Chapter 2

Relations

Our treatment of the logic of engineering design has been sparsely illustrated by
examples of water tanks and of computer programs, but it is applicable in princi-
ple to any branch of technology. We have allowed specifications and products to
be formalised as predicates with arbitrary alphabets, and these predicates may be
assembled by an arbitrary combination of the operators of the predicate calculus,
including conjunction and even negation. Indeed, at the level of specifications,
negation could be the most important contribution to safety of a control system;
for example, a common safety requirement can be simply and most reliably ex-
pressed by stating that

“it must not explode”.

In this chapter we begin to specialise our study to the particular classes of
predicate that are relevant to the specification and development of programs in a
simple sequential programming language. For a program in such a language, the
relevant observations come in pairs, with one observation of the values of all global
variables before program execution, and one observation of their values after ter-
mination. Any set of such pairs therefore constitutes a relation in the usual sense,
and this is the word we choose to apply to the corresponding predicate describing
program behaviour. The relational calculus provides most of the concepts and
laws that we need both for sequential programming and for all the more complex
programming paradigms treated in later chapters. We deliberately omit both rela-
tional converse (V) and negation (—) because they are not directly implementable.
The inverse of an operation cannot be computed by running a program backwards,
and an explosion cannot be prevented by just negating a program which deliber-
ately causes one.

Definition 2.0.1 (Relation)

A relation is a pair (aP, P), where P is a predicate containing no free variables

44

Relations 45

other than those in aP, and
aP = inaP U outaP

where inaP is a set of undashed variables standing for initial values,
and outaP is a set of dashed variables standing for final values.]

In all familiar programming languages, the global variables observable at the
. start of execution of a block of program are the same as those observable at the
. end. In this case the output alphabet is obtained just by putting a dash on all the
- variables of the input alphabet, as suggested by the equation

outaP = ino'P

The relation is then called homogeneous. The classical relational calculus deals
solely with homogeneous relations. Our treatment is more general, although we
will not need to make explicit mention of non-homogeneous relations again until
Section 9 of this chapter.

Having formally associated an alphabet with every predicate, we will adopt
a number of conventions to prevent the formality from becoming too obtrusive.
For example, an important class of predicates are those with no variables in their
output alphabet. They are the only kind of predicate that can actually appear
in a computer program: they can be tested in the initial state of the program,
and will yield the value true or false. (For simplicity, we assume they never fail to
terminate.) We call them conditions, and denote them by lower case italics

bec,..., true

This distinguishes them from more general predicates describing programs, which
generally mention both dashed and undashed variables. These will be denoted by
upper case or bold

P,Q,...,true

Similar remarks apply to expressions which appear on the right of assignments in
a program: they have no dashed variables, their evaluation always terminates, and
they are denoted by

e f,9,...,37

These letters can also stand for lists of expressions. We will use the letters z,y, 2, v
to stand for lists of distinct variables in the input alphabets, and their variants
z',y, 2, to stand for the corresponding lists of dashed variables. So the form

Tr:=e€

could stand for a multiple assignment of many values to many variables, and it

46 Relations

will be implicitly assumed that the lists are of matching length. The lists v and v/
are special: they are assumed to contain all the variables of the input and output
alphabets respectively.

Substitution will also be treated quite informally. Whenever appropriate,
some or all of the free variables of a predicate, term or condition will be made
explicit in brackets

P(z),Q(z"), e(z) or b(z)
If f is now a list of expressions (of the right length, of course) then

P(£), Q(f), e(f) or b(f)

stands for the result of replacing each occurrence of any variable in z (or z') by the
expression which occupies the corresponding position in the list f. Implicitly, we
ensure that there is no collision between free variables of f and bound variables in
the context where f is being substituted. Sometimes we will use an explicit nota-
tion for substitution. P[e/z] is the result of substituting expressions e for variables
z in P.

The specialisation of the class of predicates to those which are relations is
motivated by the desire to develop a theory which is relevant to computer pro-
gramming. The primitive components of our programs are assignments, and these
were described in the last chapter. In this chapter we will describe how larger
programs are built up from the primitives by combining them in sequential com-
positions, conditionals and disjunctions. These operators have been selected for
ease and efficiency of implementation on a sequential computer. Finally, recursion
is introduced as a general method of specifying how portions of a program can be
repeated, with the number of repetitions being determined by the initial values of
the variables.

In the normal fashion of mathematics, each definition is followed by a col-
lection of simple theorems that can be proved from it. These laws are intended
to appeal to experienced programmers as obviously true of a tightly disciplined
programming language in which all expressions terminate and none of them has
side-effects; such an appeal is essential to the memorisation, recall and fluent use of
the laws. It also lends credibility to the definitions on which they are based. Con-
versely, an obviously false law will serve like an unsuccessful scientific experiment:
it will refute the theory from which it has been derived.

2.1 Conditional 47

2.1 Conditional

Any non-trivial program requires a facility to select between alternative ac-
tions in accordance with the truth or falsity of some testable condition b. The
restriction that b contains no dashed variables ensures that it can be tested before
starting either of the actions. If P and Q are predicates describing two fragments
of program with the same alphabet, then the conditional

Pab>Q@

describes a program which behaves like P if the initial value of b is true, or like Q
if the initial value of b is false. It can be defined as a simple truth function in the
propositional calculus.

Definition 2.1.1 (Conditional)

Pab>Q =y (BAP)V (-bAQ), ifab C aP = aQ
a(P<1b>Q) =4 aP O

The more usual notation for a conditional is
if b then P else Q

We have chosen an infix notation <1b> because it simplifies expression of the rel-
evant algebraic laws.

Ll Pab>P=P (cond idemp)
L2 Pab>Q=Q<-b>P (cond symm)
L3 (PQ)<c>R=PJIbAc>(Q<c>R) (cond assoc)
L4 PIb>(Q<€c>R)=(P<1b>Q)<c> (PR) (cond distr)
L5 PtruerQ=P=Qd false> P (cond unit)
Proof These laws can be proved by propositional calculus; the easiest way is to
consider separately the case when b is true and when b is false. O

The laws have been named by descriptions of familiar algebraic properties.
A binary operator is idempotent when application to two identical operands gives
a result equal to both of them, as shown in the first law. An operator is symmetric
when an exchange of its two operands does not change the result. However, in the
case of L2, the operator also has to be changed by negating the condition, so the
symmetry is skewed. An associative operator is one that permits rearrangement of
its brackets when applied twice. L3 gives a slightly stronger form of this property
for the conditional. The fourth law states the distribution of any conditional choice
operator <1 b > through the conditional < ¢ >, for any condition ¢. The final law
clearly expresses the criterion for making a choice between two alternatives of a

48 Relations

conditional based on the value of the condition. It is called a unit law, because it
indicates the operand (the unit) for which the application of the operator makes
no difference. These laws are strong enough to prove additional useful laws, as
shown below.

