Lecture 7
Loops and Recursion

Viktor Kuncak

Loops

Loops: Example
Consider the set of variables V = {x, y} and this program L:
while (x > 0) {

X=X—-Y
}
When the loop terminates, what is the (strongest) relation p(L)
between state (x, y) before loop started executing and the final
state (x',y')?

Loops: Example

Consider the set of variables V = {x, y} and this program L:
while (x > 0) {

X=X—-Y

}

When the loop terminates, what is the (strongest) relation p(L)
between state (x, y) before loop started executing and the final
state (x',y')?

Let k be the number of times loop executes.

Loops: Example

Consider the set of variables V = {x, y} and this program L:
while (x > 0) {

X=X—-Y
}
When the loop terminates, what is the (strongest) relation p(L)
between state (x, y) before loop started executing and the final
state (x',y')?
Let k be the number of times loop executes.

> k=0:

Loops: Example

Consider the set of variables V = {x, y} and this program L:
while (x > 0) {

X=X—-Y
}
When the loop terminates, what is the (strongest) relation p(L)
between state (x, y) before loop started executing and the final
state (x',y')?
Let k be the number of times loop executes.

» k=0 x<0AX =xAy =y

Loops: Example

Consider the set of variables V = {x, y} and this program L:
while (x > 0) {

X=X—-Y
}
When the loop terminates, what is the (strongest) relation p(L)
between state (x, y) before loop started executing and the final
state (x',y')?
Let k be the number of times loop executes.

» k=0 x<0AX =xAy =y

> k=1:

Loops: Example

Consider the set of variables V = {x, y} and this program L:
while (x > 0) {

X=X—-Y
}
When the loop terminates, what is the (strongest) relation p(L)
between state (x, y) before loop started executing and the final
state (x',y')?
Let k be the number of times loop executes.

» k=0 x<0AX =xAy =y

» k=1 x>0AX=x—-yAy =yAXx' <0

Loops: Example

Consider the set of variables V = {x, y} and this program L:
while (x > 0) {

X=X—Y

}

When the loop terminates, what is the (strongest) relation p(L)
between state (x, y) before loop started executing and the final
state (x',y')?
Let k be the number of times loop executes.

» k=0 x<O0AX =xAy =y

» k=1 x>0AX=x—-yAy =yAXx' <0

> k>0:

Loops: Example

Consider the set of variables V = {x, y} and this program L:
while (x > 0) {

X=X—Y

}

When the loop terminates, what is the (strongest) relation p(L)
between state (x, y) before loop started executing and the final
state (x',y')?
Let k be the number of times loop executes.
» k=0 x<O0AX =xAy =y
» k=1 x>0AX=x—-yAy =yAXx' <0
» k>0 x>0AX =x—ky AX <0OAYy =y
Solution:
(x<0AX =xAy =y)V
(Fk.k>0AXx>0AX =x—ky AX <O0AYy =y)

Heuristically Eliminating a Quantifier from non-PA formula

Jk. k>0AXx>0AX =x—ky AX <O0AYy =y

This implies y > 0.

Heuristically Eliminating a Quantifier from non-PA formula

Jk. k>0AXx>0AX =x—ky AX <O0AYy =y

This implies y > 0.

Jk.y>0ANk>0AXx>0Nky=x—XAX <0ANy =y

Heuristically Eliminating a Quantifier from non-PA formula

Jk. k>0AXx>0AX =x—ky AX <O0AYy =y

This implies y > 0.

Jk.y>0ANk>0AXx>0Nky=x—XAX <0ANy =y

Jk.y > 0Ak > 0Ax > OAy|(x—x")Ak = (x—x") JyAx <O0Ay =y

Heuristically Eliminating a Quantifier from non-PA formula

Jk. k>0AXx>0AX =x—ky AX <O0AYy =y

This implies y > 0.

