v’:v

» This command does not change any state.

R(assume(F)):

» If F does not hold, it stops with “instantaneous success”.

Example of Translation

0

(if (b) x=x+1else y =x+2);
1

X =x+5;

2

(if (x)y=y+1else x=y)

3

becomes

I,y e, y2. (BAX1=x+1Ay1=y)V(7bAxi =xAy1=x+2))
A(x2=x1+5Ay2=y1)
AKX =AY =y2+1) V(X =y2 Ay =y))

Think of execution trace (xo, y0), (x1,¥1), (x2, ¥2), (X3, y3) where
> (x0,Y0) is denoted by (x, y)
> (x3,y3) is denoted by (x',y’)

Imperative Presburger Arithmetic Programs

F - formulas, t - terms - as in functional programs so far
Fixed number of mutable integer variables V = {x1,...,x,}
Imperative statements:

» x = t: change x € V to have value given by t; leave vars in
V'\ {x} unchanged

» if(F)cy else ca: if F holds, execute ¢ else execute ¢
» C1;Cy: first execute ¢q, then execute ¢
Statements for introducing and restricting non-determinism:

» havoc(x): non-deterministically change x € V to have an
arbitrary value; leave vars in V' \ {x} unchanged
» if(x) c1 else cy: arbitrarily choose to run ¢; or o
» assume(F): block all executions where F does not hold
Given such loop-free program c with conditionals, compute a
polynomial-sized formula R(c) of form: 3z.F(x, z, x") describing
relation between initial values of variables xi, ..., x, and final

values of variables x1,...,x},

Justifying the name for assume(F)

Compute and simplify as much as possible each of the following
expressions:

1. R(assume(F); c)

Justifying the name for assume(F)

Compute and simplify as much as possible each of the following
expressions:

1. R(assume(F);c) = F AR(c)
2. R(c; assume(F))

Justifying the name for assume(F)

Compute and simplify as much as possible each of the following
expressions:
1. R(assume(F);c) = F AR(c)
2. R(c;assume(F)) = R(c) A Fl[x :=X]
where F[x := X'] denotes F with all variables replaced with
primed versions

Expressing if through non-deterministic choice and assume

Expressing if through non-deterministic choice and assume

if (b) cl else c2

1l
if () {

assume(b);
cl

1 else {

assume(!b);
c2
}

Indeed, apply translation to both sides and observe that generated
formulas are equivalent.

Expressing assignment through havoc and assume

Expressing assignment through havoc and assume

havoc(x);
assume(x == e)

Under what conditions this holds?

Expressing assignment through havoc and assume

havoc(x);
assume(x == e)

Under what conditions this holds?
x ¢ FV(e)

[llustration of the problem: havoc(x); assume(x == x + 1)

Expressing assignment through havoc and assume

havoc(x);
assume(x == e)

Under what conditions this holds?
x ¢ FV(e)

[llustration of the problem: havoc(x); assume(x == x + 1)

Luckily, we can rewrite it into Xpesh = X 4+ 1; X = Xfresh

Local Mutable Variables

Assume our global variables are V = {x, z}
Program P introduces a local variable y inside a nested block:

x=x+L{vary,;y=x+3z=x+y+z};x=x+z

R(P) should be a relation between (x, z) and (X', 2’).

Each statement should be relation between variables in scope.
Inside the block we have variables Vi = {x,y, z}. For assignment
statement c: Z=X+Yy+z

R(c) is a relation between x,y,z and x',y’, 2.

Convention: consider the initial values of variables to be arbitrary
Rly=x+3z=x+y+z)=

Local Mutable Variables

Assume our global variables are V = {x, z}
Program P introduces a local variable y inside a nested block:

x=x+L{vary,;y=x+3z=x+y+z};x=x+z

R(P) should be a relation between (x, z) and (X', 2’).

Each statement should be relation between variables in scope.
Inside the block we have variables Vi = {x,y, z}. For assignment
statement c: Z=X+Yy+z

R(c) is a relation between x,y,z and x',y’, 2.

Convention: consider the initial values of variables to be arbitrary
Rly=x+3z=x+y+z)=

Y =x+3ANZ =2x+3+zAX =x

Local Mutable Variables

Assume our global variables are V = {x, z}
Program P introduces a local variable y inside a nested block:

x=x+L{vary,;y=x+3z=x+y+z};x=x+z

R(P) should be a relation between (x, z) and (X', 2’).