L6 Pab>(QR)=PR

Proof LHS {L2}
= (QQb>R)<-b>P {L3}
Q < false> (R -b> P) {L2 and L5}
= RHS o

L7 P9b>(P<dc>Q)=P<bVe>Q
Proof LHS {L2}
= (@<Q-c>P)<d-bp>P {L3 and L1}
= @Q<-cA-b>P {L2}
= RHS , o

These laws would be just as easy to prove directly by the propositional calculus.
The algebraic style of proof has been preferred, because it reveals something of
the structure of our theory, with only a few laws taken as basic, and many more
derivable as theorems. This has the advantage that both axioms and theorems can
often be used again in other mathematical theories, even those that use different
definitions of the operators involved.

Exercise 2.1.2 (Mutual distribution)
For any truth-functional operator ®, prove that
(POQ)(ROS) = (PR)O(QS)

A similar principle of mutual distribution is called the interchange law in category
theory [116] or the abides principle in functional programming [26]. O

2.2 Composition

The most characteristic combinator of a sequential programming language
is sequential composition, often denoted by semicolon. If P and Q are predicates
describing behaviours of two programs, their sequential composition

P;Q

describes a program which may be executed by first executing P, and when P ter-

2.3 Assignment 49

minates then @ is started. The final state of P is passed on as the initial state of Q,
but this is only an intermediate state of (P; @), and cannot be directly observed.
All we know is that it exists. The formal definition of composition therefore uses
existential quantification to hide the intermediate observation, and to remove the
variables which record it from the list of free variables of the predicate. In order
to do this, we need to introduce a fresh set of variables vy to denote the hidden
observation. These replace the output variables v’ of P and the input variables v
of @, so these lists must correspond exactly in length and in type.

Definition 2.2.1 (Sequential composition)

P(V);Q(v) =4 voe P(vg) AQ(vo), provided outaP = ind'Q = {v'}
ina(P(v');Q(v)) =¢ inaP
outa(P(v');Q(v)) =g outaQ]

The bound variables vy record the intermediate values of the program variables v,
and so represent the intermediate state as control passes from P to Q. But this
operational explanation is far more detailed than necessary. A clever implemen-
tation is allowed to achieve the defined effect by more direct means, without ever
passing through any of the possible intermediate states. That is the whole purpose
of a more abstract definition of the programming language.

In spite of the complexity of its definition, sequential composition obeys some
simple, familiar and obvious algebraic laws. For example, it is associative; to exe-
cute three programs in order, one can either execute the first program followed by
the other two, or the first two programs followed by the third. Finally, sequential
composition distributes leftward (but not rightward) over the conditional. This
asymmetry arises because the condition b is allowed to mention only the initial
values of the variables, and not the final (dashed) variables.

L1 P;(;R) = (PQ)R (; assoc)
L2 (PQ);R = (P;R)(Q;R) (;-cond left distr)
Proof Hint: Move the existential quantifier outward over predicates that do not
contain the quantified variable. O

2.3 Assignment

The assignment is the basic action in all procedural programming languages.
Its meaning was explained in the previous chapter, but here we deal more care-
fully with the phenomenon of alphabets. Every assignment should technically be
marked by its alphabet A, which is needed to define an important part of its mean-
ing — that all the variables not mentioned on the left hand side remain unchanged.

50 Relations

Definition 2.3.1 (Assignment)
Let A = {z,9,...,2,2,y,...,2},and let ae C A.
T:=ge =¢ (' =eANy =yA...AN2 =2)
a(z:=4€) =¢ A o

Having introduced the complexity of alphabets, we will very seldom subscript an
assignment.

The following laws express the basic properties of assignment: that variables
not mentioned on the left of := remain unchanged, that the order of the listing
is immaterial, and that evaluation of an expression or a condition uses the value
most recently assigned to its variables.

Ll (z:=e€) = (z,y:=¢e,y)

L2 (m’yaz = evf’g) = (y,a:,z = f)e’g)

L3 (z:=¢ z:=f(z)) = (z:=f(e))

L4 z:=¢; (Pab(z)>Q) = (z:=e¢; P)ble)> (z:=¢Q)

In most programming languages there is a command that has no effect at
alll It always terminates, and leaves the values of all the variables unchanged.
Although its lack of effect can be described fully by the assignment z := z, and
although it is totally useless for all practical purposes, it is extremely useful for

reasoning about programs. We therefore denote it by a special hollow symbol
IT4 (pronounced “skip”), where A is its alphabet.

Definition 2.3.2 (Skip)
Oh, =¢ (V'=v), whereA={v,v'}
all 4 =df A]

The ineffectiveness of II is neatly captured by its most important algebraic prop-
erty: that it is the unit for sequential composition.

L5 P;ll,p = P = HO,p;P ’ (; unit)

In future, we will drop the alphabet subscript on II, on the grounds that it can be
restored in any way that satisfies the constraints imposed by the definition of the
neighbouring operators and operands, including the constraint that both sides of
an equation or inequation must have the same alphabet.

Assignment to a subscripted variable has the same form as assignment to a
simple variable. If w is an array-valued variable (single dimensional for simplicity)

wfi] :== e

2.4 Non-determinism 51

denotes an assignment of the value of e to just the i*" element of the array. Because
this is the only element that changes, implementation is easy and efficient. But in
principle, the value of an array variable is a finite function from its index range to
its element type, and the change to the value of a single element changes the value
of the whole array. The new function is quite similar to the old: it maps all the
indices except one to the same value, and just the assigned index is mapped to a
new value. Such a change is described by the overriding operator &, defined by

(w @ z)[i] =4 z[i] <i € domain(z) > wli]
A subscripted assignment to w[i] is mathematically equivalent to an assignment
w:=w® {i—e}
where {i — e} is the singleton function with domain {i} that maps i to e.
Definition 2.3.3 (Array assignment)

wli] ==e =¢ w:=wd{i—e} O

2.4 Non-determinism

Non-determinism was described in the previous chapter as simply disjunction
of predicates. If P and @) are predicates describing the behaviour of programs with
the same alphabet, then we introduce the notation

PNQ

to stand for a program which is executed by executing either P or Q, but with
no indication which one will be chosen. The introduction of the new notation M
emphasises that the alphabets of both the operands must be the same.

