
Lecture 3: Converting Imperative Programs
to Formulas

Viktor Kuncak

Verification-Condition Generation for Imperative
Non-Deterministic Programs

Program can be represented by a formula relating initial and final
state. Consider program with variables x , y , z

program: x = x + 2; y = x + 10
relation: {(x , y , z , x ′, y ′, z ′) | x ′ = x + 2 ∧ y ′ = x + 12 ∧ z ′ = z}
formula: x ′ = x + 2 ∧ y ′ = x + 12 ∧ z ′ = z

Specification: z = old(z) ∧ (old(x) > 0→ (x > 0 ∧ y > 0))
Adhering to specification is relation subset:

{(x , y , z , x ′, y ′, z ′) | x ′ = x + 2 ∧ y ′ = x + 12 ∧ z ′ = z}
⊆ {(x , y , z , x ′, y ′, z ′) | z ′ = z ∧ (x > 0→ (x ′ > 0 ∧ y ′ > 0))}

or validity of the following implication:

x ′ = x + 2 ∧ y ′ = x + 12 ∧ z ′ = z
→ z ′ = z ∧ (x > 0→ (x ′ > 0 ∧ y ′ > 0))

Imperative Presburger Arithmetic Programs
F - formulas, t - terms - as in functional programs so far
Fixed number of mutable integer variables V = {x1, . . . , xn}
Imperative statements:

I x = t: change x ∈ V to have value given by t; leave vars in
V \ {x} unchanged

I if(F)c1 else c2: if F holds, execute c1 else execute c2
I c1; c2: first execute c1, then execute c2

Statements for introducing and restricting non-determinism:

I havoc(x): non-deterministically change x ∈ V to have an
arbitrary value; leave vars in V \ {x} unchanged

I if(∗) c1 else c2: arbitrarily choose to run c1 or c2
I assume(F): block all executions where F does not hold

Given such loop-free program c with conditionals, compute a
polynomial-sized formula R(c) of form: ∃z̄ .F (x̄ , z̄ , x̄ ′) describing
relation between initial values of variables x1, . . . , xn and final
values of variables x ′1, . . . , x

′
n

Construction Formula that Describe Relations

c - imperative command

R(c) - formula describing relation between initial and final states
of execution of c

If ρ(c) describes the relation, then R(c) is formula such that

ρ(c) = {(v̄ , v̄ ′) | R(c)}

R(c) is a formula between unprimed variables v̄ and primed
variables v̄ ′

Formula for Assignment

x = t

R(x = t):

x ′ = t ∧
∧

v∈V \{x}

v ′ = v

Note that the formula must explicitly state which variables remain
the same (here: all except x). Otherwise, those variables would
not be constrained by the relation, so they could take arbitrary
value in the state after the command.

Formula for Assignment

x = t

R(x = t):

x ′ = t ∧
∧

v∈V \{x}

v ′ = v

Note that the formula must explicitly state which variables remain
the same (here: all except x). Otherwise, those variables would
not be constrained by the relation, so they could take arbitrary
value in the state after the command.

Formula for if-else

After flattening,
if (b) c1 else c2

R(if (b) c1 else c2):

(b ∧ R(c1)) ∨ (¬b ∧ R(c2))

Formula for if-else

After flattening,
if (b) c1 else c2

R(if (b) c1 else c2):

(b ∧ R(c1)) ∨ (¬b ∧ R(c2))

Command semicolon

c1; c2

Reminder about relation composition and its definition:

r1 ◦ r2 = {(a, c) | ∃b.(a, b) ∈ r1 ∧ (b, c) ∈ r2}

What are R(c1) and R(c2) and in terms of which variables they are
expressed?
R(c1; c2) ≡

∃z̄ . R(c1)[x̄ ′ := z̄] ∧ R(c2)[x̄ := z̄]

where z̄ are freshly picked names of intermediate states.

