Lecturecise 6
 More on Postconditions and Preconditions.
 Loops and Recursion

Viktor Kuncak

Review of Key Definitions

Hoare triple:

$$
\{P\} r\{Q\} \Longleftrightarrow \forall s, s^{\prime} \in S .\left(\left(s \in P \wedge\left(s, s^{\prime}\right) \in r\right) \rightarrow s^{\prime} \in Q\right)
$$

$\{P\}$ does not denote a singleton set containing P but is just a notation for an "assertion" around a command. Likewise for $\{Q\}$. Strongest postcondition:

$$
s p(P, r)=\left\{s^{\prime} \mid \exists s . s \in P \wedge\left(s, s^{\prime}\right) \in r\right\}
$$

Weakest precondition:

$$
w p(r, Q)=\left\{s \mid \forall s^{\prime} .\left(s, s^{\prime}\right) \in r \rightarrow s^{\prime} \in Q\right\}
$$

More Laws on Preconditions and Postconditions

Disjunctivity of sp

$$
\begin{aligned}
& s p\left(P_{1} \cup P_{2}, r\right)=s p\left(P_{1}, r\right) \cup s p\left(P_{2}, r\right) \\
& s p\left(P, r_{1} \cup r_{2}\right)=s p\left(P, r_{1}\right) \cup s p\left(P, r_{2}\right)
\end{aligned}
$$

Conjunctivity of wp

$$
\begin{aligned}
w p\left(r, Q_{1} \cap Q_{2}\right) & =w p\left(r, Q_{1}\right) \cap w p\left(r, Q_{2}\right) \\
w p\left(r_{1} \cup r_{2}, Q\right) & =w p\left(r_{1}, Q\right) \cap w p\left(r_{2}, Q\right)
\end{aligned}
$$

Pointwise wp

$$
w p(r, Q)=\{s \mid s \in S \wedge s p(\{s\}, r) \subseteq Q\}
$$

Pointwise sp

$$
s p(P, r)=\bigcup_{s \in P} s p(\{s\}, r)
$$

Hoare Logic for Loop-free Code

Expanding Paths

The condition
is equivalent to

$$
\begin{aligned}
& P \subseteq w p\left(i \in{ }^{r i}, Q\right) \\
& \operatorname{sp}\left(P, \bigcup_{i \in J} r_{i}\right) \subseteq Q
\end{aligned}
$$

$$
\forall i . i \in J \rightarrow\{P\} r_{i}\{Q\}
$$

Transitivity

If $\{P\} s_{1}\{Q\}$ and $\{Q\} s_{2}\{R\}$ then also $\{P\} s_{1} \circ s_{2}\{R\}$.
We write this as the following inference rule:

$$
\frac{\{P\} s_{1}\{Q\}, \quad\{Q\} s_{2}\{R\}}{\{P\} s_{1} \circ s_{2}\{R\}}
$$

Exercise

We call a relation $r \subseteq S \times S$ functional if
$\forall x, y, z \in S .(x, y) \in r \wedge(x, z) \in r \rightarrow y=z$. For each of the following statements either give a counterexample or prove it. In the following, assume $Q \subseteq S$.
(i) for any $r, w p(r, S \backslash Q)=S \backslash w p(r, Q)$
(ii) if r is functional, $w p(r, S \backslash Q)=S \backslash w p(r, Q)$
(iii) for any $r, w p(r, Q)=s p\left(Q, r^{-1}\right)$
(iv) if r is functional, $w p(r, Q)=s p\left(Q, r^{-1}\right)$
(v) for any $r, w p\left(r, Q_{1} \cup Q_{2}\right)=w p\left(r, Q_{1}\right) \cup w p\left(r, Q_{2}\right)$
(vi) if r is functional, $w p\left(r, Q_{1} \cup Q_{2}\right)=w p\left(r, Q_{1}\right) \cup w p\left(r, Q_{2}\right)$
(vii) for any $r, w p\left(r_{1} \cup r_{2}, Q\right)=w p\left(r_{1}, Q\right) \cup w p\left(r_{2}, Q\right)$
(viii) Alice has the following conjecture: For all sets S and relations $r \subseteq S \times S$ it holds:

$$
\Delta_{S}=\{(x, x) \mid x \in S\} \subseteq S \times S
$$

$$
\begin{gathered}
(S \neq \emptyset \wedge \operatorname{dom}(r)=S \wedge \triangle S \cap r=\emptyset) \rightarrow(r \circ r \cap((S \times S) \backslash r) \neq \emptyset) \\
\operatorname{dow}(r)=\{\times \backslash \exists y \cdot(x, y) \in r\}
\end{gathered}
$$

