
Lecturecise 6
More on Postconditions and Preconditions.

Loops and Recursion

Viktor Kuncak



Review of Key Definitions

Hoare triple:

{P} r {Q} ⇐⇒ ∀s, s ′ ∈ S .
(
(s ∈ P ∧ (s, s ′) ∈ r)→ s ′ ∈ Q

)
{P} does not denote a singleton set containing P but is just a
notation for an “assertion” around a command. Likewise for {Q}.
Strongest postcondition:

sp(P, r) = {s ′ | ∃s. s ∈ P ∧ (s, s ′) ∈ r}

Weakest precondition:

wp(r ,Q) = {s | ∀s ′.(s, s ′) ∈ r → s ′ ∈ Q}



More Laws on Preconditions and Postconditions

Disjunctivity of sp

sp(P1 ∪ P2, r) = sp(P1, r) ∪ sp(P2, r)

sp(P, r1 ∪ r2) = sp(P, r1) ∪ sp(P, r2)

Conjunctivity of wp

wp(r ,Q1 ∩ Q2) = wp(r ,Q1) ∩ wp(r ,Q2)

wp(r1 ∪ r2,Q) = wp(r1,Q) ∩ wp(r2,Q)

Pointwise wp

wp(r ,Q) = {s | s ∈ S ∧ sp({s}, r) ⊆ Q}

Pointwise sp

sp(P, r) =
⋃
s∈P

sp({s}, r)



Hoare Logic for Loop-free Code

Expanding Paths
The condition

{P}
( ⋃

i∈J
ri
)
{Q}

is equivalent to
∀i .i ∈ J → {P}ri{Q}

Transitivity
If {P}s1{Q} and {Q}s2{R} then also {P}s1 ◦ s2{R}.
We write this as the following inference rule:

{P}s1{Q}, {Q}s2{R}
{P}s1 ◦ s2{R}



Exercise
We call a relation r ⊆ S × S functional if
∀x , y , z ∈ S .(x , y) ∈ r ∧ (x , z) ∈ r → y = z . For each of the following
statements either give a counterexample or prove it. In the following, assume
Q ⊂ S .

(i) for any r , wp(r , S \ Q) = S \ wp(r ,Q)

(ii) if r is functional, wp(r ,S \ Q) = S \ wp(r ,Q)

(iii) for any r , wp(r ,Q) = sp(Q, r−1)

(iv) if r is functional, wp(r ,Q) = sp(Q, r−1)

(v) for any r , wp(r ,Q1 ∪ Q2) = wp(r ,Q1) ∪ wp(r ,Q2)

(vi) if r is functional, wp(r ,Q1 ∪ Q2) = wp(r ,Q1) ∪ wp(r ,Q2)

(vii) for any r , wp(r1 ∪ r2,Q) = wp(r1,Q) ∪ wp(r2,Q)

(viii) Alice has the following conjecture: For all sets S and relations r ⊆ S × S
it holds:(

S 6= ∅ ∧ dom(r) = S ∧4S ∩ r = ∅
)
→

(
r ◦ r ∩ ((S × S) \ r) 6= ∅

)
She tried many sets and relations and did not find any counterexample. Is
her conjecture true?
If so, prove it, otherwise provide a counterexample for which S is smallest.



Formulas for Strongest Postconditions

Forward Verification Condition Generation



Computing Formulas for Strongest Postcondition

Let x̄ , x̄ ′ range over the sets of states S
We gave definition of strongest postcondition (sp) on sets and
relations P1 ⊆ S and r ⊆ S × S :

sp(P1, r) = {x̄ ′ | ∃x̄ . x̄ ∈ P1 ∧ (x̄ , x̄ ′) ∈ r}

We now consider how to compute with representations of those
sets and relations in terms of formulas. Let

I P1 = {x̄ | P} for some formula P with FV (P) among x̄

I r = ρ(c) = {(x̄ , x̄ ′) | F} for some formula F with FV (F )
among x̄ , x̄ ′

We can then conclude sp(P1, r) = {x̄ ′ | ∃x̄ . P ∧ F}
Denote a formula equivalent to (∃x̄ . P ∧ F )[x̄ ′ := x̄ ] by spF(P, c)

I we renamed variables so that the result is in terms of x̄ , not x̄ ′

I multiple syntactic choices for sp(P1, r); all logically equivalent



Strongest Postcondition Formula

If P is a formula on state and c a command, we define spF (P, c)
as the formula version of the strongest postcondition operator.
spF (P, c) is therefore the formula Q that describes the set of
states that can result from executing c in a state satisfying P.
Thus, we have that

spF (P, c) = Q

implies
sp({x̄ |P}, ρ(c)) = {x̄ |Q}

We will denote the set of states satisfying a predicate by underscore
s, i.e. for a predicate P, let Ps be the set of states that satisfies it:

Ps = {x̄ |P}



Forward VCG: Using Strongest Postcondition

Remember: {Ps} ρ(c) {Qs} is equivalent to

sp(Ps , ρ(c)) ⊆ Qs

A syntactic form of Hoare triple is {P}c{Q}

That syntactic form is therefore equivalent to proving

∀x̄ . (spF (P, c)→ Q)

We can use the spF operator to compute verification conditions

We give rules to compute spF (P, c) for our commands such that

(spF (P, c) = Q) implies (sp(Ps , ρ(c)) = Qs)



Forward VCG: Using Strongest Postcondition

Remember: {Ps} ρ(c) {Qs} is equivalent to

sp(Ps , ρ(c)) ⊆ Qs

A syntactic form of Hoare triple is {P}c{Q}

That syntactic form is therefore equivalent to proving

∀x̄ . (spF (P, c)→ Q)

We can use the spF operator to compute verification conditions

We give rules to compute spF (P, c) for our commands such that

(spF (P, c) = Q) implies (sp(Ps , ρ(c)) = Qs)



Finding Formula for spF

Given the goal of the formula

(spF (P, c) = Q) implies (sp(Ps , ρ(c)) = Qs)

All Q with FV (Q) ⊆ x̄ satisfying sp(Ps , ρ(c)) = Qs are equivalent
to formula

(∃x̄ . P ∧ F )[x̄ ′ := x̄ ] (∗)

where ρ(c) = {(x̄ , x̄ ′) | F}
I we are looking for some syntactic simplification of (∗)



Assume Statement

Consider

I a precondition P, with FV (P) among x̄ and

I a property E , also with FV (E ) among x̄

Note that ρ(assume(E )) = ∆Es . Therefore

sp(Ps , ρ(assume(E )))
= sp(Ps ,∆Es )
= {x̄ ′ | ∃x̄ ∈ Ps . (x̄ , x̄ ′) ∈ ∆Es}
= {x̄ ′ | ∃x̄ ∈ Ps . (x̄ = x̄ ′ ∧ x̄ ∈ Es)}
= {x̄ ′ | x̄ ′ ∈ Ps ∧ x̄ ′ ∈ Es}
= {x̄ | P ∧ E}

So, we define:
spF (P, assume(E)) = P ∧ E



Strongest Postcondition of Havoc

Formula for havoc. Let x̄ = x1, . . . , xi , . . . , xn

R(havoc(xi )) =
∧
v 6=x

v = v ′

General formula for postcondition is:

(∃x̄ . P ∧ F )[x̄ ′ := x̄ ] (∗)

It becomes here

(∃x̄ . P ∧
∧
j 6=i

xj = x ′j )[x̄ ′ := x̄ ]

Equalities over all variables except xi are eliminated, so we obtain

(∃xi .P)[x̄ ′ := x̄ ]

No primed variables left, renaming does nothing. Result: (∃xi.P).



Strongest Postcondition of Havoc

To avoid many nested quantifiers and name clashes, we rename
first:

spF (P, havoc(x)) = ∃x0.P[x := x0] which is same as ∃x .P

Exercise:
Precondition: {x ≥ 2 ∧ y ≤ 5 ∧ x ≤ y}.
Code: havoc(x)

∃x0. x0 ≥ 2 ∧ y ≤ 5 ∧ x0 ≤ y

i.e.
∃x0. 2 ≤ x0 ≤ y ∧ y ≤ 5

i.e.
2 ≤ y ∧ y ≤ 5

Note: If we simply removed conjuncts containing x ,
we would get just y ≤ 5.



Strongest Postcondition of Havoc

To avoid many nested quantifiers and name clashes, we rename
first:

spF (P, havoc(x)) = ∃x0.P[x := x0] which is same as ∃x .P

Exercise:
Precondition: {x ≥ 2 ∧ y ≤ 5 ∧ x ≤ y}.
Code: havoc(x)

∃x0. x0 ≥ 2 ∧ y ≤ 5 ∧ x0 ≤ y

i.e.
∃x0. 2 ≤ x0 ≤ y ∧ y ≤ 5

i.e.
2 ≤ y ∧ y ≤ 5

Note: If we simply removed conjuncts containing x ,
we would get just y ≤ 5.



Strongest Postcondition of Havoc

To avoid many nested quantifiers and name clashes, we rename
first:

spF (P, havoc(x)) = ∃x0.P[x := x0] which is same as ∃x .P

Exercise:
Precondition: {x ≥ 2 ∧ y ≤ 5 ∧ x ≤ y}.
Code: havoc(x)

∃x0. x0 ≥ 2 ∧ y ≤ 5 ∧ x0 ≤ y

i.e.
∃x0. 2 ≤ x0 ≤ y ∧ y ≤ 5

i.e.
2 ≤ y ∧ y ≤ 5

Note: If we simply removed conjuncts containing x ,
we would get just y ≤ 5.