Definition 2.4.1 (Non-deterministic choice)
PNQ =4 PVQ, provided that aP = aQ
a(PNQ) =4 aP O

As an operator of our programming language, non-deterministic choice may be eas-
ily implemented by arbitrary selection of either of the operands, and the selection
may be made at any time, either before or after the program is compiled or even
after it starts execution. The non-deterministic choice satisfies a number of laws
common to other forms of choice, including the conditional.

52 Relations

Ll PNQ = QNP (N symm)
L2 PN(QNR) = (PNQ)NR (M assoc)
L3 PNP = P (N idemp)
Proof From symmetry, associativity and idempotency of disjunction. m]

The first law states that it does not make any difference in what order a choice
is offered, that is the operator M is symmetric. The second one is an associative
law: a choice between three alternatives can be offered as first a choice between
one alternative and the other two, followed (if necessary) by a choice between the
other two; it does not matter in which way the choices are grouped. The final law
says that a choice between a program and itself offers no choice at all, that is M is
idempotent. Using these laws we can prove that M distributes through itself.

L4 PN(QNR) = (PNQ)N(PNR) (N distr)
Proof RHS {L1 and L2}
= (PNP)N(QNR) {L3}
= LHS m|

All programming combinators defined so far distribute through M. This
means that separate consideration of each case is adequate for all reasoning about
non-determinism. Finally, M also distributes through the conditional.

L5 P<9b>(QNR) = (P1b>Q)N(PR) (cond-M distr)
L6 (PNQ);R = (P;R)N(Q;R) (;-N left distr)
L7 P;(QNR) = (P;Q)N(P;R) ;-1 right distr)
L8 PN(QR) = (PNQ)(PNR) (M-cond distr)
Proof Propositional and predicate calculus. 0O

As a consequence of distribution through the non-deterministic choice, all
program combinators defined so far are monotonic in all arguments; for example,

[X;Y = X';Y'] whenever [X = X’] and [Y = Y]

A further consequence is that all functions defined solely in terms of these pro-
gramming operators will be monotonic. But not all monotonic operators distribute
through M. Consider an operator which executes its argument more than once, for
example a squaring operator defined by

P2 =df P;P

This is certainly monotonic. But if it is applied to a non-deterministic argument,
a different choice may be made when each copy of the argument is executed. Ex-

2.4 Non-determinism 53

pansion of the definition and distribution of ; through N gives
(@NR) (@:Q)N(QR)N(R;Q) N (R R)
(@NRHN(Q;R)N(R;Q)

This is in general weaker than Q2 M R?, but that is not surprising, because it is
already known for any monotonic function F' that

[F(P)NF(Q) = F(PNQ)]

A product or component P can be made less deterministic by adding the
possibility that it behaves like Q. But in general an increase in non-determinism
makes the thing worse, no matter what you want to use it for. It is harder to
predict how it will behave; it is more difficult to use and control, and more likely
to go wrong. This fact is expressed in the simple law

[P = (PNQ)]

Taking this argument to extreme, the worst component of all is totally unpre-
dictable and totally uncontrollable; as a result, it is useless for any purpose what-
ever. There is no limit to the range of its possible behaviour or misbehaviour. The
only predicate that it satisfies is the weakest predicate of all, the one that is always
true. In a programming language, a program like this is sometimes called ABORT
or CHAOS, but we will adopt a more compact notation.

' Definition 2.4.2 (Abort)
J.A‘ =df true
aly =4f A (m}

The notation has been chosen as suggestive of the bottom (weakest) element of the
implication ordering

[La < P], for all P with alphabet A

In engineering practice, it may well be impossible to find or to build a physical
component or assembly whose behaviour is so totally arbitrary. But there are other
ways in which a product may become totally undependable, for example foodstuff
that has been mis-handled in storage, or a bottle of medicine that has lost its
label. The only safe thing to do with it is to throw it away. Since there is no
reason to make distinctions in uselessness, these objects may all be represented
by the single mathematical abstraction L. An alternative view is that a non-
deterministic product might actually be better, because at least it might exhibit a
desirable behaviour which an incorrect deterministic product could never do. This
view is attractive, but only because it panders to wishful thinking, a pleasant habit
that cannot be allowed in the professional engineer. The only allowable view is that

54 Relations

non-determinism is resolved by a demon which is dedicated to the implementation
of Murphy’s law

“if it can go wrong it will”.

2.5 The complete lattice of relations

The combinator M may be used to describe non-deterministic behaviour in
terms of any finite set of n more deterministic behaviours

PNPN...NE,

The disjunction of an infinite set of predicates asserts the existence of at least one
of the predicates that is true. Like existential quantification in the predicate calcu-
lus, it is impossible to define infinite disjunction in terms of the finite disjunctions
of the propositional calculus. It is therefore necessary to introduce the concept by
an axiom rather than a formal definition, and that is the role of L1 below. It is
one of the few laws in the book which cannot be proved from definitions, simply
because no definition can be given. Fortunately, this axiom alone is strong enough
for all the proofs that we need about the properties of M. In fact, it is so strong
that there is provably at most one operator that satisfies it. Thus the axiom merely
postulates the existence of the operation that it indirectly defines.

Let S4 be some set of predicates, all with alphabet A (which we will hence-
forth omit). Then [].S describes a system that behaves in any of the ways described
by any of the relations in S. The law governing this construction applies equally
to infinite and to finite non-determinism.

Ll [P<«<T]S] iff ([P« X]forall X inS)

The quantification “for all X in S” on the right hand side of this law is necessary.
The square brackets mean universal quantification over all observations described
by X, and denoted by free variables in the alphabet of X. Quantification over
predicates like X is different; it is known as higher order quantification, and will
be explained more fully in the next section. The law L1 for unbounded non-
determinism may be easier to understand when it is split into two parts that are
together equivalent to it.

L1A [[1S <« X] forall X in S
LB If [P < X] forall Xin S, then [P < []9]
The first of these states that the disjunction of a set is a lower bound of all its

members (in the implication ordering), and the second states that it is the greatest
such lower bound. The least upper bound operator is often abbreviated to gib.