She tried many sets and relations and did not find any counterexample. Is her conjecture true?
If so, prove it, otherwise provide a counterexample for which S is smallest.

Formulas for Strongest Postconditions

Forward Verification Condition Generation

Computing Formulas for Strongest Postcondition

Let $\bar{x}, \bar{x}^{\prime}$ range over the sets of states S
We gave definition of strongest postcondition ($s p$) on sets and relations $P_{1} \subseteq S$ and $r \subseteq S \times S$:

$$
\operatorname{sp}\left(P_{1}, r\right)=\left\{\bar{x}^{\prime} \mid \exists \bar{x} . \bar{x} \in P_{1} \wedge\left(\bar{x}, \bar{x}^{\prime}\right) \in r\right\}
$$

We now consider how to compute with representations of those sets and relations in terms of formulas. Let

- $P_{1}=\{\bar{x} \mid P\}$ for some formula P with $F V(P)$ among \bar{x}
- $r=\rho(c)=\left\{\left(\bar{x}, \bar{x}^{\prime}\right) \mid F\right\}$ for some formula F with $F V(F)$ among $\bar{x}, \bar{x}^{\prime}$
We can then conclude $\operatorname{sp}\left(P_{1}, r\right)=\left\{\bar{x}^{\prime} \mid \exists \bar{x} . P \wedge F\right\}$
Denote a formula equivalent to $(\exists \bar{x} . P \wedge F)\left[\bar{x}^{\prime}:=\bar{x}\right]$ by $\mathbf{s p}_{\mathbf{F}}(\mathbf{P}, \mathbf{c})$
- we renamed variables so that the result is in terms of \bar{x}, not \bar{x}^{\prime}
- multiple syntactic choices for $\operatorname{sp}\left(P_{1}, r\right)$; all logically equivalent

Strongest Postcondition Formula

If P is a formula on state and c a command, we define $\operatorname{sp}_{F}(P, c)$ as the formula version of the strongest postcondition operator. $s p_{F}(P, c)$ is therefore the formula Q that describes the set of states that can result from executing c in a state satisfying P.
Thus, we have that

$$
s p_{F}(P, c)=Q
$$

implies

$$
s p(\{\bar{x} \mid P\}, \rho(c))=\{\bar{x} \mid Q\}
$$

We will denote the set of states satisfying a predicate by underscore s, i.e. for a predicate P, let P_{s} be the set of states that satisfies it:

$$
P_{s}=\{\bar{x} \mid P\}
$$

Forward VCG: Using Strongest Postcondition

Remember: $\left\{P_{s}\right\} \rho(c)\left\{Q_{s}\right\}$ is equivalent to

$$
s p\left(P_{s}, \rho(c)\right) \subseteq Q_{s}
$$

A syntactic form of Hoare triple is $\{P\} c\{Q\}$
That syntactic form is therefore equivalent to proving

$$
\forall \bar{x} .\left(s p_{F}(P, c) \rightarrow Q\right)
$$

We can use the $s p_{F}$ operator to compute verification conditions

Forward VCG: Using Strongest Postcondition

Remember: $\left\{P_{s}\right\} \rho(c)\left\{Q_{s}\right\}$ is equivalent to

$$
s p\left(P_{s}, \rho(c)\right) \subseteq Q_{s}
$$

A syntactic form of Hoare triple is $\{P\} c\{Q\}$
That syntactic form is therefore equivalent to proving

$$
\forall \bar{x} \cdot\left(s p_{F}(P, c) \rightarrow Q\right)
$$

We can use the $s p_{F}$ operator to compute verification conditions
We give rules to compute $s p_{F}(P, c)$ for our commands such that

$$
\left(s p_{F}(P, c)=Q\right) \text { implies }\left(s p\left(P_{s}, \rho(c)\right)=Q_{s}\right)
$$

