Quiz Solutions Outline

Synthesis, Analysis, and Verification 2013
for the quiz given on Friday, May 3rd, 2013

“Y (concretization)

(X (abstraction)

C' (concrete) A (abstract)







Problem 1: Recursion ([20 points])

Task a) [5 points]

Because the state has three components, relations on states contain tuples ((r,z,y), (', z',y')) € Z°.
Sets of such states are elements of 22°. The type of functions mapping such relations to new relations is
E: 27 97

If p maps a command into a relation, then the definition of function E is:

E(ry) =(Bsyeo 0 oy =y+1) orpop(r’ =1 —2)) U
Ag(y>0) © (AS(yyé()) op(y' =y—1)orpop(r' =r+ 95)) U Ag(y—0)
We can also substitute the meaning of assignments p(v = ¢) = v = e, ,, w' = w, which gives
E(ry)tobe
(As(y<0) ol =y+1Ad =xAnr =r}orjo{. | =r—zna :x/\y’:y})) U

Ag(y>0) © (As(yﬂ)) o{.lyYy=y—1nad=axAr =r}orjof{. . =r+azAd =Ny =y}U AS(y:O))
where “...” in the above expression denotes the part of the comprehebsion ((r, z,v), (', 2, y)).

Task b) [10 points] We simplify further the derived definition of E(r ) using the definition of relation
composition and union:

E(o) ={((r,z,y), ("', 2", y"))|  Iri,z1,y1,r2, 22,02 y<OATI=r Az =AYy =y+ 1A
ro=ri+x1 ¥yt AT =10 — 22 ANY =yo A2 = 29 }U

{((r,z,y), (', 2, y)) dri,z1,y1,72, 2,2y >0AT =11 A=Ay =y — 1A
ro=ri+x1xy AT =ro+ a2 AT =29 Ny = 9o }U

{((r,2,y), (", 2", y))] y=0Ar"=rAy =yna' =a)}

We next eliminate quantifiers:

E(o) ={((r,z,y), ("', 2", y/))| 3o, y <OAT =r4zx(y+1) — 223U
{((r,z,y), (", 2" ")) Jzoy >0NAT =r+ax(y—1)+a}U
{((r,z,y), (", 2" y))] y=0Ar =rAy =yAz =z}

We see that we can pick zo arbitrarily, hence if we pick z2 # z, E(0) C 0.

Another much simpler solutions is:
z=1((0,1,0),(42,1,42)) € E(o) butnotz € o

Task ¢) [5 points]
Lets = {((r,z,y)("", 2", y")) [ 7' =r+xxyna' =z}

E(s) ={((r,z,y), (", 2",v)) | Iry, x1,Y1,72,22,Y2. Yy<OATi=rAzi=zAy; =y+ 1A
ro=ri+x1xyp Are =21 AT =19 — 2 Ay = yo A’ = 22 }U

{((r,z,y), (v, 2", y)) | Iry, 21, 91,72, 2,2y >0ATrI =r Az =z Ay =y — 1A

ro=ri+tzixyi Aze =21 AT =rg+ a2 AN = a2 Ny =y }U

(), (2,9 | 0 = Ay =y na — 1))



Eliminating quantifiers:

E(s) ={((r,z,y), (", 2", ¥) |y < OAr =r+azx(y+1)—z=r+zxyAa’ =z}U
{((ryz,y), (" 25y |ly>0nr =r+ax(y—1)+ax=r+zxzxyAa’ =x)}U
{((ryz,9), ) ly=0Ar" =r+axyny =yrna' =z}

We have thus shown that E(s) C s. Then since we know that the least fixpoint z satisfies E(z) = z, we
know that z C s, and hence the specification is satisfied.



Problem 2: Transitive closure ([20 points])

Task a) [5 points]

sp(sp(P,r*),r) = {s'|3s.s € sp(P,r*) A (s,5") € r}
={s|3sse{t'|IFtte PA{t)er}A(ss)er}
={s'|3s,t.t € PA(t,8) €r* A (s,8) er}
={s|3tte PA(t,s') er*or}
= sp(P,r") Csp(Pr*) C S

Task b) [10 points] Let us call I the condition that holds after executing 7.

Ip=sp(Pa’ =4xx Ay =2 +3)={(2/,y) 3,y > 0Ny < 5Nz’ =dxx Ay =2 +3}
={(@ )y >3Ad >0A4y =2’ +12 A4z}

The formula corresponding to 72 o 73 is given by

A,y =yAyi=x+ 1A =y +1AY =2
sy =yANad =z +2

From the lectures we know that the transitive closure for '’ = = + 2 is
FkE>0N =2 +2xkNYy =y
Then, I is given by I} = Iy U sp(Ip,r*).

sp(Lo, ™) = {((z,y), (@', ¥y ) PFr,yy >3Ax > 0AN4lx ANdy =2+ 12AFkk > 0N =z +2xk ANy =y}
={((x,y), (@', ¢))Fry >3ANx>0Ndz N4y =z + 12 2" —2 > 0N 2|2 — 2}

Thus, [; =y >3 A2z — (dy — 12) Az > 4y — 12.
We compute I using the strongest precondition again:

sp(I2,74) = {(2", )Pz, yy > 3N 20 — (dy = 12) Az >4y — 12 2" =y -z Ny =y}
={(@, )y >3A2 =3y —2' +12A —2' >3y —12}

Thus, Io =y >3A2| -3y —x+ 12N —x >3y — 12

Task ¢) [5 points]

e 75 and r3 are difference bounds relations, for which we know from the lectures the transitive
closure is expressible in Presburger arithmetic.

e Then, Presburger arithmetic admits quantifier elimination which allows us to obtain quantifier-free
expressions.