2.5 The complete lattice of relations 55

The concept of arbitrary, perhaps infinite, non-determinism has been in-
troduced not as a programming notation but as an aid to reasoning about pro-
grams. We will see in Chapter 5 that it is actually impossible to define infinite
non-determinism within the notations of a programming language, so when it is
needed we cannot avoid just assuming its existence and just postulating its prop-
erties. This is done implicitly by introducing the notation in an axiom.

If infinite disjunction is not possible to implement as a program, an empty
disjunction is even worse: it yields the predicate false which can certainly never
be implemented

M{} = false
If it did exist, it would satisfy every specification
[false = P], forall P

Such a miracle we do not believe in. Indeed, it must remain forever inaccessible
to science, because it can never give rise to any observation. Any theory which
implies its existence must be to some degree unrealistic, and use of such a theory
in engineering practice must involve some element of risk. Nevertheless the miracle
is so useful as a mathematical abstraction in reasoning about programs that we
give it a special symbol.

Definition 2.5.1 (Miracle)
Ta =g false
aly =qf A a

The notation suggests the top (strongest) element in the implication ordering. We
will later see some intuitive content for T 4: it stands for a product that can never
be used, because its conditions of use are impossible to satisfy, or its instructions
are impossible to carry out. Think of a computer with no on-switch, or a bottle of
medicine that cannot be opened. A claim for miraculous powers of such a product
would be impossible to refute. '

In predicate calculus, the dual of disjunction is conjunction. Because of the
danger of contradiction, this certainly cannot be included in a programming lan-
guage, but in reasoning about programs, it is just as useful, and can just as usefully
be extended to arbitrary sets of relations. The conjunction of all relations in a set
S is denoted by | | S, and gives the least upper bound (lub) of the set S. Its postu-
lated defining property is dual to that of disjunction, with the implications in the
opposite direction

[P=1S] if ([P= X]forall XinS)

56 Relations

A system is described by [|S just if it is described by every relation in S. The
least upper bound of an empty set is the bottom of the lattice

L{} = true

A mathematical space with an ordering that has the lub and the glb of all
subsets of its elements is known as a complete lattice, and we have postulated that
the space of relations deserves this title. Furthermore it is distributive in the sense
that finite disjunction distributes into arbitrary conjunction.

L2 US)nQ=L{PNQ | Pe S}

Many properties of conjunction can be translated to a similar property of disjunc-
tion, by reversing the direction of implication (which leaves equations unchanged).
Such a property is called dual, and the distribution law gives a good example.

L3 NS)u@=MN{PuQ|PeS}

These distributive properties deserve special names. A function F will be called
disjunctive if it distributes through arbitrary disjunctions, and conjunctive if it
distributes through arbitrary conjunctions. For example, sequential composition
is disjunctive in each of its two arguments

L4 (NS);Q=T{P;Q | P S} (; left univ disj)
L5 R;(NS)=I{R;P | Pe S} (; right univ disj)

2.6 Recursion

To explain recursion, we will need to formalise a concept of quantification
over variables whose values range over relations with a given alphabet A. We shall
use capital letters X 4,Yy,. .. for this purpose (but usually leave out the subscript
A). Of course, the value of X4 is a relation which also contains free variables in the
alphabet A. These variables stand for observations; they are written in lower case,
and are subject to quantification by square brackets. In this section, we make no
mention of observation variables. They are all encapsulated within a single capital
letter, which is known as a second-order variable to indicate its purpose and status
as standing for a predicate rather than an observation.

Let X be a variable to stand for a call of the recursive program which we are
about to define. X is then used, perhaps more than once, to build up the body of
the program, using assignments and the various combinators of the programming
language. The result may be seen as a formula F(X), whose value will be known
as soon as the value of X is known. The engineer may prefer to think of F(X)
as an assembly with a vacant slot labelled X, into which some component of an

2.6 Recursion 57

appropriate kind may later be plugged. Now the magic of a recursive definition is
to declare that X is just the same as the result of applying F' to X itself, or in
symbols, it satisfies the equation

X = F(X)

Such an X is called a fized point of the function F because application of F leaves
it unchanged. The same trick can be played with two or more unknowns in a
definition by mutual recursion. This is expressed by simultaneous equations, for
example

X=F(X,Y) and Y=G(X,Y)

But for simplicity we shall concentrate on single recursions; multiple recursion is
treated fully in Section 9.4.

How does the magic work? Logicians and philosophers, ever since Aristotle,
have not allowed themselves to define an unknown X in terms of itself by men-
tioning it on the right hand side of its own definition. Engineers are even more
sceptical: How can the object F(X) be plugged into itself as one of its own compo-
nents? In physical reality, such feedback can lead to discontinuities, singularities,
race conditions, explosions, etc.

Fortunately, computing scientists have found an effective way in practice to
implement recursively defined programs by means of a stack. Even earlier, math-
ematicians discovered how to solve the theoretical paradox of apparently circular
definition. The solution we present here is due to Tarski [175). It depends crucially
on the fact that relations are members of a complete lattice, and that all the oper-
ators that interest us are monotonic. As a result, any function F which is defined
solely in terms of these operators will also be monotonic. Tarski’s famous theorem
shows that every such function has a fixed point, defined by a formula to be given
below.

But there may well be more than one fixed point: Tarski has proved that
there will be a complete lattice of them. For example, the miracle T is a fixed
point of sequential composition, because it satisfies

X=PX

Because it is the strongest of all relations, it is the strongest of all the fixed points.
But we want the recursion to be implementable, which T certainly is not. We
therefore take the other obvious alternative, the weakest of the fixed points — the
one that is easiest to implement, although most difficult to use. The effect of this
decision is that erroneous recursions (those that do not terminate when executed)
are revealed as totally useless: they give rise to the worst of all behaviours, namely
1. The weakest fixed point of a monotonic function F will be denoted by pF. It

58 Relations

can be implemented as a single non-recursive call of a parameterless procedure with
name X and with body F(X). Occurrences of X within F(X) are implemented as
recursive calls on the same procedure. The mathematical definition is much more
abstract.

Definition 2.6.1 (Weakest fixed point)
pF =y X |[X = F(X)]}

where the join operator [] is applied to the set of all solutions of [X = F(X)]. A
definition using the equation [X = F(X)] would give the same result. o

The following laws state that this formula is indeed a fixed point of F, and that it
is the weakest one.

