
Quiz Solutions Outline
Synthesis, Analysis, and Verification 2013

for the quiz given on Friday, May 3rd, 2013

γ(a)

c

a

α(c)

γ (concretization)

α (abstraction)

⊆ v

C (concrete) A (abstract)

1

Problem 1: Recursion ([20 points])

Task a) [5 points]
Because the state has three components, relations on states contain tuples ((r, x, y), (r′, x′, y′)) ∈ Z6.
Sets of such states are elements of 2Z

6
. The type of functions mapping such relations to new relations is

E : 2Z
6 → 2Z

6
.

If ρ maps a command into a relation, then the definition of function E is:

E(rf) =
(

∆S(y<0) ◦ ρ(y′ = y + 1) ◦ rf ◦ ρ(r′ = r − x)
)
∪

∆S(y≥0) ◦
(

∆S(y 6=0) ◦ ρ(y′ = y − 1) ◦ rf ◦ ρ(r′ = r + x)
)
∪∆S(y=0)

We can also substitute the meaning of assignments ρ(v = e) ≡ v′ = e
∧

w 6=v w
′ = w, which gives

E(rf) to be(
∆S(y<0) ◦ {...|y′ = y + 1 ∧ x′ = x ∧ r′ = r} ◦ rf ◦ {...|r′ = r − x ∧ x′ = x ∧ y′ = y})

)
∪

∆S(y≥0) ◦
(

∆S(y 6=0) ◦ {...|y′ = y − 1 ∧ x′ = x ∧ r′ = r} ◦ rf ◦ {...|r′ = r + x ∧ x′ = x ∧ y′ = y} ∪∆S(y=0)

)
where “...” in the above expression denotes the part of the comprehebsion ((r, x, y), (r′, x′, y′)).

Task b) [10 points] We simplify further the derived definition of E(rf) using the definition of relation
composition and union:

E(σ) ={((r, x, y), (r′, x′, y′))| ∃r1, x1, y1, r2, x2, y2. y < 0 ∧ r1 = r ∧ x1 = x ∧ y1 = y + 1∧
r2 = r1 + x1 ∗ y1 ∧ r′ = r2 − x2 ∧ y′ = y2 ∧ x′ = x2}∪

{((r, x, y), (r′, x′, y′))| ∃r1, x1, y1, r2, x2, y2.y > 0 ∧ r1 = r ∧ x1 = x ∧ y1 = y − 1∧
r2 = r1 + x1 ∗ y1 ∧ r′ = r2 + x2 ∧ x′ = x2 ∧ y′ = y2}∪

{((r, x, y), (r′, x′, y′))| y = 0 ∧ r′ = r ∧ y′ = y ∧ x′ = x)}

We next eliminate quantifiers:

E(σ) ={((r, x, y), (r′, x′, y′))| ∃x2. y < 0 ∧ r′ = r + x ∗ (y + 1)− x2}∪
{((r, x, y), (r′, x′, y′))| ∃x2.y > 0 ∧ r′ = r + x ∗ (y − 1) + x2}∪
{((r, x, y), (r′, x′, y′))| y = 0 ∧ r′ = r ∧ y′ = y ∧ x′ = x}

We see that we can pick x2 arbitrarily, hence if we pick x2 6= x, E(σ) (σ.

Another much simpler solutions is:

z = ((0, 1, 0), (42, 1, 42)) ∈ E(σ) but not z ∈ σ

Task c) [5 points]
Let s = {((r, x, y)(r′, x′, y′)) | r′ = r + x ∗ y ∧ x′ = x}

E(s) ={((r, x, y), (r′, x′, y′)) | ∃r1, x1, y1, r2, x2, y2. y < 0 ∧ r1 = r ∧ x1 = x ∧ y1 = y + 1∧
r2 = r1 + x1 ∗ y1 ∧ x2 = x1 ∧ r′ = r2 − x2 ∧ y′ = y2 ∧ x′ = x2}∪

{((r, x, y), (r′, x′, y′)) | ∃r1, x1, y1, r2, x2, y2.y > 0 ∧ r1 = r ∧ x1 = x ∧ y1 = y − 1∧
r2 = r1 + x1 ∗ y1 ∧ x2 = x1 ∧ r′ = r2 + x2 ∧ x′ = x2 ∧ y′ = y2}∪

{((r, x, y), (r′, x′, y′)) | (r′ = r ∧ y′ = y ∧ x′ = x)}

2

Eliminating quantifiers:

E(s) ={((r, x, y), (r′, x′, y′)) | y < 0 ∧ r′ = r + x ∗ (y + 1)− x = r + x ∗ y ∧ x′ = x}∪
{((r, x, y), (r′, x′, y′)) | y > 0 ∧ r′ = r + x ∗ (y − 1) + x = r + x ∗ y ∧ x′ = x)}∪
{((r, x, y), (r′, y′)) | y = 0 ∧ r′ = r + x ∗ y ∧ y′ = y ∧ x′ = x}

We have thus shown that E(s) ⊆ s. Then since we know that the least fixpoint z satisfies E(z) = z, we
know that z ⊆ s, and hence the specification is satisfied.