I a useful convention: z̄ refer to position in program source code

Command semicolon

c1; c2

Reminder about relation composition and its definition:

r1 ◦ r2 = {(a, c) | ∃b.(a, b) ∈ r1 ∧ (b, c) ∈ r2}

What are R(c1) and R(c2) and in terms of which variables they are
expressed?
R(c1; c2) ≡

∃z̄ . R(c1)[x̄ ′ := z̄] ∧ R(c2)[x̄ := z̄]

where z̄ are freshly picked names of intermediate states.

I a useful convention: z̄ refer to position in program source code

Command semicolon

c1; c2

Reminder about relation composition and its definition:

r1 ◦ r2 = {(a, c) | ∃b.(a, b) ∈ r1 ∧ (b, c) ∈ r2}

What are R(c1) and R(c2) and in terms of which variables they are
expressed?

R(c1; c2) ≡

∃z̄ . R(c1)[x̄ ′ := z̄] ∧ R(c2)[x̄ := z̄]

where z̄ are freshly picked names of intermediate states.

I a useful convention: z̄ refer to position in program source code

Command semicolon

c1; c2

Reminder about relation composition and its definition:

r1 ◦ r2 = {(a, c) | ∃b.(a, b) ∈ r1 ∧ (b, c) ∈ r2}

What are R(c1) and R(c2) and in terms of which variables they are
expressed?
R(c1; c2) ≡

∃z̄ . R(c1)[x̄ ′ := z̄] ∧ R(c2)[x̄ := z̄]

where z̄ are freshly picked names of intermediate states.

I a useful convention: z̄ refer to position in program source code

havoc

Definition of HAVOC

1. wide and general destruction: devastation

2. great confusion and disorder

Example of use:

y = 12; havoc(x); assume(x + x = y)

Translation, R(havoc(x)):

∧
v∈V \{x}

v ′ = v

This again illustrates “politically correct” approach to describing
the destruction of values of variables: just do not mention them.

havoc

Definition of HAVOC

1. wide and general destruction: devastation

2. great confusion and disorder

Example of use:

y = 12; havoc(x); assume(x + x = y)

Translation, R(havoc(x)): ∧
v∈V \{x}

v ′ = v

This again illustrates “politically correct” approach to describing
the destruction of values of variables: just do not mention them.

Non-deterministic choice

if (∗) c1 else c2

R(if (∗) c1 else c2):
R(c1) ∨ R(c2)

I translation is simply a disjunction – this is why construct is
interesting

I corresponds to branching in control-flow graphs

Non-deterministic choice

if (∗) c1 else c2

R(if (∗) c1 else c2):
R(c1) ∨ R(c2)

I translation is simply a disjunction – this is why construct is
interesting

I corresponds to branching in control-flow graphs

assume

assume(F)

R(assume(F)):

F ∧
∧
v∈V

v ′ = v

I This command does not change any state.

I If F does not hold, it stops with “instantaneous success”.

assume

assume(F)

R(assume(F)):

F ∧
∧
v∈V

v ′ = v

I This command does not change any state.

I If F does not hold, it stops with “instantaneous success”.

assume

assume(F)

R(assume(F)):

F ∧
∧
v∈V

v ′ = v

I This command does not change any state.

I If F does not hold, it stops with “instantaneous success”.

assume

assume(F)

R(assume(F)):

F ∧
∧
v∈V

v ′ = v

I This command does not change any state.

I If F does not hold, it stops with “instantaneous success”.