Rules for Computing Strongest Postcondition

Assignment Statement
Define:

spF (P, x = e) = ∃x0.(P[x := x0] ∧ x = e[x := x0])

Indeed:

sp(Ps , ρ(x = e))
= {x̄ ′ | ∃x̄ . (x̄ ∈ Ps ∧ (x̄ , x̄ ′) ∈ ρ(x = e))}
= {x̄ ′ | ∃x̄ . (x̄ ∈ Ps ∧ x̄ ′ = x̄ [x := e(x̄)])}



Exercise

Precondition: {x ≥ 5 ∧ y ≥ 3}.
Code: x = x + y + 10

sp(x ≥ 5 ∧ y ≥ 3, x = x + y + 10) =

∃x0. x0 ≥ 5 ∧ y ≥ 3 ∧ x = x0 + y + 10

↔ y ≥ 3 ∧ x ≥ y + 15



Exercise

Precondition: {x ≥ 5 ∧ y ≥ 3}.
Code: x = x + y + 10

sp(x ≥ 5 ∧ y ≥ 3, x = x + y + 10) =

∃x0. x0 ≥ 5 ∧ y ≥ 3 ∧ x = x0 + y + 10

↔ y ≥ 3 ∧ x ≥ y + 15



Rules for Computing Strongest Postcondition

Sequential Composition
For relations we proved

sp(Ps , r1 ◦ r2) = sp(sp(Ps , r1), r2)

Therefore, define

spF (P, c1; c2) = spF (spF (P, c1), c2)

Nondeterministic Choice (Branches)
We had sp(Ps , r1 ∪ r2) = sp(Ps , r1) ∪ sp(Ps , r2). Therefore define:

spF (P, c1 c2) = spF (P, c1) ∨ spF (P, c2)



Correctness

We can show by easy induction on c1 that for all P:

sp(Ps , ρ(c1)) = {x̄ ′ | spF (P, c1)}



Size of Generated Formulas

The size of the formula can be exponential because each time we
have a nondeterministic choice, we double formula size:

spF (P, (c1 c2); (c3 c4)) =
spF (spF (P, c1 c2), c3 c4) =
spF (spF (P, c1) ∨ spF (P, c2), c3 c4) =
spF (spF (P, c1) ∨ spF (P, c2), c3) ∨ spF (spF (P, c1) ∨ spF (P, c2), c4)



Another Useful Characterization of sp

For any relation σ ⊆ S × S we define its range by

ran(σ) = {s ′ | ∃s ∈ S .(s, s ′) ∈ σ}

Lemma: suppose that

I A ⊆ S and r ⊆ S × S

I ∆ = {(s, s) | s ∈ S}
Then

sp(A, r) = ran(∆A ◦ r)



Reducing sp to Relation Composition

The following identity holds for relations:

sp(Ps , r) = ran(∆P ◦ r)

Based on this, we can compute sp(Ps , ρ(c1)) in two steps:

I compute formula R(assume(P); c1)

I existentially quantify over initial (non-primed) variables

Indeed, if F1 is a formula denoting relation r1, that is,

r1 = {(~x ,~x ′). F1(~x ,~x ′)}

then ∃~x .F1(~x ,~x ′) is formula denoting the range of r1:

ran(r1) = {~x ′. ∃~x .F1(~x ,~x ′)}

Moreover, the resulting approach does not have exponentially large
formulas.



Computing Weakest Precondition Formulas



Rules for Computing Weakest Preconditions

We derive the rules below from the definition of weakest
precondition on sets and relations

wp(r ,Qs) = {s | ∀s ′. (s, s ′) ∈ r → s ′ ∈ Qs}

Let now r = ρ(c) = {(x̄ , x̄ ′) | F} and Qs = {x̄ | Q}. Then

wp(r ,Qs) = {x̄ | ∀x̄ ′.(F → Q[x̄ := x̄ ′])}

Thus, we will be defining wpF as equivalent to

∀x̄ ′. (F ∧ Q[x̄ := x̄ ′])



Assume Statement

Suppose we have one variable x, and identify the state with that
variable. Note that ρ(assume(F )) = ∆Fs . By definition

wp(∆Fs ,Qs) = {x | ∀x ′.(x , x ′) ∈ ∆Fs → x ′ ∈ Qs}
= {x | ∀x ′.(x ∈ Fs ∧ x = x ′)→ x ′ ∈ Qs}
= {x | x ∈ Fs → x ∈ Qs} = {x | F → Q}

Changing from sets to formulas, we obtain the rule for wp on
formulas:

wpF (assume(F),Q) = (F → Q)