3

Problem 2: Transitive closure ([20 points])

Task a) [5 points]

sp(sp(P, r∗), r) = {s′|∃s.s ∈ sp(P, r∗) ∧ (s, s′) ∈ r}
= {s′|∃s.s ∈ {t′|∃t.t ∈ P ∧ (t, t′) ∈ r∗} ∧ (s, s′) ∈ r}
= {s′|∃s, t.t ∈ P ∧ (t, s) ∈ r∗ ∧ (s, s′) ∈ r}
= {s′|∃t.t ∈ P ∧ (t, s′) ∈ r∗ ◦ r}
= sp(P, r+) ⊆ sp(P, r∗) ⊆ S

Task b) [10 points] Let us call I0 the condition that holds after executing r1.

I0 = sp(P, x′ = 4 ∗ x ∧ y′ = x+ 3) = {(x′, y′)|∃x, y.x ≥ 0 ∧ y ≤ −5 ∧ x′ = 4 ∗ x ∧ y′ = x+ 3}
= {(x′, y′)|y′ ≥ 3 ∧ x′ ≥ 0 ∧ 4y′ = x′ + 12 ∧ 4|x′}

The formula corresponding to r2 ◦ r3 is given by

∃x1, y1.x1 = y ∧ y1 = x+ 1 ∧ x′ = y1 + 1 ∧ y′ = x1

⇔y′ = y ∧ x′ = x+ 2

From the lectures we know that the transitive closure for x′ = x+ 2 is

∃k.k ≥ 0 ∧ x′ = x+ 2 ∗ k ∧ y′ = y

Then, I1 is given by I1 = I0 ∪ sp(I0, r∗).

sp(I0, r
∗) = {((x, y), (x′, y′))|∃x, y.y ≥ 3 ∧ x ≥ 0 ∧ 4|x ∧ 4y = x+ 12 ∧ ∃k.k ≥ 0 ∧ x′ = x+ 2 ∗ k ∧ y′ = y}

= {((x, y), (x′, y′))|∃x.y′ ≥ 3 ∧ x ≥ 0 ∧ 4|x ∧ 4y′ = x+ 12 ∧ x′ − x ≥ 0 ∧ 2|x′ − x}

Thus, I1 = y ≥ 3 ∧ 2|x− (4y − 12) ∧ x ≥ 4y − 12.
We compute I2 using the strongest precondition again:

sp(I2, r4) = {(x′, y′)|∃x, y.y ≥ 3 ∧ 2|x− (4y − 12) ∧ x ≥ 4y − 12 ∧ x′ = y − x ∧ y′ = y}
= {(x′, y′)|y′ ≥ 3 ∧ 2| − 3y′ − x′ + 12 ∧ −x′ ≥ 3y − 12}

Thus, I2 = y ≥ 3 ∧ 2| − 3y − x+ 12 ∧ −x ≥ 3y − 12

Task c) [5 points]

• r2 and r3 are difference bounds relations, for which we know from the lectures the transitive
closure is expressible in Presburger arithmetic.

• Then, Presburger arithmetic admits quantifier elimination which allows us to obtain quantifier-free
expressions.

4

Problem 3: Hoare logic ([20 points])

Task a) [4 points]

∀i, j, v, w.(i, v) ∈ L ∧ (j, w) ∈ L→ v = w

∀i, v.(i, v) ∈ L→ i ≥ 0

Task b) [4 points] k = 0 ∧ S = S0 ∧ L = ∅ ∧ ∀v.v ∈ S → v ≥ 0
Task c) [12 points] Invariant:

A : ∀v.v ∈ S0 → (v ∈ S ∨ ∃i.(i, v) ∈ L)

B : ∀i, j.(i, v) ∈ L ∧ (j, w) ∈ L ∧ i < j → v < w < k

i) Before the loop, we have L = ∅ so that condition B holds trivially and condition A reduces to
∀v.v ∈ S0 → v ∈ S0 which also trivially holds.

ii) Now we need to show that invariant is inductive. That is we need to show the following implication
holds:

∀v.v ∈ S0 → (v ∈ S ∨ ∃i.(i, v) ∈ L)∧ (*)

∀i, j.(i, v) ∈ L ∧ (j, w) ∈ L ∧ i < j → v < w < k ∧ loop body

→
∀v.v ∈ S0 → (v ∈ S′ ∨ ∃i.(i, v) ∈ L′)∧
∀i, j.(i, v) ∈ L′ ∧ (j, w) ∈ L′ ∧ i < j → v < w < k′

We consider two cases. In the first case, when k /∈ S, then the loop body is

S 6= ∅ ∧ k′ = k + 1

and we see that the implication * holds, since if v < w < k then also v < w < k + 1.