Example of Translation

0

(if (b) x = x + 1 else y = x + 2);
1

x = x + 5;
2

(if (∗) y = y + 1 else x = y)
3

becomes

∃x1, y1, x2, y2. ((b ∧ x1 = x + 1 ∧ y1 = y) ∨ (¬b ∧ x1 = x ∧ y1 = x + 2))
∧ (x2 = x1 + 5 ∧ y2 = y1)
∧ ((x ′ = x2 ∧ y′ = y2 + 1) ∨ (x′ = y2 ∧ y ′ = y2))

Think of execution trace (x0, y0), (x1, y1), (x2, y2), (x3, y3) where

I (x0, y0) is denoted by (x , y)

I (x3, y3) is denoted by (x ′, y ′)

Imperative Presburger Arithmetic Programs
F - formulas, t - terms - as in functional programs so far
Fixed number of mutable integer variables V = {x1, . . . , xn}
Imperative statements:

I x = t: change x ∈ V to have value given by t; leave vars in
V \ {x} unchanged

I if(F)c1 else c2: if F holds, execute c1 else execute c2
I c1; c2: first execute c1, then execute c2

Statements for introducing and restricting non-determinism:

I havoc(x): non-deterministically change x ∈ V to have an
arbitrary value; leave vars in V \ {x} unchanged

I if(∗) c1 else c2: arbitrarily choose to run c1 or c2
I assume(F): block all executions where F does not hold

Given such loop-free program c with conditionals, compute a
polynomial-sized formula R(c) of form: ∃z̄ .F (x̄ , z̄ , x̄ ′) describing
relation between initial values of variables x1, . . . , xn and final
values of variables x ′1, . . . , x

′
n

Justifying the name for assume(F)

Compute and simplify as much as possible each of the following
expressions:

1. R(assume(F); c)

= F ∧ R(c)

2. R(c ; assume(F)) = R(c) ∧ F [x̄ := x̄ ′]
where F [x̄ := x̄ ′] denotes F with all variables replaced with
primed versions

Justifying the name for assume(F)

Compute and simplify as much as possible each of the following
expressions:

1. R(assume(F); c) = F ∧ R(c)

2. R(c ; assume(F))

= R(c) ∧ F [x̄ := x̄ ′]
where F [x̄ := x̄ ′] denotes F with all variables replaced with
primed versions

Justifying the name for assume(F)

Compute and simplify as much as possible each of the following
expressions:

1. R(assume(F); c) = F ∧ R(c)

2. R(c ; assume(F)) = R(c) ∧ F [x̄ := x̄ ′]
where F [x̄ := x̄ ′] denotes F with all variables replaced with
primed versions

Expressing if through non-deterministic choice and assume

if (b) c1 else c2

|||

if (∗) {
assume(b);
c1
} else {

assume(!b);
c2
}

Indeed, apply translation to both sides and observe that generated
formulas are equivalent.

Expressing if through non-deterministic choice and assume

if (b) c1 else c2

|||

if (∗) {
assume(b);
c1
} else {

assume(!b);
c2
}

Indeed, apply translation to both sides and observe that generated
formulas are equivalent.

Expressing assignment through havoc and assume

x = e

|||

havoc(x);
assume(x == e)

Under what conditions this holds?
x /∈ FV (e)

Illustration of the problem: havoc(x); assume(x == x + 1)

Luckily, we can rewrite it into xfresh = x + 1; x = xfresh

Expressing assignment through havoc and assume

x = e

|||

havoc(x);
assume(x == e)

Under what conditions this holds?

x /∈ FV (e)

Illustration of the problem: havoc(x); assume(x == x + 1)

Luckily, we can rewrite it into xfresh = x + 1; x = xfresh

Expressing assignment through havoc and assume

x = e

|||

havoc(x);
assume(x == e)

Under what conditions this holds?
x /∈ FV (e)

Illustration of the problem: havoc(x); assume(x == x + 1)

Luckily, we can rewrite it into xfresh = x + 1; x = xfresh

Expressing assignment through havoc and assume

x = e

|||

havoc(x);
assume(x == e)

Under what conditions this holds?
x /∈ FV (e)

Illustration of the problem: havoc(x); assume(x == x + 1)