Each statement should be relation between variables in scope.
Inside the block we have variables Vi = {x,y, z}. For assignment
statement c: Z=X+Yy+z

R(c) is a relation between x,y,z and x',y’, 2.

Convention: consider the initial values of variables to be arbitrary
Rly=x+3z=x+y+z)=

Y =x+3ANZ =2x+3+zAX =x

R({vary;y =x+3;z=x+y+z})=

Local Mutable Variables

Assume our global variables are V = {x, z}
Program P introduces a local variable y inside a nested block:

x=x+L{vary,;y=x+3z=x+y+z};x=x+z

R(P) should be a relation between (x, z) and (X', 2’).

Each statement should be relation between variables in scope.
Inside the block we have variables Vi = {x,y, z}. For assignment
statement c: Z=X+Yy+z

R(c) is a relation between x,y,z and x',y’, 2.

Convention: consider the initial values of variables to be arbitrary
Rly=x+3z=x+y+z)=

Y =x+3ANZ =2x+3+zAX =x

R({var y;y =x+3;z=x+y+2z})= 2 =2x+3+zAXx =x

Local Variable Translation

Ry (P) is formula for P in the scope that has the set of variables V
For example,

Then define
Ry({var y; P}) =

Local Variable Translation

Ry (P) is formula for P in the scope that has the set of variables V
For example,

Then define
Ry({var y; P}) = 3)/a)//~":"VU{y}('D)

Local Variable Translation

Ry (P) is formula for P in the scope that has the set of variables V
For example,

Then define
Ry({var y; P}) = 3)/a)//~":"VU{y}('D)

Exercise: express havoc(x) using var.

Local Variable Translation

Ry (P) is formula for P in the scope that has the set of variables V
For example,

Then define
Ry({var y; P}) = 3)/a)//~":"VU{y}('D)

Exercise: express havoc(x) using var.

Ry(havoc(x)) <= Ry({var y; x=y})

Local Variable Translation

Ry (P) is formula for P in the scope that has the set of variables V
For example,

Then define
Ry({var y; P}) = 3)/a)//~":"VU{y}('D)

Exercise: express havoc(x) using var.
Ryv(havoc(x)) <= Ry({var y; x=y})

Exercise: give transformation that lifts all variables to be global

Expressing Specifications as Commands

Shorthand: Havoc Multiple Variables at Once

Variables V = {x1,...,xn}
Translation of R(havoc(yi,...,Ym)):

Shorthand: Havoc Multiple Variables at Once

Variables V = {x1,...,xn}
Translation of R(havoc(yi,...,Ym)):

/
N Ve

veV\{yi,....ym}

Exercise: the resulting formula is the same as for:
havoc(y1); ... ; havoc(ym)

Thus, the order of distinct havoc-s does not matter.

Programs and Specs are Relations

program: x=x4+2;y=x+10
relation: {(x,y,z,x,y,Z) | X' =x+2ANy =x+12NZ =z}
formula: X =x+2N Ny =x+12NZ =z

Specification:
Z=zA(x>0—=(xX>0Ay >0)

Adhering to specification is relation subset:

{(y 2.1,y 2) | X =X+2/\y —x+12A2 =2}
C {(xy,z,x,y2)|Z =2zA(x>0— (X >0Ay >0))}

Non-deterministic programs are a way of writing specifications

Writing Specs Using Havoc and Assume: Examples
Program variables V = {x, y, z}
Formula for relation (talks only about resulting state):

Z=zAX >0Ay >0

Corresponding program:

Writing Specs Using Havoc and Assume: Examples
Program variables V = {x, y, z}
Formula for relation (talks only about resulting state):

Z=zAX >0Ay >0
Corresponding program:

havoc(x,y); assume(x >0 Ay > 0)

Writing Specs Using Havoc and Assume: Examples
Program variables V = {x, y, z}
Formula for relation (talks only about resulting state):

Z=zAX >0Ay >0
Corresponding program:
havoc(x,y); assume(x >0 Ay > 0)
Formula for relation:
Z=zAX >xNy >y

Corresponding program?