Finding Formula for $s p_{F}$

Given the goal of the formula

$$
\left(s p_{F}(P, c)=Q\right) \text { implies }\left(s p\left(P_{s}, \rho(c)\right)=Q_{s}\right)
$$

All Q with $F V(Q) \subseteq \bar{x}$ satisfying $s p\left(P_{s}, \rho(c)\right)=Q_{s}$ are equivalent to formula

$$
\begin{equation*}
(\exists \bar{x} . P \wedge F)\left[\bar{x}^{\prime}:=\bar{x}\right] \tag{*}
\end{equation*}
$$

where $\rho(c)=\left\{\left(\bar{x}, \bar{x}^{\prime}\right) \mid F\right\}$

- we are looking for some syntactic simplification of $(*)$

Assume Statement

Consider

$$
\begin{aligned}
& P_{s}=\{\bar{x} \mid P\} \\
& E_{s}=\{\bar{x} \mid E\}
\end{aligned}
$$

- a precondition P, with $F V(P)$ among \bar{x} and
- a property E, also with $F V(E)$ among \bar{x}

Note that $\rho(\operatorname{assume}(E))=\Delta_{E_{s}}$. Therefore

$$
\begin{aligned}
& \operatorname{sp}\left(P_{s}, \rho(\operatorname{assume}(E))\right) \\
& =\operatorname{sp}\left(P_{s}, \Delta_{E_{s}}\right) \\
& =\left\{\bar{x}^{\prime} \mid \exists \bar{x} \in P_{s} \cdot\left(\bar{x}, \bar{x}^{\prime}\right) \in \Delta_{E_{s}}\right\} \\
& =\left\{\bar{x}^{\prime} \mid \exists \bar{x} \in P_{s} .\left(\bar{x}=\bar{x}^{\prime} \wedge \bar{x} \in E_{s}\right)\right\} \\
& =\left\{\bar{x}^{\prime} \mid \bar{x}^{\prime} \in P_{s} \wedge \bar{x}^{\prime} \in E_{s}\right\}=\left\{\bar{x} \mid \bar{x} \in P_{s} \wedge \bar{x} \in E_{s}\right\} \\
& =\{\bar{x} \mid P \wedge E\}
\end{aligned}
$$

So, we define:

$$
\operatorname{sp}_{F}(P, \operatorname{assume}(\mathrm{E}))=P \wedge E
$$

Strongest Postcondition of Havoc

Formula for havoc. Let $\bar{x}=x_{1}, \ldots, x_{i}, \ldots, x_{n}$

$$
R\left(\operatorname{havoc}\left(x_{i}\right)\right)=\bigwedge_{v \neq x_{i}} v=v^{\prime}=F
$$

General formula for postcondition is:

$$
\begin{equation*}
(\exists \bar{x} . P \wedge F)\left[\bar{x}^{\prime}:=\bar{x}\right] \tag{*}
\end{equation*}
$$

It becomes here

$$
\left(\exists \bar{x} . P \wedge \bigwedge_{j \neq i} x_{j}=x_{j}^{\prime}\right)\left[\bar{x}^{\prime}:=\bar{x}\right]
$$

Equalities over all variables except x_{i} are eliminated, so we obtain

$$
\left(\exists x_{i} . P\right)\left[\bar{x}^{\prime}:=\bar{x}\right]
$$

No primed variables left, renaming does nothing. Result: $\left(\exists \mathbf{x}_{\mathbf{i}} \cdot \mathbf{P}\right)$.