Rules for Computing Weakest Preconditions

Assignment Statement
Consider the case of two variables. Recall that the relation
associated with the assignment x = e is

x ′ = e ∧ y ′ = y

Then we have, for formula Q containing x and y :

wp(ρ(x = e), {(x , y) | Q}) = {(x , y) | ∀x ′.∀y ′. x ′ = e ∧ y ′ = y →
Q[x := x ′, y := y ′]}

= {(x , y) | Q[x := e]}

From here we obtain a justification to define:

wpF (x = e,Q) = Q[x := e]



Rules for Computing Weakest Preconditions

Havoc Statement

wpF (havoc(x),Q) = ∀x .Q

Sequential Composition

wp(r1 ◦ r2,Qs) = wp(r1,wp(r2,Qs))

Same for formulas:

wpF (c1 ; c2,Q) = wpF (c1,wpF (c2,Q))

Nondeterministic Choice (Branches)
In terms of sets and relations

wp(r1 ∪ r2,Qs) = wp(r1,Qs) ∩ wp(r2,Qs)

In terms of formulas

wpF (c1 c2,Q) = wpF (c1,Q) ∧ wpF (c2,Q)



Summary of Weakest Precondition Rules

c wp(c ,Q)

x = e Q[x := e]
havoc(x) ∀x .Q
assume(F ) F → Q
c1 c2 wp(c1,Q) ∧ wp(c2,Q)
c1; c2 wp(c1,wp(c2,Q))



Size of Generated Verification Conditions

Because of the rule

wpF (c1 c2,Q) = wpF (c1,Q) ∧ wpF (c2,Q)

which duplicates Q, the size can be exponential.

wpF ((c1 c2); (c3 c4),Q) =



Avoiding Exponential Blowup

Propose an algorithm that, given an arbitrary program c and a
formula Q, computes in polynomial time formula equivalent to
wpF (c ,Q)



Loops



Loops: Example

Consider the set of variables V = {x , y} and this program L:

while (x > 0) {
x = x − y
}

When the loop terminates, what is the (strongest) relation ρ(L)
between state (x , y) before loop started executing and the final
state (x ′, y ′)?

Let k be the number of times loop executes.

I k = 0: x ≤ 0 ∧ x ′ = x ∧ y ′ = y

I k = 1: x > 0 ∧ x ′ = x − y ∧ y ′ = y ∧ x ′ ≤ 0

I k > 0: x > 0 ∧ x ′ = x − ky ∧ x ′ ≤ 0 ∧ y ′ = y

Solution:

(x ≤ 0 ∧ x ′ = x ∧ y ′ = y) ∨
(∃k . k > 0 ∧ x > 0 ∧ x ′ = x − ky ∧ x ′ ≤ 0 ∧ y ′ = y)



Loops: Example

Consider the set of variables V = {x , y} and this program L:

while (x > 0) {
x = x − y
}

When the loop terminates, what is the (strongest) relation ρ(L)
between state (x , y) before loop started executing and the final
state (x ′, y ′)?
Let k be the number of times loop executes.

I k = 0: x ≤ 0 ∧ x ′ = x ∧ y ′ = y

I k = 1: x > 0 ∧ x ′ = x − y ∧ y ′ = y ∧ x ′ ≤ 0

I k > 0: x > 0 ∧ x ′ = x − ky ∧ x ′ ≤ 0 ∧ y ′ = y

Solution:

(x ≤ 0 ∧ x ′ = x ∧ y ′ = y) ∨
(∃k . k > 0 ∧ x > 0 ∧ x ′ = x − ky ∧ x ′ ≤ 0 ∧ y ′ = y)



Loops: Example

Consider the set of variables V = {x , y} and this program L:

while (x > 0) {
x = x − y
}

When the loop terminates, what is the (strongest) relation ρ(L)
between state (x , y) before loop started executing and the final
state (x ′, y ′)?
Let k be the number of times loop executes.

I k = 0:

x ≤ 0 ∧ x ′ = x ∧ y ′ = y

I k = 1: x > 0 ∧ x ′ = x − y ∧ y ′ = y ∧ x ′ ≤ 0

I k > 0: x > 0 ∧ x ′ = x − ky ∧ x ′ ≤ 0 ∧ y ′ = y

Solution:

(x ≤ 0 ∧ x ′ = x ∧ y ′ = y) ∨
(∃k . k > 0 ∧ x > 0 ∧ x ′ = x − ky ∧ x ′ ≤ 0 ∧ y ′ = y)



Loops: Example

Consider the set of variables V = {x , y} and this program L:

while (x > 0) {
x = x − y
}

When the loop terminates, what is the (strongest) relation ρ(L)
between state (x , y) before loop started executing and the final
state (x ′, y ′)?
Let k be the number of times loop executes.