L1l [Y = uF] whenever [Y = F(Y)] (weakest fixed point)

L2 [F(uF) = pF) (fixed point)

Proof of L1 Y = F(Y) {by set theory}
= Ye{X | [X = FX)} {2.5L1A}
= [Y = puF)

The following proof for L2 is due to Dijkstra and Scholten [52].

true {L1}
= VXe[X = F(X)] = [X = uF] {F is monotonic}
= VX eo[X = F(X)| = [F(X)= F(uF)] {= is transitive}
VX e [X = F(X)] = [X = F(uF) {2.5L1B}
[uF = F(uF)) {F is monotonic}

[uF = F(uF)] A[F(uF) = F(F(uF))] {L1, with F(uF) for Y}
[WF = F(uF)] A [F(uF) = pF]
[wF = F(uF)] o

The second law L2 is a mathematical formulation of the “copy rule”, which
makes a copy of the whole procedure in the place of each one of its calls. This is
often given as an explanation to programmers of the meaning of a procedure call.
In the case of recursions that terminate properly, there is only a single fixed point,
and the copy rule gives its complete meaning. But the mathematics must also deal
with the risk of non-termination, because that is the only way the mathematics
can help in avoiding that risk. That is why the first law is also needed.

LR

It is usually convenient in a programming language to combine the definition
of the function F' with the application of the operator p. The body of the recursive
procedure is written as a program text containing occurrences of the higher order

2.6 Recursion 59

variable X
XX

A call of the corresponding procedure is obtained just by putting pXe in front of
this

pXe.. . X...X...

The name X is thereby declared as the name of a recursive procedure, and its
occurrences within the text are interpreted accordingly as recursive calls.

Definition 2.6.2
pXe.. . X ... X... =¢ uF
where F =4 MXeo...X... X.... |
Example 2.6.3 (Iteration)
A simple common case of recursion is the iteration or while loop. If b is a condition
b* P (while b do P)

repeats the program P as long as b is true before each iteration. More formally, it
can be defined as the recursion

bxP =4 pXe((P;X)<br 1) O

An even simpler example (but hopefully less common) is the infinite recursion
which never terminates

uX e X

This is the weakest fixed point of the identity function, or in other words, the
weakest solution of the trivial equation

X=X

It is therefore the weakest of all predicates, namely true. In engineering practice,
a non-terminating program is the worst of all programs, and must be carefully
avoided by any responsible engineer. That is our justification for practical use of
a theory which equates any totally non-terminating program with a totally unpre-
dictable one, which is the weakest in the lattice ordering.

Consider now the program which starts with an infinite loop and ends with
the assignment of constants to all variables.

(uX ¢ X); (z,y,...,2:=3,12,...,17)

60 Relations

In any normal implementation, this would fail to terminate, and so be equal to
(uX e X). Unfortunately, our theory gives the unexpected result

T=3AY=12A...AZ =17

This is the same as if the prior non-terminating program had been omitted. To
achieve this result, an implementation would have to execute the program back-
wards, starting with the assignment, and stopping as soon as the values of all the
variables are known. While backward execution is not impossible (indeed, it is
standard for a lazy functional language, as discussed in Section 9.3), it is certainly
not efficient for a normal procedural language. Since we want to allow the conven-
tional forward execution, we are forced to accept the practical consequence that
the program

(kX eX); P
will fail to terminate for any program P, and the same holds for
P; (uX o X)

Substituting (uX e X) by its value true, we observe in practice of all programs P
that

true; P = true
P;true = true
These laws state that true is a zero for sequential composition.

But these laws are certainly not valid for an arbitrary relation P (e.g. if P
is false). As always in science, if a theory makes an incorrect prediction of the
behaviour of an actual system, it is the theory that must take the blame. All
the assumptions on which the theory is based may then be questioned, starting
with the most questionable. In the case of recursion, the obvious first question
is whether we were right to accept its definition as the weakest fixed point of the
defining function. Maybe the strongest fixed point would be better.

Exercise 2.6.4
Prove the following fixed point rules {121]

(1) pX e F(G(X)) = F(uX ¢ G(F(X)))
(2) If [G(H(X)) = F(G(X))] for all X, then [G(uH) = uF). O

2.7 Strongest fixed point 61

2.7* Strongest fixed point

The strongest fixed point of a monotonic function on a complete lattice can
be defined as the dual of the weakest.

Definition 2.7.1 (Strongest fixed point)
vF =y -uXe-F(-X) |

Its properties are easily proved by duality: just reverse the direction of the arrows
in the laws for the weakest fixed point.

L1 [vF = S] whenever [F(S)= 8]
L2 [F(vF)=vF]

This new interpretation of recursion gives the entirely opposite view of non-
termination

(vX o X) = false

This is a plausible view. One can argue that the reason why the set of observa-
tions is empty is because the implementation in practice fails to reach an observable
state. Furthermore, the zero laws are immediately validated, because

L3 false; P = false = P;false

A recursively defined program is much easier to prove correct using the
strongest fixed point vF rather than the weakest fixed point uF. In order to prove
that vF meets a specification S, all that is needed by L1 is to prove [F(S) = S].
That is why several early theories of programming [85] have interpreted recursion
as the strongest fixed point. Unfortunately the implication in 2.6L1 for uF goes
in the opposite direction. It could be used to prove that a program meets a recur-
sively defined specification, but that is rarely what is wanted.

There are two serious objections to the use of the strongest fixed point. The
first has already been mentioned: a non-terminating program implements falsity,
which will satisfy every specification S

[false = S]
This would invalidate the use of implication to model correctness of designs, re-
quiring abandonment of our whole logic of engineering design. Even‘scientists are

allowed to resist the questioning of their most basic assumptions! The second ob-
jection is more practical. It is embodied in the law

(falsel P) =P

62 _ Relations

This places a serious burden on the implementor of non-determinism: it requires
that if one of the alternatives fails to terminate, the effect must be the same as that
of the other alternative. The trouble is that it is impossible to know in advance
whether or which of the programs is going to fail; an implementor must therefore
execute both alternatives (e.g. by timesharing or running them in parallel), and
take the result of whichever terminates first. This wastes all the computing re-
source allocated to the rejected alternative, and it is certainly not the intended
implementation of non-determinism, which is much easier (just select the easier
alternative whenever you like).

Although we reject the strongest fixed point as the proper meaning of re-
cursion in a programming language, we can fortunately continue to use the very
simple rule L1 for proving its correctness. Of course, there is an additional proof
obligation which is the subject of the remainder of this section: we need to show
that the strongest and weakest fixed points are in fact the same; or in other words,
that there is altogether only one fixed point. This will be the case for any recursion
which is guaranteed in all circumstances to terminate.