Strongest Postcondition of Havoc

To avoid many nested quantifiers and name clashes, we rename first:

$$
\operatorname{sp}_{F}(P, \operatorname{havoc}(x))=\exists x_{0} . P\left[x:=x_{0}\right] \text { which is same as } \exists x . P
$$

Strongest Postcondition of Havoc

To avoid many nested quantifiers and name clashes, we rename first:

$$
\operatorname{sp}_{F}(P, \operatorname{havoc}(x))=\exists x_{0} \cdot P\left[x:=x_{0}\right] \text { which is same as } \exists x . P
$$

Exercise:
Precondition: $\{x \geq 2 \wedge y \leq 5 \wedge x \leq y\}$.
Code: havoc(x)

Strongest Postcondition of Havoc

To avoid many nested quantifiers and name clashes, we rename first:

$$
\operatorname{sp}_{F}(P, \operatorname{havoc}(x))=\exists x_{0} \cdot P\left[x:=x_{0}\right] \text { which is same as } \exists x . P
$$

Exercise:
Precondition: $\{x \geq 2 \wedge y \leq 5 \wedge x \leq y\}$.
Code: havoc(x)

$$
\exists x_{0} \cdot x_{0} \geq 2 \wedge y \leq 5 \wedge x_{0} \leq y
$$

i.e.

$$
\exists x_{0} .2 \leq x_{0} \leq y \wedge y \leq 5
$$

i.e.

$$
2 \leq y \wedge y \leq 5
$$

Note: If we simply removed conjuncts containing x, we would get just $y \leq 5$.

Rules for Computing Strongest Postcondition

Assignment Statement

Define:

$$
s p_{F}(P, x=e)=\exists x_{0} \cdot\left(P\left[x:=x_{0}\right] \wedge x=e\left[x:=x_{0}\right]\right)
$$

Indeed:

$$
\begin{aligned}
& \operatorname{sp}\left(P_{s}, \rho(x=e)\right) \\
& =\left\{\bar{x}^{\prime} \mid \exists \bar{x} .\left(\bar{x} \in P_{s} \wedge\left(\bar{x}, \bar{x}^{\prime}\right) \in \rho(x=e)\right)\right\} \\
& =\left\{\bar{x}^{\prime} \mid \exists \bar{x} .\left(\bar{x} \in P_{s} \wedge \bar{x}^{\prime}=\bar{x}[x:=e(\bar{x})]\right)\right\}
\end{aligned}
$$

Exercise

Precondition: $\{x \geq 5 \wedge y \geq 3\}$.
Code: $\mathrm{x}=\mathrm{x}+\mathrm{y}+10$

$$
\operatorname{sp}(x \geq 5 \wedge y \geq 3, x=x+y+10)=
$$

Exercise

Precondition: $\{x \geq 5 \wedge y \geq 3\}$.
Code: $\mathrm{x}=\mathrm{x}+\mathrm{y}+10$

$$
\begin{aligned}
& s p(x \geq 5 \wedge y \geq 3, x=x+y+10)= \\
& \exists x_{0} . x_{0} \geq 5 \wedge y \geq 3 \wedge x=x_{0}+y+10 \\
& \leftrightarrow y \geq 3 \wedge x \geq y+15
\end{aligned}
$$

Rules for Computing Strongest Postcondition

Sequential Composition

For relations we proved

$$
s p\left(P_{s}, r_{1} \circ r_{2}\right)=s p\left(s p\left(P_{s}, r_{1}\right), r_{2}\right)
$$

Therefore, define

$$
s p_{F}\left(P, c_{1} ; c_{2}\right)=s p_{F}\left(s p_{F}\left(P, c_{1}\right), c_{2}\right)
$$

Nondeterministic Choice (Branches)
We had $s p\left(P_{s}, r_{1} \cup r_{2}\right)=s p\left(P_{s}, r_{1}\right) \cup s p\left(P_{s}, r_{2}\right)$. Therefore define:

$$
s p_{F}\left(P, c_{1} \square c_{2}\right)=s p_{F}\left(P, c_{1}\right) \vee s p_{F}\left(P, c_{2}\right)
$$

Correctness

We can show by easy induction on c_{1} that for all P :

$$
\begin{gathered}
s p\left(P_{s}, \rho\left(c_{1}\right)\right)=\left\{\bar{x}^{\prime} \mid \operatorname{sp} p_{F}\left(P, c_{1}\right)\right\} \\
\uparrow_{\bar{x}}
\end{gathered}
$$