Problem 3: Hoare logic ([20 points])

Task a) [4 points]

Vi, j,v,w.(i,v) € LA (j,w) € L v =w
Vi,v.(i,v) € L -1>0

Task b) [4 points] k =0AS =Sg AL=0AVvwe S —v>0
Task ¢) [12 points] Invariant:

A:Yvwe Sy— (veSVIi(i,v) € L)
B :Vi,j.(i,v) e LA(jyw) e LNi<j—ov<w<k

i) Before the loop, we have L = () so that condition B holds trivially and condition A reduces to

Yv.w € Sg — v € Sy which also trivially holds.

i) Now we need to show that invariant is inductive. That is we need to show the following implication

ii1)

holds:
Yo.w € Sp — (v e SV Ii(i,v) € L)A (*)
Vi, j.(i,v) € LA (j,w) € LAi < j— v <w <k Aloop body
—
Vo € So — (v e S VIi(i,v) € L')A
Vi, j.(i,v) € 'AN(jiw) e I'Ni<j—v<w<k

We consider two cases. In the first case, when k ¢ S, then the loop body is
SEDNKE =k+1
and we see that the implication * holds, since if v < w < k then also v < w < k + 1.
In the second case the loop body is the following:
S£ODANkeS AL =LU{(size(L),k)} A
S =S\{k} Ak =k+1

Substituting for the primed values into *:

Yo.w € Sp — (v e SV 3i.(i,v) € L)A (1)
Vi, j.(i,v) € LA (j,w) € LAi < j— v <w < k Aloop body ()
N 3)

Vow €Sy — (ve (S\{k})VIi.(i,v) € (LU{(size(L),k)}))A 4)
Vi, 3.(i,v) € (LU {(size(L),k)}) A (j,w) € (LU{(size(L),k)HNi<j—ov<w<k+1

(5)

From line 1, line 4 holds for all elements in Sy except for k, which is now removed from S. But
since there exists ¢ = size(L) such that (size(L), k) € L, the condition on line 4 holds.

From line 2, line 5 holds for all 7, j, except when j = size(L). But when ¢, j < size(L), then we
know from the assumption that v < w < k. Then if j = size(L), w = k and thus w strictly larger
than any v, thus the condition still holds.

Hence, we have shown that invariant holds after one loop iteration is thus inductive.

After the loop we have S = () so that condition A becomes Yv.v € Sy — Ji.(i,v) € L and
condition B implies immediately the first part of the postcondition.



Problem 4: Galois connection ([20 points])

Task a) [5 points] We will prove that («,~) is a Galois connection. To show this, we will show ¢ C
v(a) < a(c) C a. Since the ordering on the abstract domain is the superset relation, this becomes

cCHa) & alc) Da ie. cCy(a) & aCalc)

cCy(a) & Vs.sec—serva)
& Vssece—Vtea. (s,t)er
& VsecVtea. (s,t)er
& VieaVsec (s,t)er
& Vitea—Vsec (s,t)er
< a Cale)

Task b) [4 points] No. Let S =T = {a,b,¢,d} and r = {(a, a), (b,a), (c,c), (c,d)}.

Then v({a}) = v({a,b}) = {a}, so v is not injective. Neither is it surjective as the element b is never
mapped to any subset of S.

Conversely, a({c}) = a({c,d}) = {c}, so a is not injective. Neither is it surjective as the element d is
never mapped to any subset of 7.

Task ¢) [5 points] Yes, this is a Galois connection and it corresponds to predicate abstraction.

Task d) [6 points]

Q) ={s €S| VteQ.(s,t) € p(z)}
= {seS|VtteQ — (st) € p(z)}
={s€ S| Vt.(s,t) € p(z) >t € Q}

= wp(p(2), Q)

a(P)={teT |Vse P(s,t)ep
={teT|VsseP —(st)e
={teT|—-3tse PA(st) € p(z)
= sp(P, p(2))



Problem 5: Widening ([20 points])

Task a)

1) [2 points] By definition of Galois connection, o and «y are monotonic. A composition of two monotonic
functions is monotonic. Indeed, say ¢; C c2. Then a(c;) C a(cz) by monotonicity of «. Furthermore,
then y(a(c1)) C y(a(c2)) by monotonicity of +. Therefore, o’ is monotonic.

2) [2 points]

Task b) [3 points] The type signature of o/ is o : C — C'i.e. 2% — 2%,

As an example, let ¢ = {5,10,15}. Then o/ = {z | 0 < x < 100}.

Task c) [5 points] Note that the image of o is isomorphic to the lattice (A, C) and the image of @' is
isomorphic to A™. Tterating @' is like iterating an abstract transformer in A™. The longest chain in A has
length 7. With n program points the number of steps us 7n, so we can take H = 7n.

Task d) [6 points] The program can have the following control-flow graph:
The fixpoint of @’ at the control-locations is then:

R 1:Z
Q 2:{0,...,00}

=0 3 :{0,...,1000}
4:{0,...,00}

Gﬂ@ 5:{1000,...,00}

After applying F' again we get:

z < 1000

1:Z

2:{0,...,00}
et 3:{0,...,999}

4:{3,...,1003}

5 :{1000, ..., 00}