I k = 0: x ≤ 0 ∧ x ′ = x ∧ y ′ = y

I k = 1: x > 0 ∧ x ′ = x − y ∧ y ′ = y ∧ x ′ ≤ 0

I k > 0: x > 0 ∧ x ′ = x − ky ∧ x ′ ≤ 0 ∧ y ′ = y

Solution:

(x ≤ 0 ∧ x ′ = x ∧ y ′ = y) ∨
(∃k . k > 0 ∧ x > 0 ∧ x ′ = x − ky ∧ x ′ ≤ 0 ∧ y ′ = y)



Loops: Example

Consider the set of variables V = {x , y} and this program L:

while (x > 0) {
x = x − y
}

When the loop terminates, what is the (strongest) relation ρ(L)
between state (x , y) before loop started executing and the final
state (x ′, y ′)?
Let k be the number of times loop executes.

I k = 0: x ≤ 0 ∧ x ′ = x ∧ y ′ = y

I k = 1:

x > 0 ∧ x ′ = x − y ∧ y ′ = y ∧ x ′ ≤ 0

I k > 0: x > 0 ∧ x ′ = x − ky ∧ x ′ ≤ 0 ∧ y ′ = y

Solution:

(x ≤ 0 ∧ x ′ = x ∧ y ′ = y) ∨
(∃k . k > 0 ∧ x > 0 ∧ x ′ = x − ky ∧ x ′ ≤ 0 ∧ y ′ = y)



Loops: Example

Consider the set of variables V = {x , y} and this program L:

while (x > 0) {
x = x − y
}

When the loop terminates, what is the (strongest) relation ρ(L)
between state (x , y) before loop started executing and the final
state (x ′, y ′)?
Let k be the number of times loop executes.

I k = 0: x ≤ 0 ∧ x ′ = x ∧ y ′ = y

I k = 1: x > 0 ∧ x ′ = x − y ∧ y ′ = y ∧ x ′ ≤ 0

I k > 0: x > 0 ∧ x ′ = x − ky ∧ x ′ ≤ 0 ∧ y ′ = y

Solution:

(x ≤ 0 ∧ x ′ = x ∧ y ′ = y) ∨
(∃k . k > 0 ∧ x > 0 ∧ x ′ = x − ky ∧ x ′ ≤ 0 ∧ y ′ = y)



Loops: Example

Consider the set of variables V = {x , y} and this program L:

while (x > 0) {
x = x − y
}

When the loop terminates, what is the (strongest) relation ρ(L)
between state (x , y) before loop started executing and the final
state (x ′, y ′)?
Let k be the number of times loop executes.

I k = 0: x ≤ 0 ∧ x ′ = x ∧ y ′ = y

I k = 1: x > 0 ∧ x ′ = x − y ∧ y ′ = y ∧ x ′ ≤ 0

I k > 0:

x > 0 ∧ x ′ = x − ky ∧ x ′ ≤ 0 ∧ y ′ = y

Solution:

(x ≤ 0 ∧ x ′ = x ∧ y ′ = y) ∨
(∃k . k > 0 ∧ x > 0 ∧ x ′ = x − ky ∧ x ′ ≤ 0 ∧ y ′ = y)



Loops: Example

Consider the set of variables V = {x , y} and this program L:

while (x > 0) {
x = x − y
}

When the loop terminates, what is the (strongest) relation ρ(L)
between state (x , y) before loop started executing and the final
state (x ′, y ′)?
Let k be the number of times loop executes.

I k = 0: x ≤ 0 ∧ x ′ = x ∧ y ′ = y

I k = 1: x > 0 ∧ x ′ = x − y ∧ y ′ = y ∧ x ′ ≤ 0

I k > 0: x > 0 ∧ x ′ = x − ky ∧ x ′ ≤ 0 ∧ y ′ = y

Solution:

(x ≤ 0 ∧ x ′ = x ∧ y ′ = y) ∨
(∃k . k > 0 ∧ x > 0 ∧ x ′ = x − ky ∧ x ′ ≤ 0 ∧ y ′ = y)



Heuristically Eliminating a Quantifier from non-PA formula

∃k . k > 0 ∧ x > 0 ∧ x ′ = x − ky ∧ x ′ ≤ 0 ∧ y ′ = y

This implies y > 0.