Size of Generated Formulas

The size of the formula can be exponential because each time we have a nondeterministic choice, we double formula size:

$$
\begin{aligned}
& \operatorname{sp}_{F}\left(P,\left(c_{1} \square c_{2}\right) ;\left(c_{3} \square c_{4}\right)\right)= \\
& \operatorname{sp}_{F}\left(s p_{F}\left(P, c_{1} \square c_{2}\right), c_{3} \square c_{4}\right)= \\
& \operatorname{sp}_{F}\left(s p_{F}\left(P, c_{1}\right) \vee \operatorname{sp}_{F}\left(P, c_{2}\right), c_{3} \square c_{4}\right)= \\
& \operatorname{sp}_{F}\left(s p_{F}\left(P, c_{1}\right) \vee \operatorname{sp}_{F}\left(P, c_{2}\right), c_{3}\right) \vee \operatorname{sp}_{F}\left(s p_{F}\left(P, c_{1}\right) \vee \operatorname{sp}_{F}\left(P, c_{2}\right), c_{4}\right)
\end{aligned}
$$

Another Useful Characterization of sp

$$
=\{z \mid \exists x . \quad x \in A \wedge(x, z) \in r\}
$$

For any relation $\sigma \subseteq S \times S$ we define its range by

$$
r a n(\sigma)=\left\{s^{\prime} \mid \exists s \in S .\left(s, s^{\prime}\right) \in \sigma\right\}
$$

Lemma: suppose that

$$
\begin{aligned}
& \text { A } A \subseteq S \text { and } r \subseteq S \times S \\
& \Delta=\{(s, s) \mid s \in S\}
\end{aligned}
$$

Then

$$
\begin{aligned}
& \operatorname{sp}(A, r)=\operatorname{ran}\left(\Delta_{A} \circ r\right) \\
& \operatorname{ran}\left(\Delta_{A} \circ r\right)=\operatorname{ran}\left(\left\{(x, z) \mid \exists y \cdot(x, y) \in \Delta_{A} \wedge(y, z) \in r\right\}\right) \\
& =\operatorname{ran}(\{(x, z) \mid \exists y \cdot x=y \wedge x \in A \wedge(y, z) \in r\} \\
& =\operatorname{ran}(\{(x, z) \mid x \in A \wedge(x, z) \in r\})
\end{aligned}
$$

Reducing sp to Relation Composition

The following identity holds for relations:

$$
s p\left(P_{s}, r\right)=r a n\left(\Delta_{P} \circ r\right)
$$

Based on this, we can compute $s p\left(P_{s}, \rho\left(c_{1}\right)\right)$ in two steps:

- compute formula $R\left(\operatorname{assume}(P) ; c_{1}\right)$
- existentially quantify over initial (non-primed) variables Indeed, if F_{1} is a formula denoting relation r_{1}, that is,

$$
r_{1}=\left\{\left(\vec{x}, \vec{x}^{\prime}\right) . F_{1}\left(\vec{x}, \vec{x}^{\prime}\right)\right\}
$$

then $\exists \vec{x} . F_{1}\left(\vec{x}, \vec{x}^{\prime}\right)$ is formula denoting the range of r_{1} :

$$
\operatorname{ran}\left(r_{1}\right)=\left\{\vec{x}^{\prime} \mid \exists \vec{x} \cdot F_{1}\left(\vec{x}, \vec{x}^{\prime}\right)\right\}
$$

Moreover, the resulting approach does not have exponentially large formulas.

Computing Weakest Precondition Formulas

Rules for Computing Weakest Preconditions

We derive the rules below from the definition of weakest precondition on sets and relations

$$
w p\left(r, Q_{s}\right)=\left\{s \mid \forall s^{\prime} .\left(s, s^{\prime}\right) \in r \rightarrow s^{\prime} \in Q_{s}\right\}
$$

Let now $r=\rho(c)=\left\{\left(\bar{x}, \bar{x}^{\prime}\right) \mid F\right\}$ and $Q_{s}=\{\bar{x} \mid Q\}$. Then

$$
w p\left(r, Q_{s}\right)=\left\{\bar{x} \mid \forall \bar{x}^{\prime} .\left(F \rightarrow Q\left[\bar{x}:=\bar{x}^{\prime}\right]\right)\right\}
$$