A recursion which terminates only conditionally (on some condition C) can
be proved correct in a similar way. In this case, it is sufficient to prove conditional
equality of the two fixed points, that is

[CAuF =C AVF]

This defines a concept of approzimate equality modulo C: the two fixed points will
appear equal to an observer whose observations are confined to the set C. But that
is good enough if the specification itself is of the form (C = S). The full proof
rule for weakest fixed points can now be formalised.

Lemma 2.7.2
If [F(C=S) = (C=29)] and [C = (uF =vF)]
then [pF = (C = 9) O

The essential proof of conditional equality of fixed points is often conducted
by a process of successive approximation. The condition C is expressed as an infi-
nite disjunction of a weakening chain of predicates.

Definition 2.7.3 (Approximation chain)
A set of predicates E = {E; | ¢ € N'} is called an approximation chain for C if

E, = false
[E,' = E,:H], for all i in NV
C = V,' Ei O

2.7 Strongest fixed point 63

If X is any predicate, X A E, is regarded as the n** approximation to X A C, and
we state the obvious lemma.

Lemma 2.7.4
If XAE,=YAE, foralninN
then X A (VnEn) =Y A(V, Ey) O

The most important use of an approximation chain E is to help in proving
equality (modulo V E) of the strongest and weakest fixed points of a function F.
For this, £ must be chosen so that the (n + 1)* approximation of F(X) can be
computed from just the nt® approximation to X. A function with this property is
said to be E-constructive, and it has at most one fixed point modulo E.

Definition 2.7.5 (E-constructive)
Let E be an approximation chain for C. A function F is E-constructive if
F(X) A Eny1 = F(X ANEp) A Enyy
for all X and n. o
Theorem 2.7.6
If E is an approximation chain for C, and if F is E-constructive, then
CAuF =CAvVF
Proof By Lemma 2.7.4, it is sufficient to show that
E,.ANuF =E,AvF, foralln
This is done by induction on n:

(0) EoAuF = EgAvF {Eo = false}

(1) Eppu ApF = Eny AF(uF) {def constructive and 2.6L2}
= En41 A F(E, A uF) {induction}
= E,p1 AF(E, AVF) {def constructive and L2}
= E,t1 AVF O

This theorem describes the general condition for proving the termination of
a recursion. It shows the contribution of the strongest fixed point in reasoning
about recursive programs. But it does not give a solution to the problem described
in Section 2.6; this is postponed to the next chapter, which the keen or impatient
reader could immediately skip to. As so often in science, the solution requires a

64 Relations

slight complication of the theory, which has to recognise the relevance of additional
factors, and introduce new variables to denote them. These stand for properties
of the world which are perhaps not themselves directly observable. However, they
can be inferred from more direct observations, and they are successful in predict-
ing others. All the most fundamental concepts in science have been discovered in
this way, as corrections to some simpler theory; examples range from friction and
viscosity in mechanics to colour and charm in particle physics.

2.8* Preconditions and postconditions

A condition p has been defined as a predicate not containing dashed variables.
It describes the values of global variables of a program @ before its execution starts.
Such a condition is therefore called a precondition of the program. If r is a con-
dition, let 7’ be the result of placing a dash on all its variables. As a result, 7’
describes the values of the variables of a program @ when it terminates. Such a
condition is therefore said to be a postcondition for the program. Important as-
pects of the behaviour of a program can often be specified simply by means of a
postcondition. Usually, this needs to be accompanied by a precondition, which the
designer of the program has to assume to be satisfied at the start. The discharge
of this assumption is the responsibility of the user of the program, or the designer
of some previously executed part of the program, who will accept the precondition
of the later part as a postcondition of the earlier part.

The overall specification of the program can often be formalised as a simple
implication (p = 7'). As usual, the correctness of a program @ is also interpreted
as an implication, and the triple (precondition, program, postcondition) is known
as a Hoare triple [85].

Definition 2.8.1 (Hoare triple)

p{Q}r=¢ Q= (p=7)] o

This definition validates a number of classical proof rules for proving the correct-
ness of a program.

Theorem 2.8.2 (Hoare proof rules)

L1 If p{Q}r and p{Q}s then p{Q}(r As)

L2 If p{Q}r and ¢{Q}r then (pV q){Q}r

L3 If p{Q}r then (pAQ){Q}(rVs)

L4 r(e){z :=e}r(z)

L5 If (pAb){Q1}r and (p A -b){Q2}r then p{Q1 Q2}r

2.8 Preconditions and postconditions 65

L6 If p{Q1}s and s{Q2}r then p{Q1;Q2}r

L7 If p{Q1}r and p{Q2}r then p{Q1NQ2}r

L8 If bAc{Q}c then c{vX eQ;X ab> M}(-bAc)

L9 false{Q}r and p{Q}true and p{false}false and p{d}p
Proof of L8 Let Y =4 c = - Vv ¢. By 2.7L1, it is sufficient to prove

(@Y)I=Y]

Assume the antecedents

(@YIAc {6A(P;Q) = (bAp);Q}
= (BAcAQ);YV(mbAcAD) {bAc{Q}c,c{Y}-bAc, L6 and L9}
= =VAC a

These proof rules use the preconditions and postconditions purely as program
specifications; they permit reasoning about program correctness to be detached as
quickly as possible from the text of the program. The mathematical hypotheses
which need proof can be extracted mechanically with the aid of a verification con-
dition generator (VCG) [109]. But conditions can play an even more vital role in
explaining the meaning of a program if they are included at appropriate points as
an integral part of the program documentation. Such a condition is asserted or
expected to be true at the point at which it is written. It is known as a Floyd
assertion [57]; formally, it is defined to have no effect if it is true, but to cause
failure if it is false. Failure is something that everyone agrees must be avoided.

It is often important to distinguish who or what is responsible for a failure. If
it is the designer or the programmer, failure should be represented by L, because
this can never be proved to meet its specification. But if the failure is due to the
failure of the environment to meet agreed commitments, then the appropriate rep-
resentation is by T. There is then no obligation on the designer to prove anything.
Preconditions are a prime example of this kind of permitted assumption.

Definition 2.8.3 (Floyd assertion and assumption)
cr =¢ IDT<dcp> L (assertion)
¢’ =g D<ac>T (assumption) O
Definition 2.8.1 of correctness can be rewritten in a number of different ways.
@ = (=r)] = [p=> Q=)
: p = W.Q=>1)
[p = =F(QA-r)]

[p = —(Q;-r)]

I

I

66 Relations

This last reformulation gives an answer to the question: What is the weakest pre-

condition under which execution of @) is guaranteed to achieve the postcondition
r?