Luckily, we can rewrite it into xfresh = x + 1; x = xfresh

Local Mutable Variables

Assume our global variables are V = {x , z}
Program P introduces a local variable y inside a nested block:

x = x + 1; {var y ; y = x + 3; z = x + y + z}; x = x + z

R(P) should be a relation between (x , z) and (x ′, z ′).
Each statement should be relation between variables in scope.
Inside the block we have variables V1 = {x , y , z}. For assignment
statement c : z = x + y + z ,
R(c) is a relation between x , y , z and x ′, y ′, z ′.
Convention: consider the initial values of variables to be arbitrary
R(y = x + 3; z = x + y + z) =

y ′ = x + 3 ∧ z ′ = 2x + 3 + z ∧ x ′ = x

R({var y ; y = x + 3; z = x + y + z})= z ′ = 2x + 3 + z ∧ x ′ = x

Local Mutable Variables

Assume our global variables are V = {x , z}
Program P introduces a local variable y inside a nested block:

x = x + 1; {var y ; y = x + 3; z = x + y + z}; x = x + z

R(P) should be a relation between (x , z) and (x ′, z ′).
Each statement should be relation between variables in scope.
Inside the block we have variables V1 = {x , y , z}. For assignment
statement c : z = x + y + z ,
R(c) is a relation between x , y , z and x ′, y ′, z ′.
Convention: consider the initial values of variables to be arbitrary
R(y = x + 3; z = x + y + z) =
y ′ = x + 3 ∧ z ′ = 2x + 3 + z ∧ x ′ = x

R({var y ; y = x + 3; z = x + y + z})= z ′ = 2x + 3 + z ∧ x ′ = x

Local Mutable Variables

Assume our global variables are V = {x , z}
Program P introduces a local variable y inside a nested block:

x = x + 1; {var y ; y = x + 3; z = x + y + z}; x = x + z

R(P) should be a relation between (x , z) and (x ′, z ′).
Each statement should be relation between variables in scope.
Inside the block we have variables V1 = {x , y , z}. For assignment
statement c : z = x + y + z ,
R(c) is a relation between x , y , z and x ′, y ′, z ′.
Convention: consider the initial values of variables to be arbitrary
R(y = x + 3; z = x + y + z) =
y ′ = x + 3 ∧ z ′ = 2x + 3 + z ∧ x ′ = x

R({var y ; y = x + 3; z = x + y + z})=

z ′ = 2x + 3 + z ∧ x ′ = x

Local Mutable Variables

Assume our global variables are V = {x , z}
Program P introduces a local variable y inside a nested block:

x = x + 1; {var y ; y = x + 3; z = x + y + z}; x = x + z

R(P) should be a relation between (x , z) and (x ′, z ′).
Each statement should be relation between variables in scope.
Inside the block we have variables V1 = {x , y , z}. For assignment
statement c : z = x + y + z ,
R(c) is a relation between x , y , z and x ′, y ′, z ′.
Convention: consider the initial values of variables to be arbitrary
R(y = x + 3; z = x + y + z) =
y ′ = x + 3 ∧ z ′ = 2x + 3 + z ∧ x ′ = x

R({var y ; y = x + 3; z = x + y + z})= z ′ = 2x + 3 + z ∧ x ′ = x

Local Variable Translation

RV (P) is formula for P in the scope that has the set of variables V
For example,

RV (x = t) = x ′ = t ∧
∧

v∈V \{x}

v ′ = v

Then define
RV ({var y ;P}) =

∃y , y ′.RV∪{y}(P)

Exercise: express havoc(x) using var.

RV (havoc(x)) ⇐⇒ RV ({var y ; x = y})

Exercise: give transformation that lifts all variables to be global

Local Variable Translation

RV (P) is formula for P in the scope that has the set of variables V
For example,

RV (x = t) = x ′ = t ∧
∧

v∈V \{x}

v ′ = v

Then define
RV ({var y ;P}) = ∃y , y ′.RV∪{y}(P)

Exercise: express havoc(x) using var.