Thus, we will be defining $w p_{F}$ as equivalent to

$$
\forall \bar{x}^{\prime} \cdot\left(F \wedge Q\left[\bar{x}:=\bar{x}^{\prime}\right]\right)
$$

Assume Statement

Suppose we have one variable \times, and identify the state with that variable. Note that $\rho(\operatorname{assume}(F))=\Delta_{F_{s}}$. By definition

$$
\begin{aligned}
w p\left(\Delta_{F_{s}}, Q_{s}\right) & =\left\{x \mid \forall x^{\prime} .\left(x, x^{\prime}\right) \in \Delta_{F_{s}} \rightarrow x^{\prime} \in Q_{s}\right\} \\
& =\left\{x \mid \forall x^{\prime} .\left(x \in F_{s} \wedge x=x^{\prime}\right) \rightarrow x^{\prime} \in Q_{s}\right\} \\
& =\left\{x \mid x \in F_{s} \rightarrow x \in Q_{s}\right\}=\{x \mid F \rightarrow Q\}
\end{aligned}
$$

Changing from sets to formulas, we obtain the rule for wp on formulas:

$$
w p_{F}(\operatorname{assume}(F), Q)=(F \rightarrow Q)
$$

Rules for Computing Weakest Preconditions

Assignment Statement

Consider the case of two variables. Recall that the relation associated with the assignment $x=e$ is

$$
x^{\prime}=e \wedge y^{\prime}=y
$$

Then we have, for formula Q containing x and y :

$$
\begin{aligned}
w p(\rho(x=e),\{(x, y) \mid Q\})=\{(x, y) \mid & \forall x^{\prime} . \forall y^{\prime} \cdot x^{\prime}=e \wedge y^{\prime}=y \rightarrow \\
& \left.Q\left[x:=x^{\prime}, y:=y^{\prime}\right]\right\} \\
=\{(x, y) \mid & Q[x:=e]\}
\end{aligned}
$$

From here we obtain a justification to define:

$$
w p_{F}(x=e, Q)=Q[x:=e]
$$

Rules for Computing Weakest Preconditions

Havoc Statement

$$
w p_{F}(\operatorname{havoc}(\mathrm{x}), Q)=\forall x \cdot Q
$$

Sequential Composition

$$
w p\left(r_{1} \circ r_{2}, Q_{s}\right)=w p\left(r_{1}, w p\left(r_{2}, Q_{s}\right)\right)
$$

Same for formulas:

$$
w p_{F}\left(c_{1} ; c_{2}, Q\right)=w p_{F}\left(c_{1}, w p_{F}\left(c_{2}, Q\right)\right)
$$

Nondeterministic Choice (Branches)
In terms of sets and relations

$$
w p\left(r_{1} \cup r_{2}, Q_{s}\right)=w p\left(r_{1}, Q_{s}\right) \cap w p\left(r_{2}, Q_{s}\right)
$$

In terms of formulas

$$
w p_{F}\left(c_{1} \square c_{2}, Q\right)=w p_{F}\left(c_{1}, Q\right) \wedge w p_{F}\left(c_{2}, Q\right)
$$

Summary of Weakest Precondition Rules

c	$w p(c, Q)$
$x=e$	$Q[x:=e]$
$\operatorname{havoc}(x)$	$\forall x \cdot Q$
$\operatorname{assume}(F)$	$F \rightarrow Q$
$\left.c_{1}\right] c_{2}$	$w p\left(c_{1}, Q\right) \wedge w p\left(c_{2}, Q\right)$
$c_{1} ; c_{2}$	$w p\left(c_{1}, w p\left(c_{2}, Q\right)\right)$

Size of Generated Verification Conditions

Because of the rule

$$
\left.w p_{F}\left(c_{1}\right] c_{2}, Q\right)=w p_{F}\left(c_{1}, Q\right) \wedge w p_{F}\left(c_{2}, Q\right)
$$

which duplicates Q, the size can be exponential.
$w p_{F}\left(\left(c_{1} \square c_{2}\right) ;\left(c_{3} \square c_{4}\right), Q\right)=$

Avoiding Exponential Blowup

Propose an algorithm that, given an arbitrary program c and a formula Q, computes in polynomial time formula equivalent to $w_{F}(c, Q)$

Loops

$$
4 \square>4 \text { 岛 } \downarrow \text { 引 三 }
$$

Loops: Example

Consider the set of variables $V=\{x, y\}$ and this program L :
while $(x>0)$ \{
$x=x-y$
\}
When the loop terminates, what is the (strongest) relation $\rho(L)$ between state (x, y) before loop started executing and the final state $\left(x^{\prime}, y^{\prime}\right)$?