Definition 2.8.4 (Weakest precondition)

Qwpr =¢ —(Q;-r) o
The calculation of the weakest precondition may be assisted by the following laws.
L10 (z:=e)wpr(z) = r(e)
L1l (P;Q)wpr = Pwp(Qwpr)
L12 (PQ)wpr = (Pwpr)<ab> (Qwpr)
L13 (PNQ)wpr = (Pwpr) A (Qwpr)

The weakest precondition satisfies a number of additional laws, known as
healthiness conditions. Firstly, it is monotonic in its postcondition. An easier
postcondition in general makes the precondition easier too.

L14 If [r = s] then [Qwpr = Qwps]

It is, however, antimonotonic in the program which is its first argument. A weaker
program is less predictable, less controllable, and more likely to fail. It is therefore
harder to satisfy the precondition for success of the weaker program.

L15 If [Q@ = S] then [Swpr = Qwpr]

Antimonotonicity means that wp itself can never be included in an implemented
programming language, and even when used in specifications or designs, it must
never be involved in recursion through its first argument.

A stronger property than monotonicity is conjunctivity, defined as distribu-
tion through conjunction of an arbitrary set of postconditions.

L16 Qwp(A R)=A{Qwpr|re€ R}

This means that (when R is empty) our definition of wp differs slightly from the
original definition given by Dijkstra [50], which does not satisfy

Q wptrue = true
This discrepancy is resolved by the method introduced in Chapter 3.

At the other extreme, one would expect that the achievement of the impos-
sible postcondition false would also be impossible.

L17 Qwp false = false, provided Q;true = true

2.8 Preconditions and postconditions 67

This is known as the law of the excluded miracle, and is usually quoted without
the proviso. In the next chapter we will show that the omission of the proviso is
justified, because all programs satisfy it anyway.

In specifying and designing a program, the postcondition conveys far more
significant information than the precondition. It is therefore recommended prac-
tice to design a program backwards from the postcondition. Given a proposed
design of a final program segment Q, it is possible (by calculation mostly) to de-
duce the weakest precondition under which @ will satisfy the postcondition r. This
precondition can often be simplified by strengthening, and then it is taken as the
postcondition in the design of the next preceding segment of the program. The
systematic design continues until the calculated precondition is implied by the orig-
inally stated precondition for the whole program. Then the programming task is
complete.

An interesting generalisation of the weakest precondition is the weakest pre-
specification. It is obtained merely by allowing the second argument of wp to be
an arbitrary relation, containing both dashed and undashed variables. It gives an
answer to the question: What is the weakest specification of a program P whose
execution before @) is certain to meet specification S?

L18 [(P;Q)=S] iff [P=QwpJY|

The relevance of conditions in reasoning about programs was known to Turing
and von Neumann [179]. They were rediscovered by Floyd (and called assertions)
[57] and by Naur (and called generalised snapshots) [134]. Floyd suggested that
the assertions encapsulate the meaning of a program, and Hoare suggested that
the laws of reasoning with assertions should be accepted as an axiomatic definition
of the meaning of the whole programming language [85]. The axiomatic approach
was adopted also by Dijkstra in his development of weakest preconditions [50].
The approach of this book is not axiomatic: we prefer to prove the necessary laws
as theorems based on an independent mathematical definition of the meaning of
a program as a relation. In this we follow the example of standard mathematical
practice, to provide a link between its purer and the more applied branches. The
axioms postulated in one branch are proved as the theorems of a more basic theory.

Exercises 2.8.5

Prove the following laws for Floyd assertions and assumptions.

(1) biser = (bA)L = biNes

(2) bT5¢" = (bACS)T = b U

(3) bT;bL = b' ‘ O

68 Relations

2.9 Variable declarations

An essential characteristic of engineering is that the internal details of the
working of its products are of no concern to their users, which is why they are
usually concealed from observation and interference by an opaque casing and an
instruction not to open it. In Chapter 1 it was shown that this concealment from
observation is represented in the predicate calculus by quantification over the ir-
relevant free variables, which are then removed from the alphabet of the predicate.
Section 2.2 gave an important example — the forgetting of the intermediate values
of the variables on transition between the first and second operands of a sequen-
tial composition. In this section we extend the method of concealment from the
temporal domain of program execution to the spatial domain of computer storage.

An essential characteristic of program design is that the efficient implemen-
tation of any non-trivial algorithm requires the invention and introduction of ad-
ditional temporary variables; they store the results of intermediate calculation for
repeated use on later occasions. The values of these variables are of no concern
to the user of the program, and they should be concealed, as usual, by existen-
tial quantification. Since each program variable is represented in the predicate by
two observational variables, one dashed and one undashed, both of these must be
treated appropriately.

To introduce a new program variable we use the form of declaration
varz

which permits the variable z to be used in the portion of the program that follows
it. The complementary operation (called undeclaration) takes the form

endr

and terminates the region of permitted use of the variable z. The portion of pro-
gram @ in which a variable £ may be used is called its scope; it is bracketed on the
left and on the right by the declaration and undeclaration

varz; Q; endz

In this case, x is called a local variable of @, and @ is called a block. However, it is
sometimes (e.g. in Section 4.4) beneficial both in theory and in practice to reason
separately about unbracketed fragments of the form (var z; Q) and (Q; end z).

In programming languages, as in conventional mathematical reasoning, it is
usual to associate a type T with each variable, and this is often done on the occa-
sion of its declaration

varz: T

2.9 Variable declarations 69

The type T determines the range of possible values for the variable, and there is
usually a syntactically enforceable guarantee that no assignment can take a vari-
able’s value outside its declared range. (Alternatively, such assignment is specified
to lead to disaster.) In this section it is convenient to ignore all distinctions of
type, so that the results will apply to languages with any kind of type structure.

Definition 2.9.1 (Declaration and undeclaration)
Let A be an alphabet which includes z and z’. Then
varz =g drelly
endz =4 3Jr'ell,
a(varz) =y A\ {z}
alendz) =4 A\ {z'} m]

Note that the alphabet constraints forbid the redeclaration of a variable within its
own scope. For example, var z ; var z is disallowed because

z' € outa(varz) but z ¢ ina(varz)

and as a result the composition is undefined. We shall see later how this restriction
may be relaxed, to permit nested and even recursive declarations of the same
variable.