In the second case the loop body is the following:

S 6= ∅ ∧ k ∈ S ∧ L′ = L ∪ {(size(L), k)} ∧
S′ = S \ {k} ∧ k′ = k + 1

Substituting for the primed values into *:

∀v.v ∈ S0 → (v ∈ S ∨ ∃i.(i, v) ∈ L)∧ (1)

∀i, j.(i, v) ∈ L ∧ (j, w) ∈ L ∧ i < j → v < w < k ∧ loop body (2)

→ (3)

∀v.v ∈ S0 → (v ∈ (S \ {k}) ∨ ∃i.(i, v) ∈ (L ∪ {(size(L), k)}))∧ (4)

∀i, j.(i, v) ∈ (L ∪ {(size(L), k)}) ∧ (j, w) ∈ (L ∪ {(size(L), k)}) ∧ i < j → v < w < k + 1
(5)

From line 1, line 4 holds for all elements in S0 except for k, which is now removed from S. But
since there exists i = size(L) such that (size(L), k) ∈ L, the condition on line 4 holds.

From line 2, line 5 holds for all i, j, except when j = size(L). But when i, j < size(L), then we
know from the assumption that v < w < k. Then if j = size(L), w = k and thus w strictly larger
than any v, thus the condition still holds.

Hence, we have shown that invariant holds after one loop iteration is thus inductive.

iii) After the loop we have S = ∅ so that condition A becomes ∀v.v ∈ S0 → ∃i.(i, v) ∈ L and
condition B implies immediately the first part of the postcondition.

5

Problem 4: Galois connection ([20 points])

Task a) [5 points] We will prove that (α, γ) is a Galois connection. To show this, we will show c ⊆
γ(a) ⇔ α(c) v a. Since the ordering on the abstract domain is the superset relation, this becomes

c ⊆ γ(a) ⇔ α(c) ⊇ a i.e. c ⊆ γ(a) ⇔ a ⊆ α(c)

c ⊆ γ(a) ⇔ ∀s.s ∈ c→ s ∈ γ(a)

⇔ ∀s.s ∈ c→ ∀t ∈ a. (s, t) ∈ r
⇔ ∀s ∈ c.∀t ∈ a. (s, t) ∈ r
⇔ ∀t ∈ a.∀s ∈ c. (s, t) ∈ r
⇔ ∀t.t ∈ a→ ∀s ∈ c. (s, t) ∈ r
⇔ a ⊆ α(c)

Task b) [4 points] No. Let S = T = {a, b, c, d} and r = {(a, a), (b, a), (c, c), (c, d)}.
Then γ({a}) = γ({a, b}) = {a}, so γ is not injective. Neither is it surjective as the element b is never
mapped to any subset of S.
Conversely, α({c}) = α({c, d}) = {c}, so α is not injective. Neither is it surjective as the element d is
never mapped to any subset of T .

Task c) [5 points] Yes, this is a Galois connection and it corresponds to predicate abstraction.

Task d) [6 points]

γ(Q) = {s ∈ S | ∀t ∈ Q.(s, t) ∈ ρ(z)}
= {s ∈ S | ∀t.t ∈ Q→ (s, t) ∈ ρ(z)}
= {s ∈ S | ∀t.(s, t) ∈ ρ(z)→ t ∈ Q}
= wp(ρ(z), Q)

α(P) = {t ∈ T | ∀s ∈ P.(s, t) ∈ ρ(z)}
= {t ∈ T | ∀s.s ∈ P → (s, t) ∈ ρ(z)}
= {t ∈ T | ¬∃t.s ∈ P ∧ (s, t) ∈ ρ(z)}
= sp(P, ρ(z))

c ⊆ γ(a)⇔ α(c) ⊇ a
c ⊆ wp(ρ(z), Q)⇔ sp(P, ρ(z)) ⊇ a
c ⊆ wp(ρ(z), Q)⇔ sp(P, ρ(z)) ⊆ a

6

Problem 5: Widening ([20 points])

Task a)
1) [2 points] By definition of Galois connection, α and γ are monotonic. A composition of two monotonic
functions is monotonic. Indeed, say c1 ⊆ c2. Then α(c1) ⊆ α(c2) by monotonicity of α. Furthermore,
then γ(α(c1)) ⊆ γ(α(c2)) by monotonicity of γ. Therefore, α′ is monotonic.
2) [2 points]

Task b) [3 points] The type signature of α′ is α′ : C → C i.e. 2Z → 2Z.
As an example, let c = {5, 10, 15}. Then α′ = {x | 0 ≤ x ≤ 100}.
Task c) [5 points] Note that the image of α′ is isomorphic to the lattice (A,v) and the image of α′ is
isomorphic to An. Iterating α′ is like iterating an abstract transformer in An. The longest chain in A has
length 7. With n program points the number of steps us 7n, so we can take H = 7n.

Task d) [6 points] The program can have the following control-flow graph:

1

2

3

4

5

x = 0

x ≥ 1000

x < 1000

x = x+ 3

The fixpoint of α′ at the control-locations is then:

1 :Z
2 :{0, . . . ,∞}
3 :{0, . . . , 1000}
4 :{0, . . . ,∞}
5 :{1000, . . . ,∞}

After applying F again we get:

1 :Z
2 :{0, . . . ,∞}
3 :{0, . . . , 999}
4 :{3, . . . , 1003}
5 :{1000, . . . ,∞}

7