∃k. y > 0 ∧ k > 0 ∧ x > 0 ∧ ky = x − x ′ ∧ x ′ ≤ 0 ∧ y ′ = y

∃k . y > 0∧k > 0∧x > 0∧y |(x−x ′)∧k = (x−x ′)/y∧x ′ ≤ 0∧y ′ = y

y > 0 ∧ (x − x ′)/y > 0 ∧ x > 0 ∧ y |(x − x ′) ∧ x ′ ≤ 0 ∧ y ′ = y

y > 0 ∧ x − x ′ > 0 ∧ x > 0 ∧ y |(x − x ′) ∧ x ′ ≤ 0 ∧ y ′ = y



Heuristically Eliminating a Quantifier from non-PA formula

∃k . k > 0 ∧ x > 0 ∧ x ′ = x − ky ∧ x ′ ≤ 0 ∧ y ′ = y

This implies y > 0.

∃k. y > 0 ∧ k > 0 ∧ x > 0 ∧ ky = x − x ′ ∧ x ′ ≤ 0 ∧ y ′ = y

∃k . y > 0∧k > 0∧x > 0∧y |(x−x ′)∧k = (x−x ′)/y∧x ′ ≤ 0∧y ′ = y

y > 0 ∧ (x − x ′)/y > 0 ∧ x > 0 ∧ y |(x − x ′) ∧ x ′ ≤ 0 ∧ y ′ = y

y > 0 ∧ x − x ′ > 0 ∧ x > 0 ∧ y |(x − x ′) ∧ x ′ ≤ 0 ∧ y ′ = y



Heuristically Eliminating a Quantifier from non-PA formula

∃k . k > 0 ∧ x > 0 ∧ x ′ = x − ky ∧ x ′ ≤ 0 ∧ y ′ = y

This implies y > 0.

∃k. y > 0 ∧ k > 0 ∧ x > 0 ∧ ky = x − x ′ ∧ x ′ ≤ 0 ∧ y ′ = y

∃k . y > 0∧k > 0∧x > 0∧y |(x−x ′)∧k = (x−x ′)/y∧x ′ ≤ 0∧y ′ = y

y > 0 ∧ (x − x ′)/y > 0 ∧ x > 0 ∧ y |(x − x ′) ∧ x ′ ≤ 0 ∧ y ′ = y

y > 0 ∧ x − x ′ > 0 ∧ x > 0 ∧ y |(x − x ′) ∧ x ′ ≤ 0 ∧ y ′ = y



Heuristically Eliminating a Quantifier from non-PA formula

∃k . k > 0 ∧ x > 0 ∧ x ′ = x − ky ∧ x ′ ≤ 0 ∧ y ′ = y

This implies y > 0.

∃k. y > 0 ∧ k > 0 ∧ x > 0 ∧ ky = x − x ′ ∧ x ′ ≤ 0 ∧ y ′ = y

∃k . y > 0∧k > 0∧x > 0∧y |(x−x ′)∧k = (x−x ′)/y∧x ′ ≤ 0∧y ′ = y

y > 0 ∧ (x − x ′)/y > 0 ∧ x > 0 ∧ y |(x − x ′) ∧ x ′ ≤ 0 ∧ y ′ = y

y > 0 ∧ x − x ′ > 0 ∧ x > 0 ∧ y |(x − x ′) ∧ x ′ ≤ 0 ∧ y ′ = y



Heuristically Eliminating a Quantifier from non-PA formula

∃k . k > 0 ∧ x > 0 ∧ x ′ = x − ky ∧ x ′ ≤ 0 ∧ y ′ = y

This implies y > 0.

∃k. y > 0 ∧ k > 0 ∧ x > 0 ∧ ky = x − x ′ ∧ x ′ ≤ 0 ∧ y ′ = y

∃k . y > 0∧k > 0∧x > 0∧y |(x−x ′)∧k = (x−x ′)/y∧x ′ ≤ 0∧y ′ = y

y > 0 ∧ (x − x ′)/y > 0 ∧ x > 0 ∧ y |(x − x ′) ∧ x ′ ≤ 0 ∧ y ′ = y

y > 0 ∧ x − x ′ > 0 ∧ x > 0 ∧ y |(x − x ′) ∧ x ′ ≤ 0 ∧ y ′ = y



Integer Programs with Loops

Even if loop body is in Presburger arithmetic, the semantics of a
loop need not be.

Integer programs with loops are Turing complete and can compute
all computable functions.