Declaration and undeclaration act exactly like existential quantification over
their scopes

varz;Q = 3z eQ
Q;endz = 3z’ e Q

For convenience we allow variables to be declared together in a list provided they
are all distinct

varzc,y,...,z instead of varz; vary; ...; varz
We will also allow initialisation to be combined with declaration
varz :=e instead of varz;z:=e

The algebraic laws for declaration closely match those for existential quan-
tification. Both declaration and undeclaration are commutative.
L1 (varz; vary) = (vary; varz)=varz, y
L2 (endz;endy) = (endy; endz) =endz, y
L3 (varz;endy) = (endy; varz), provided z and y are distinct

70 Relations

The initial value of a declared va.riable is arbitrarily non-deterministic.
L4 If T is the type of z, then varz = [|{varz:=k |k € T}

Declaration and undeclaration distribute through a conditional as long as no in-
terference occurs with the condition.

L5 If z is not free in b, then
varz; (P1b>Q) = (varz; P)<bi> (varz; Q)
endz; (Pab>Q) = (endz; P)<1b> (endz; Q)

var z followed by end z has no effect whatsoever. In practice, there is a risk that
available computer storage may run out; such unfortunate events may be modelled
within the theory by introducing variables to account for resource utilisation, as
in Example 7.2.1.

L6 varz;endz = II

The next law states that the sequential composition of end xz with var x has no
effect whenever it is followed by an update of = that does not rely on the previous
value of z.

L7 (endz; var z:=¢) = (z:=e), provided that z does not occur in e
Assignment to a variable just before the end of its scope is irrelevant.
L8 (z:=e;endz) =endz

One of the purposes of introducing local variables into a program is to break
up a complex calculation into a series of simpler calculations that can be under-
stood and performed separately. For example,

y:=y% x (6y* +1)/12
is logically equivalent to the block
varz :=y% y:=1z x (6 x 22+ 1)/12; endz

The declaration and undeclaration of z are essential to equalise the alphabets of
the two programs; without equal alphabets they cannot even be compared, let
alone proved equal.

A conventional digital computer is not capable of direct execution of generally
bracketed expressions of a programming language. Reduction of the complexity of
expressions is one of the essential tasks in the translation of a program from its
high level language to the machine code of a computer that will execute it. In fact,
many computers can execute only the simplest assignments, with just two or three

2.9 Variable declarations 71

operands, and most of these operands must be selected from among the available
machine registers. The registers are usually given names like a, b, ¢, which are
assumed distinct from all variables of the programming language. A list of typical
machine code instructions is given in Table 2.9.2.

name effect

load z a,b:=1z,a
storezx | z,a:=a,b
add a:=a+b
subtract [a:=a—b
multiply [a:=a x b
divide |a:=a/b

Table 2.9.2 Machine code instructions

In principle, the translation of a source program is accomplished by alge-
braic transformations, which reduce it to a form containing only instructions in
the repertoire of the machine, as shown in Table 2.9.4. The registers of the ma-
chine are just components of an implementation on a particular machine. After
they are hidden, the meaning of the machine code is the same as that of the high
level program — or better.

Exercise 2.9.3 (Compilation of assignments)

Consider a programming language with suitable restrictions on the operations per-
mitted in expressions. Prove that every sequence of assignments can be translated
into a sequence of machine code instructions (Table 2.9.2), together with declara-
tions of additional local variables standing for machine registers.]

vara,b; a,b:=y,a; |load y
a,b:=2z,a; | load z
a:=a x b; | multiply
a,b:=w,a; | load w
a:=a+b; |add
z,a:=a,b |storex

enda,b

Table 2.9.4 Machine code for (z :=y x z + w)

72 Relations

If z and 2’ are in the alphabet of @, the bracketed declarations
varz;Q;endz

provide a means of removing these variables from the alphabet. The converse
operation is defined on a program R which does not have z or z’ in its alphabet,
and produces a result which does. Since R certainly does not update z, it is
reasonable to assume that the final value 2’ is the same as the initial value z.

Definition 2.9.5 (Alphabet extension)
Let z,2’ € aR

Ri; =4 RA(z=2)
aRi; =4 oR+ {z,2'} a

The following laws state how declaration and alphabet extension cancel each
other.

L9 If R does not mention z, then
varz; Ry;; P;endx = R;varz;P;endz
varz; P;R,;;endz = varz;P;endz; R
Alphabet extension enables sequential composition to be applied to operands
with non-matching alphabets. For example, if z is in a@ but z,z’ are not in aP,
then (P; Q) is illegal, but (P4z; @) can be written instead. This alphabet extension
is unavoidable if P is a call of a procedure whose body was written outside the
scope of the variable z, as described in Section 9.1. In fact, it is convenient just to
write the simpler illegal form, on the understanding that it should be made legal

by extending the alphabets of one or both of the operands in the minimal possible
way.

The most important application of alphabet extension is for the declaration
of local variables within recursively defined programs, for example

R =4 (uXevarz;...;X;...;endz)

Because z is a local variable of R, the alphabet of R by Definition 2.9.1 excludes
z and z’. But by the fixed point property of recursion

R = varz;...;R;...;endz

Unfortunately, the right hand side of this equation is now syntactically incorrect,
because the alphabet of the internal R does not match its context.

The solution is to extend the alphabet of the internal call to match the
alphabet of its context

2.9 Variable declarations 73

R =y pXevarz;...;X,;;...;endz

Apart from restoring syntactic correctness, the definition of alphabet extension
also states that the value of the local variable = remains unchanged, even though
the recursive call declares and manipulates a local variable with the same name.
The constancy of the local variable at each level of recursion is essential to the
correctness of recursively defined programs, and to reasoning about it.

The rule of alphabet extension for a recursive call places a strong duty on an
implementation: it must reserve separate storage for local variables at each level of
recursion. The storage may be released again on exit from that level of recursion,
thereby permitting an efficient implementation of storage allocation by means of a
stack.

Exercise 2.9.6
Prove that

(varz)wpr = Vzer
(endz)wpr = r, if z is not free in r]

	44.tif
	45.tif
	46.tif
	47.tif
	48.tif
	49.tif
	50.tif
	51.tif
	52.tif
	53.tif
	54.tif
	55.tif
	56.tif
	57.tif
	58.tif
	59.tif
	60.tif
	61.tif
	62.tif
	63.tif
	64.tif
	65.tif
	66.tif
	67.tif
	68.tif
	69.tif
	70.tif
	71.tif
	72.tif
	73.tif