RV (havoc(x)) ⇐⇒ RV ({var y ; x = y})

Exercise: give transformation that lifts all variables to be global

Local Variable Translation

RV (P) is formula for P in the scope that has the set of variables V
For example,

RV (x = t) = x ′ = t ∧
∧

v∈V \{x}

v ′ = v

Then define
RV ({var y ;P}) = ∃y , y ′.RV∪{y}(P)

Exercise: express havoc(x) using var.

RV (havoc(x)) ⇐⇒ RV ({var y ; x = y})

Exercise: give transformation that lifts all variables to be global

Local Variable Translation

RV (P) is formula for P in the scope that has the set of variables V
For example,

RV (x = t) = x ′ = t ∧
∧

v∈V \{x}

v ′ = v

Then define
RV ({var y ;P}) = ∃y , y ′.RV∪{y}(P)

Exercise: express havoc(x) using var.

RV (havoc(x)) ⇐⇒ RV ({var y ; x = y})

Exercise: give transformation that lifts all variables to be global

Local Variable Translation

RV (P) is formula for P in the scope that has the set of variables V
For example,

RV (x = t) = x ′ = t ∧
∧

v∈V \{x}

v ′ = v

Then define
RV ({var y ;P}) = ∃y , y ′.RV∪{y}(P)

Exercise: express havoc(x) using var.

RV (havoc(x)) ⇐⇒ RV ({var y ; x = y})

Exercise: give transformation that lifts all variables to be global

Expressing Specifications as Commands

Shorthand: Havoc Multiple Variables at Once

Variables V = {x1, . . . , xn}
Translation of R(havoc(y1, . . . , ym)):

∧
v∈V \{y1,...,ym}

v ′ = v

Exercise: the resulting formula is the same as for:

havoc(y1); . . . ; havoc(ym)

Thus, the order of distinct havoc-s does not matter.

Shorthand: Havoc Multiple Variables at Once

Variables V = {x1, . . . , xn}
Translation of R(havoc(y1, . . . , ym)):∧

v∈V \{y1,...,ym}

v ′ = v

Exercise: the resulting formula is the same as for:

havoc(y1); . . . ; havoc(ym)

Thus, the order of distinct havoc-s does not matter.

Programs and Specs are Relations

program: x = x + 2; y = x + 10
relation: {(x , y , z , x ′, y ′, z ′) | x ′ = x + 2 ∧ y ′ = x + 12 ∧ z ′ = z}
formula: x ′ = x + 2 ∧ y ′ = x + 12 ∧ z ′ = z

Specification:

z ′ = z ∧ (x > 0→ (x ′ > 0 ∧ y ′ > 0)

Adhering to specification is relation subset:

{(x , y , z , x ′, y ′, z ′) | x ′ = x + 2 ∧ y ′ = x + 12 ∧ z ′ = z}
⊆ {(x , y , z , x ′, y ′, z ′) | z ′ = z ∧ (x > 0→ (x ′ > 0 ∧ y ′ > 0))}

Non-deterministic programs are a way of writing specifications

Writing Specs Using Havoc and Assume: Examples
Program variables V = {x , y , z}
Formula for relation (talks only about resulting state):

z ′ = z ∧ x ′ > 0 ∧ y ′ > 0

Corresponding program:

havoc(x , y); assume(x > 0 ∧ y > 0)

Formula for relation:

z ′ = z ∧ x ′ > x ∧ y ′ > y

Corresponding program?
Use local variables to store initial values.

{ var x0; var y0;
x0 = x; y0 = y;
havoc(x,y);
assume(x > x0 && y > y0)
}

Writing Specs Using Havoc and Assume: Examples
Program variables V = {x , y , z}
Formula for relation (talks only about resulting state):

z ′ = z ∧ x ′ > 0 ∧ y ′ > 0

Corresponding program:

havoc(x , y); assume(x > 0 ∧ y > 0)

Formula for relation:

z ′ = z ∧ x ′ > x ∧ y ′ > y

Corresponding program?
Use local variables to store initial values.