Writing Specs Using Havoc and Assume: Examples
Program variables V = {x, y, z}
Formula for relation (talks only about resulting state):

Z=zAX >0Ay >0
Corresponding program:
havoc(x,y); assume(x >0 Ay > 0)
Formula for relation:
Z=zAX >xNy >y

Corresponding program?
Use local variables to store initial values.

Writing Specs Using Havoc and Assume: Examples
Program variables V = {x, y, z}
Formula for relation (talks only about resulting state):

Z=zAX >0Ay >0
Corresponding program:
havoc(x,y); assume(x >0 Ay > 0)
Formula for relation:
Z=zAX >xNy >y

Corresponding program?
Use local variables to store initial values.

{ var x0; var y0;
x0 =x; y0 =y;
havoc(x,y);
assume(x > x0 && y > y0)

}

Writing Specs Using Havoc and Assume

Global variables V = {x1,...,xp}
Specification
F(X15 ey Xy Xes o5 X0)

Becomes

Writing Specs Using Havoc and Assume

Global variables V = {x1,...,xp}
Specification
F(X15 ey Xy Xes o5 X0)

Becomes

{ var yi,...,¥Yn

havoc(xi, ..., Xn);
assume(F(y1, ...y Yny X1, -+, %n)) }

Program Refinement and Equivalence
For two programs, define refinement P; C P iff

is a valid formula.
(Some books use the opposite meaning of C.)
As USU3|, P2 4 Pl iff Pl C P2.

» Py C Py iff p(P1) C p(P2)

Define equivalence P, = P, ift PP C P, AP, C P
> Py = Py iff p(P1) = p(P2)

Example for V = {x, y}

{var x0; x0 = x; havoc(x); assume(x > x0)} J (x = x + 1)

Proof: Use R to compute formulas for both sides and simplify.

Program Refinement and Equivalence
For two programs, define refinement P; C P iff

is a valid formula.
(Some books use the opposite meaning of C.)
As USU3|, P2 4 Pl iff Pl C P2.

» Py C Py iff p(P1) C p(P2)

Define equivalence P, = P, ift PP C P, AP, C P
> Py = Py iff p(P1) = p(P2)

Example for V = {x, y}

{var x0; x0 = x; havoc(x); assume(x > x0)} J (x = x + 1)
Proof: Use R to compute formulas for both sides and simplify.

X =x+1Ay =y = X' >xANy =y

Stepwise Refinement Methodology

Start form a possibly non-deterministic specification Py
Refine the program until it becomes deterministic and efficiently
executable.

Po3d P 3...3P,

Example:

havoc(x); assume(x > 0); havoc(y); assume(x < y)
havoc(x); assume(x > 0);y = x + 1

x=42;y =x+1

x=42;y =43

I

In the last step program equivalence holds as well

Monotonicity with Respect to Refinement

Theorem: if P; C P, then (P1; P) C (Pa2; P)

Monotonicity with Respect to Refinement

Theorem: if P; C P, then (P1; P) C (Pa2; P)
Version for relations: (p1 € p2) — (p1© p) C(p20op)

Monotonicity with Respect to Refinement

Theorem: if P; C P, then (P1; P) C (Pa2; P)
Version for relations: (p1 € p2) — (p1© p) C(p20op)

Theorem: if Py C P, then (P; P1) C (P; P,)

Monotonicity with Respect to Refinement

Theorem: if P; C P, then (P1; P) C (Pa2; P)
Version for relations: (p1 € p2) — (p1© p) C(p20op)

Theorem: if P; C P, then (P; P1) C (P; P2)
Version for relations: (p1 € p2) — (pop1) C (po p2)

Theorem: if Pt C P> and Q1 C Q> then

(if (x)P1 else Q1) C (if (x)P2 else Q)

Monotonicity with Respect to Refinement

Theorem: if P; C P, then (P1; P) C (Pa2; P)
Version for relations: (p1 € p2) — (p1© p) C(p20op)

Theorem: if P; C P, then (P; P1) C (P; P2)
Version for relations: (p1 € p2) — (pop1) C (po p2)

Theorem: if Pt C P> and Q1 C Q> then

(if (x)P1 else Q1) C (if (x)P2 else Q)

Version for relations:
(PLEP)A (1S q2) — (pLUq) C (p2Uq2)