Jk.y>0ANk>0AXx>0Nky=x—XAX <0ANy =y

Jk.y > 0Ak > 0Ax > OAy|(x—x")Ak = (x—x") JyAx <O0Ay =y

y>0A(x=X)/y>0Ax>0Ay|[(x=xX)AX <0Ay =y

Heuristically Eliminating a Quantifier from non-PA formula

Jk. k>0AXx>0AX =x—ky AX <O0AYy =y

This implies y > 0.

Jk.y>0ANk>0AXx>0Nky=x—XAX <0ANy =y
Jk.y > 0Ak > 0Ax > OAy|(x—x")Ak = (x—x") JyAx <O0Ay =y
y>0A(x=X)/y>0Ax>0Ay|[(x=xX)AX <0Ay =y

y>0AXx—X'>0Ax>0Ay|(x—=X)YAX <0AYy =y

Integer Programs with Loops

Even if loop body is in Presburger arithmetic, the semantics of a
loop need not be.

Integer programs with loops are Turing complete and can compute
all computable functions.

Even if we cannot find Presburger arithmetic formula, we may be
able to find

» a formula in a richer logic

> a property of the meaning of the loop
(e.g. formula for the superset)
To help with these tasks, we give mathematical semantics of loops

Useful concept for this is transitive closure: r* =J,~qr"
(We may or may not have a general formula for r" or r*)

Towards meaning of loops: unfolding

Loops can describe an infinite number of basic paths
(for a larger input, program takes a longer path)

Consider loop
L = while(F)c

We would like to have

L = if(F)(c;L)

if (F) (c;if (F) (c; L))

For rp = p(L), re = p(c), Ar = Ags(r), Anr = Ags(-F) we have
. = (Afo rco I’L)UAnf
= (Aforco((Aforcor)Uly))UA,s
= A, U

(Afors)oApyr U
(Af o] rc)2 or

Unfolding Loops

rr = Anf U
(Afors)o Ay U
(Afor)? oAy U
(Aror)don

We prove by induction that for every n > 0,
(Afor)"olprCrp

So, (Aforc) oApr Crp.
We define r; to be:

rg = (Af o rc)* o A,-,f
THEREFORE:

p(while(F)c) = (Asr) o p(c)) © As(-F)

Using Loop Semantics in Example

p of L:
while (x > 0) {
X=X—Yy

}

is:

Using Loop Semantics in Example

p of L:
while (x > 0) {
X=X—yY

}

is:

(As(x>0) 0 p(x = x = ¥))" 0 Ag(—(x>0))

Compute each relation:

As(x>0)

As(-(x>0))

p(x =x—y)

Aspes0) o p(x =x —y)
(As(x=0) © plx = x — y))*
(As(x>0) 0 p(x = x — y))*
p(L)

{((x,5), (x,¥)) | x> 0}
{((x,5), (x,¥)) [x < 0}
{(y), (x=y,¥)) | x,y € Z}

Semantics of a Program with Loop

Compute and simplify relation for this program:

x=0

while (y > 0) { p(x =0)o
x=Xx+y (Asyso)op(x =x+y;y =y —1))%
y=y-1 As(y<o)

}

Approximate Semantics of Loops

Instead of computing exact semantics, it can be sufficient to
compute approximate semantics.

Observation: n Crn —rf Cr

Suppose we only wish to show that the semantics satisfies y’ <y

x=0

while (y > 0) { p(x = 0)o
x=x+y (Asyso)op(x =x+y;y =y — 1))
y=y-1 As(y<o)

}

Recursion

Example of Recursion

For simplicity assume no parameters
(we can simulate them using global variables)

def f = E(re) =
if (x > 0) { As(x>o) o (
if (x % 2 ==0) { (A o200
x=x/2 p(x = x/2)o
f; 5 rfo
= *
| else | ply =y *2))
_ . U
x =x — 1;
y=y+Xx (Ax%27£00
f p(x=x—1)o
} ply =y +x)o
} rf)
) U Ds(x<o)

Assume recursive function call denotes some relation rr
Need to find relation r¢ such that rr = E(rf)

Simpler Example of Recursion

def f =

if (x>0){
X=x—1
f
y=y+2
}

E(rr) = (Asxso)© (
p(x=x—1)o
rFoO
ply =y +2))

) UAs(x<0)

Simpler Example of Recursion

def f =
if (x >0) { E(r) = (Asixso0y© (
XxX=x—1 p(X:X—l)o
f rro
y=y+2 ply =y +2))
J) U As(x<o)

What is E(})?