{ var x0; var y0;
x0 = x; y0 = y;
havoc(x,y);
assume(x > x0 && y > y0)
}

Writing Specs Using Havoc and Assume: Examples
Program variables V = {x , y , z}
Formula for relation (talks only about resulting state):

z ′ = z ∧ x ′ > 0 ∧ y ′ > 0

Corresponding program:

havoc(x , y); assume(x > 0 ∧ y > 0)

Formula for relation:

z ′ = z ∧ x ′ > x ∧ y ′ > y

Corresponding program?

Use local variables to store initial values.

{ var x0; var y0;
x0 = x; y0 = y;
havoc(x,y);
assume(x > x0 && y > y0)
}

Writing Specs Using Havoc and Assume: Examples
Program variables V = {x , y , z}
Formula for relation (talks only about resulting state):

z ′ = z ∧ x ′ > 0 ∧ y ′ > 0

Corresponding program:

havoc(x , y); assume(x > 0 ∧ y > 0)

Formula for relation:

z ′ = z ∧ x ′ > x ∧ y ′ > y

Corresponding program?
Use local variables to store initial values.

{ var x0; var y0;
x0 = x; y0 = y;
havoc(x,y);
assume(x > x0 && y > y0)
}

Writing Specs Using Havoc and Assume: Examples
Program variables V = {x , y , z}
Formula for relation (talks only about resulting state):

z ′ = z ∧ x ′ > 0 ∧ y ′ > 0

Corresponding program:

havoc(x , y); assume(x > 0 ∧ y > 0)

Formula for relation:

z ′ = z ∧ x ′ > x ∧ y ′ > y

Corresponding program?
Use local variables to store initial values.

{ var x0; var y0;
x0 = x; y0 = y;
havoc(x,y);
assume(x > x0 && y > y0)
}

Writing Specs Using Havoc and Assume

Global variables V = {x1, . . . , xn}
Specification

F (x1, . . . , xn, x
′
1, . . . , x

′
n)

Becomes

{ var y1, . . . , yn;
y1 = x1; . . . ; yn = xn;
havoc(x1, . . . , xn);
assume(F (y1, . . . , yn, x1, . . . , xn)) }

Writing Specs Using Havoc and Assume

Global variables V = {x1, . . . , xn}
Specification

F (x1, . . . , xn, x
′
1, . . . , x

′
n)

Becomes

{ var y1, . . . , yn;
y1 = x1; . . . ; yn = xn;
havoc(x1, . . . , xn);
assume(F (y1, . . . , yn, x1, . . . , xn)) }

Program Refinement and Equivalence
For two programs, define refinement P1 v P2 iff

R(P1)→ R(P2)

is a valid formula.
(Some books use the opposite meaning of v.)
As usual, P2 w P1 iff P1 v P2.

I P1 v P2 iff ρ(P1) ⊆ ρ(P2)

Define equivalence P1 ≡ P2 iff P1 v P2 ∧ P2 v P1

I P1 ≡ P2 iff ρ(P1) = ρ(P2)

Example for V = {x , y}

{var x0; x0 = x ; havoc(x); assume(x > x0)} w (x = x + 1)

Proof: Use R to compute formulas for both sides and simplify.

x ′ = x + 1 ∧ y ′ = y → x ′ > x ∧ y ′ = y

Program Refinement and Equivalence
For two programs, define refinement P1 v P2 iff

R(P1)→ R(P2)

is a valid formula.
(Some books use the opposite meaning of v.)
As usual, P2 w P1 iff P1 v P2.

I P1 v P2 iff ρ(P1) ⊆ ρ(P2)

Define equivalence P1 ≡ P2 iff P1 v P2 ∧ P2 v P1

I P1 ≡ P2 iff ρ(P1) = ρ(P2)

Example for V = {x , y}

{var x0; x0 = x ; havoc(x); assume(x > x0)} w (x = x + 1)

Proof: Use R to compute formulas for both sides and simplify.

x ′ = x + 1 ∧ y ′ = y → x ′ > x ∧ y ′ = y

Stepwise Refinement Methodology

Start form a possibly non-deterministic specification P0

Refine the program until it becomes deterministic and efficiently
executable.