Even if we cannot find Presburger arithmetic formula, we may be
able to find

I a formula in a richer logic

I a property of the meaning of the loop
(e.g. formula for the superset)

To help with these tasks, we give mathematical semantics of loops
Useful concept for this is transitive closure: r∗ =

⋃
n≥0 r

n

( We may or may not have a general formula for rn or r∗ )



Towards meaning of loops: unfolding

Loops can describe an infinite number of basic paths
(for a larger input, program takes a longer path)
Consider loop

L ≡ while(F )c

We would like to have

L ≡ if (F ) (c ; L)
≡ if (F ) (c ; if (F ) (c ; L))

For rL = ρ(L), rc = ρ(c), ∆f = ∆S(F ), ∆nf = ∆S(¬F ) we have

rL = (∆f ◦ rc ◦ rL) ∪∆nf

= (∆f ◦ rc ◦ ((∆f ◦ rc ◦ rL) ∪∆nf )) ∪∆nf

= ∆nf ∪
(∆f ◦ rc) ◦∆nf ∪
(∆f ◦ rc)2 ◦ rL



Unfolding Loops

rL = ∆nf ∪
(∆f ◦ rc) ◦∆nf ∪
(∆f ◦ rc)2 ◦∆nf ∪
(∆f ◦ rc)3 ◦ rL

We prove by induction that for every n ≥ 0,

(∆f ◦ rc)n ◦∆nf ⊆ rL

So, (∆f ◦ rc)∗ ◦∆nf ⊆ rL.
We define rL to be:

rL = (∆f ◦ rc)∗ ◦∆nf

THEREFORE:

ρ(while(F )c) = (∆S(F ) ◦ ρ(c))∗ ◦∆S(¬F )



Using Loop Semantics in Example

ρ of L:

while (x > 0) {
x = x − y
}

is:

(∆S(x>0) ◦ ρ(x = x − y))∗ ◦∆S(¬(x>0))

Compute each relation:

∆S(x>0) = {((x , y), (x , y)) | x > 0}
∆S(¬(x>0)) = {((x , y), (x , y)) | x ≤ 0}

ρ(x = x − y) = {((x , y), (x − y , y)) | x , y ∈ Z}
∆S(x>0) ◦ ρ(x = x − y) =

(∆S(x>0) ◦ ρ(x = x − y))k =
(∆S(x>0) ◦ ρ(x = x − y))∗ =

ρ(L) =



Using Loop Semantics in Example

ρ of L:

while (x > 0) {
x = x − y
}

is:
(∆S(x>0) ◦ ρ(x = x − y))∗ ◦∆S(¬(x>0))

Compute each relation:

∆S(x>0) = {((x , y), (x , y)) | x > 0}
∆S(¬(x>0)) = {((x , y), (x , y)) | x ≤ 0}

ρ(x = x − y) = {((x , y), (x − y , y)) | x , y ∈ Z}
∆S(x>0) ◦ ρ(x = x − y) =

(∆S(x>0) ◦ ρ(x = x − y))k =
(∆S(x>0) ◦ ρ(x = x − y))∗ =

ρ(L) =



Semantics of a Program with Loop

Compute and simplify relation for this program:

x = 0
while (y > 0) {

x = x + y
y = y − 1
}

ρ(x = 0)◦
(∆S(y>0) ◦ ρ(x = x + y ; y = y − 1))∗◦
∆S(y≤0)



Approximate Semantics of Loops
Instead of computing exact semantics, it can be sufficient to
compute approximate semantics.
Observation: r1 ⊆ r2 → r∗1 ⊆ r∗2
Suppose we only wish to show that the semantics satisfies y ′ ≤ y

x = 0
while (y > 0) {

x = x + y
y = y − 1
}

ρ(x = 0)◦
(∆S(y>0) ◦ ρ(x = x + y ; y = y − 1))∗◦
∆S(y≤0)



Recursion



Example of Recursion

For simplicity assume no parameters
(we can simulate them using global variables)

def f =
if (x > 0) {

if (x % 2 == 0) {
x = x / 2;
f;
y = y ∗ 2
} else {

x = x − 1;
y = y + x;
f
}
}

E (rf ) =
∆S(x>0) ◦

(
(∆x%2=0◦
ρ(x = x/2)◦
rf ◦
ρ(y = y ∗ 2))
∪

(∆x%26=0◦
ρ(x = x − 1)◦
ρ(y = y + x)◦
rf ))
∪∆S(x≤0)

Assume recursive function call denotes some relation rf
Need to find relation rf such that rf = E (rf )



Simpler Example of Recursion

def f =
if (x > 0) {

x = x − 1
f
y = y + 2
}

E (rf ) = (∆S(x>0) ◦
(

ρ(x = x − 1)◦
rf ◦
ρ(y = y + 2)))
∪∆S(x≤0)

What is E (∅)?
What is E (E (∅))?
E k(∅)?



Simpler Example of Recursion

def f =
if (x > 0) {

x = x − 1
f
y = y + 2
}

E (rf ) = (∆S(x>0) ◦
(

ρ(x = x − 1)◦
rf ◦
ρ(y = y + 2)))
∪∆S(x≤0)

What is E (∅)?

What is E (E (∅))?
E k(∅)?



Simpler Example of Recursion

def f =
if (x > 0) {

x = x − 1
f
y = y + 2
}

E (rf ) = (∆S(x>0) ◦
(

ρ(x = x − 1)◦
rf ◦
ρ(y = y + 2)))
∪∆S(x≤0)

What is E (∅)?
What is E (E (∅))?