Simpler Example of Recursion

def f =

if (x> 0) { E(r) = (Asixso0y© (
XxX=x—1 p(X:X—l)o
f ro
y=y+2 ply =y +2))
s) U As(x<o)

What is E(0)?
What is E(E(0))?

Simpler Example of Recursion

def f =

if (x> 0) { E(r) = (Asixso0y© (
XxX=x—1 p(X:X—l)o
f ro
y=y+2 ply =y +2))
s) U As(x<o)

What is E(0)?
What is E(E(0))?
Ek(0)?

Sequence of Bounded Recursions

Consider the sequence of relations ry =), r, = EX().
What is the relationship between ry and rey1?

Sequence of Bounded Recursions

Consider the sequence of relations ry =), r, = EX().
What is the relationship between ry and rey1?

Define
S = U ry
k>0
Then
?
E(S):E(U rk):U E(rk): U k1 = U rk:(Z)U U re =S5
k>0 k>0 k>0 k>1 k>1

If E(s) = s we say s is a fixed point (fixpoint) of function E

Exercise with Fixpoints of Real Functions

1. Find all fixpoints of function f : R — R defined as

f(x)=x®>—x—-3

Exercise with Fixpoints of Real Functions

1. Find all fixpoints of function f : R — R defined as
f(x)=x®>—x—-3

2. Compute the fixpoint that is smaller than all other fixpoints

Union of Finite Unfoldings is Least Fixpoint

C - a collection (set) of sets (e.g. sets of pairs, i.e. relations)
E:C— CsuchthatforryCrnCm...

we have
EJr)=JEm)
Then s = J; E'(0)) is such that
1. E(s) = s (we have shown this)

2. if ris such that E(r) C r (special case: if E(r) = r), then
sCr

Prove this theorem.

Least Fixpoint

Suppose E(r) C r.
Showing s C r

Consequence of s being smallest

def f =
if (x > 0) { E(re) = (Ass0)© (
x=x—1 p(X:X—l)o
f rf—o
y=y+2 ply =y +2))
)) U As(x<o)

What does it mean that E(r) C r ?

Consequence of s being smallest

def f =
if (x > 0) { E(re) = (Ass0)© (
x=x—1 p(X:X—l)o
f rf—o
y=y+2 ply =y +2))
J) U As(x<o)

What does it mean that E(r) C r ?
Plugging r instead of the recursive call results in something that
conforms to r

Justifies modular reasoning for recursive functions

To prove that recursive procedure with body E satisfies
specification r, show

» E(r)Cr

» then because procedure meaning s is least, s C r

Proving that recursive function meets specification

Prove that if s is the relation denoting the recursive function

below, then
(), (Xsy)es—y >y
def f =
if (x > 0) { E(re) = (Asies0)© (
x=x—1 p(x =x—1)o
f rfo
y=y+2 ply =y +2))

J) U As(x<o)

Multiple Procedures

Two mutually recursive procedures rn = Ei(r1), rn = Ex(r)
Extend the approach to work on pairs of relations:

(r1,r2) = (Ea(r1), Ex(r2))
Define E(r1, n) = (E1(n), Ex(r)), let F = (r1,)

EF)C7
where (r1,) C (r{,r) iff 1 C r{ and r» C 1}

Even though pairs of relations are not sets, we can analogously
define set-like operations on them. Most theorems still hold.

Generalizing: the entire theory works when we have certain
ordering relation

Lattices as a generalization of families of sets