P0 w P1 w . . . w Pn

Example:

havoc(x); assume(x > 0); havoc(y); assume(x < y)
w havoc(x); assume(x > 0); y = x + 1
w x = 42; y = x + 1
w x = 42; y = 43

In the last step program equivalence holds as well

Monotonicity with Respect to Refinement

Theorem: if P1 v P2 then (P1;P) v (P2;P)

Version for relations: (p1 ⊆ p2)→ (p1 ◦ p) ⊆ (p2 ◦ p)

Theorem: if P1 v P2 then (P;P1) v (P;P2)
Version for relations: (p1 ⊆ p2)→ (p ◦ p1) ⊆ (p ◦ p2)

Theorem: if P1 v P2 and Q1 v Q2 then

(if (∗)P1 else Q1) v (if (∗)P2 else Q2)

Version for relations:
(p1 ⊆ p2) ∧ (q1 ⊆ q2) → (p1 ∪ q1) ⊆ (p2 ∪ q2)

Monotonicity with Respect to Refinement

Theorem: if P1 v P2 then (P1;P) v (P2;P)
Version for relations: (p1 ⊆ p2)→ (p1 ◦ p) ⊆ (p2 ◦ p)

Theorem: if P1 v P2 then (P;P1) v (P;P2)
Version for relations: (p1 ⊆ p2)→ (p ◦ p1) ⊆ (p ◦ p2)

Theorem: if P1 v P2 and Q1 v Q2 then

(if (∗)P1 else Q1) v (if (∗)P2 else Q2)

Version for relations:
(p1 ⊆ p2) ∧ (q1 ⊆ q2) → (p1 ∪ q1) ⊆ (p2 ∪ q2)

Monotonicity with Respect to Refinement

Theorem: if P1 v P2 then (P1;P) v (P2;P)
Version for relations: (p1 ⊆ p2)→ (p1 ◦ p) ⊆ (p2 ◦ p)

Theorem: if P1 v P2 then (P;P1) v (P;P2)

Version for relations: (p1 ⊆ p2)→ (p ◦ p1) ⊆ (p ◦ p2)

Theorem: if P1 v P2 and Q1 v Q2 then

(if (∗)P1 else Q1) v (if (∗)P2 else Q2)

Version for relations:
(p1 ⊆ p2) ∧ (q1 ⊆ q2) → (p1 ∪ q1) ⊆ (p2 ∪ q2)

Monotonicity with Respect to Refinement

Theorem: if P1 v P2 then (P1;P) v (P2;P)
Version for relations: (p1 ⊆ p2)→ (p1 ◦ p) ⊆ (p2 ◦ p)

Theorem: if P1 v P2 then (P;P1) v (P;P2)
Version for relations: (p1 ⊆ p2)→ (p ◦ p1) ⊆ (p ◦ p2)

Theorem: if P1 v P2 and Q1 v Q2 then

(if (∗)P1 else Q1) v (if (∗)P2 else Q2)

Version for relations:
(p1 ⊆ p2) ∧ (q1 ⊆ q2) → (p1 ∪ q1) ⊆ (p2 ∪ q2)

Monotonicity with Respect to Refinement

Theorem: if P1 v P2 then (P1;P) v (P2;P)
Version for relations: (p1 ⊆ p2)→ (p1 ◦ p) ⊆ (p2 ◦ p)

Theorem: if P1 v P2 then (P;P1) v (P;P2)
Version for relations: (p1 ⊆ p2)→ (p ◦ p1) ⊆ (p ◦ p2)

Theorem: if P1 v P2 and Q1 v Q2 then

(if (∗)P1 else Q1) v (if (∗)P2 else Q2)

Version for relations:
(p1 ⊆ p2) ∧ (q1 ⊆ q2) → (p1 ∪ q1) ⊆ (p2 ∪ q2)