E k(∅)?



Simpler Example of Recursion

def f =
if (x > 0) {

x = x − 1
f
y = y + 2
}

E (rf ) = (∆S(x>0) ◦
(

ρ(x = x − 1)◦
rf ◦
ρ(y = y + 2)))
∪∆S(x≤0)

What is E (∅)?
What is E (E (∅))?
E k(∅)?



Sequence of Bounded Recursions

Consider the sequence of relations r0 = ∅, rk = E k(∅).
What is the relationship between rk and rk+1?

Define
s =

⋃
k≥0

rk

Then

E (s) = E (
⋃
k≥0

rk)
?
=
⋃
k≥0

E (rk) =
⋃
k≥0

rk+1 =
⋃
k≥1

rk = ∅ ∪
⋃
k≥1

rk = s

If E (s) = s we say s is a fixed point (fixpoint) of function E



Sequence of Bounded Recursions

Consider the sequence of relations r0 = ∅, rk = E k(∅).
What is the relationship between rk and rk+1?
Define

s =
⋃
k≥0

rk

Then

E (s) = E (
⋃
k≥0

rk)
?
=
⋃
k≥0

E (rk) =
⋃
k≥0

rk+1 =
⋃
k≥1

rk = ∅ ∪
⋃
k≥1

rk = s

If E (s) = s we say s is a fixed point (fixpoint) of function E



Exercise with Fixpoints of Real Functions

1. Find all fixpoints of function f : R→ R defined as

f (x) = x2 − x − 3

2. Compute the fixpoint that is smaller than all other fixpoints



Exercise with Fixpoints of Real Functions

1. Find all fixpoints of function f : R→ R defined as

f (x) = x2 − x − 3

2. Compute the fixpoint that is smaller than all other fixpoints



Union of Finite Unfoldings is Least Fixpoint

C - a collection (set) of sets (e.g. sets of pairs, i.e. relations)
E : C → C such that for r0 ⊆ r1 ⊆ r2 . . .
we have

E (
⋃
i

ri ) =
⋃
i

E (ri )

Then s =
⋃

i E
i (∅) is such that

1. E (s) = s (we have shown this)

2. if r is such that E (r) ⊆ r (special case: if E (r) = r), then
s ⊆ r

Prove this theorem.



Least Fixpoint

s =
⋃
i

E i (∅)

Suppose E (r) ⊆ r .
Showing s ⊆ r ⋃

i

E i (∅) ⊆ r



Consequence of s being smallest

def f =
if (x > 0) {

x = x − 1
f
y = y + 2
}

E (rf ) = (∆S(x>0) ◦
(

ρ(x = x − 1)◦
rf ◦
ρ(y = y + 2)))
∪∆S(x≤0)

What does it mean that E (r) ⊆ r ?

Plugging r instead of the recursive call results in something that
conforms to r

Justifies modular reasoning for recursive functions

To prove that recursive procedure with body E satisfies
specification r , show

I E (r) ⊆ r

I then because procedure meaning s is least, s ⊆ r



Consequence of s being smallest

def f =
if (x > 0) {

x = x − 1
f
y = y + 2
}

E (rf ) = (∆S(x>0) ◦
(

ρ(x = x − 1)◦
rf ◦
ρ(y = y + 2)))
∪∆S(x≤0)

What does it mean that E (r) ⊆ r ?
Plugging r instead of the recursive call results in something that
conforms to r

Justifies modular reasoning for recursive functions

To prove that recursive procedure with body E satisfies
specification r , show

I E (r) ⊆ r

I then because procedure meaning s is least, s ⊆ r



Proving that recursive function meets specification

Prove that if s is the relation denoting the recursive function
below, then

((x , y), (x ′, y ′)) ∈ s → y ′ ≥ y

def f =
if (x > 0) {

x = x − 1
f
y = y + 2
}

E (rf ) = (∆S(x>0) ◦
(

ρ(x = x − 1)◦
rf ◦
ρ(y = y + 2)))
∪∆S(x≤0)



Multiple Procedures

Two mutually recursive procedures r1 = E1(r1), r2 = E2(r2)

Extend the approach to work on pairs of relations:

(r1, r2) = (E1(r1),E2(r2))

Define Ē (r1, r2) = (E1(r1),E2(r2)), let r̄ = (r1, r2)

Ē (r̄) v r̄

where (r1, r2) v (r ′1, r
′
2) iff r1 ⊆ r ′1 and r2 ⊆ r ′2

Even though pairs of relations are not sets, we can analogously
define set-like operations on them. Most theorems still hold.

Generalizing: the entire theory works when we have certain
ordering relation

Lattices as a generalization of families of sets