Loops: Example

Consider the set of variables $V=\{x, y\}$ and this program L :
while $(x>0)$ \{
$x=x-y$
\}
When the loop terminates, what is the (strongest) relation $\rho(L)$ between state (x, y) before loop started executing and the final state $\left(x^{\prime}, y^{\prime}\right)$?
Let k be the number of times loop executes.

Loops: Example

Consider the set of variables $V=\{x, y\}$ and this program L :
while $(x>0)$ \{
$x=x-y$
\}
When the loop terminates, what is the (strongest) relation $\rho(L)$ between state (x, y) before loop started executing and the final state $\left(x^{\prime}, y^{\prime}\right)$?
Let k be the number of times loop executes.

- $k=0$:

Loops: Example

Consider the set of variables $V=\{x, y\}$ and this program L :
while $(x>0)$ \{
$x=x-y$
\}
When the loop terminates, what is the (strongest) relation $\rho(L)$ between state (x, y) before loop started executing and the final state $\left(x^{\prime}, y^{\prime}\right)$?
Let k be the number of times loop executes.

- $k=0: x \leq 0 \wedge x^{\prime}=x \wedge y^{\prime}=y$

Loops: Example

Consider the set of variables $V=\{x, y\}$ and this program L :
while $(x>0)$ \{
$x=x-y$
\}
When the loop terminates, what is the (strongest) relation $\rho(L)$ between state (x, y) before loop started executing and the final state $\left(x^{\prime}, y^{\prime}\right)$?
Let k be the number of times loop executes.

- $k=0: x \leq 0 \wedge x^{\prime}=x \wedge y^{\prime}=y$
- $k=1$:

Loops: Example

Consider the set of variables $V=\{x, y\}$ and this program L :
while $(x>0)$ \{
$x=x-y$
\}
When the loop terminates, what is the (strongest) relation $\rho(L)$ between state (x, y) before loop started executing and the final state $\left(x^{\prime}, y^{\prime}\right)$?
Let k be the number of times loop executes.

- $k=0: x \leq 0 \wedge x^{\prime}=x \wedge y^{\prime}=y$
- $k=1: x>0 \wedge x^{\prime}=x-y \wedge y^{\prime}=y \wedge x^{\prime} \leq 0$

Loops: Example

Consider the set of variables $V=\{x, y\}$ and this program L :
while $(x>0)$ \{
$x=x-y$
\}
When the loop terminates, what is the (strongest) relation $\rho(L)$ between state (x, y) before loop started executing and the final state $\left(x^{\prime}, y^{\prime}\right)$?
Let k be the number of times loop executes.

- $k=0: x \leq 0 \wedge x^{\prime}=x \wedge y^{\prime}=y$
- $k=1: x>0 \wedge x^{\prime}=x-y \wedge y^{\prime}=y \wedge x^{\prime} \leq 0$
- $k>0$:

Loops: Example

Consider the set of variables $V=\{x, y\}$ and this program L :
while $(x>0)$ \{

$$
x=x-y
$$

\}
When the loop terminates, what is the (strongest) relation $\rho(L)$ between state (x, y) before loop started executing and the final state $\left(x^{\prime}, y^{\prime}\right)$?
Let k be the number of times loop executes.

- $k=0: x \leq 0 \wedge x^{\prime}=x \wedge y^{\prime}=y$
- $k=1: x>0 \wedge x^{\prime}=x-y \wedge y^{\prime}=y \wedge x^{\prime} \leq 0$
- $k>0$: $x>0 \wedge x^{\prime}=x-k y \wedge x^{\prime} \leq 0 \wedge y^{\prime}=y$

Solution:

$$
\begin{aligned}
& \left(x \leq 0 \wedge x^{\prime}=x \wedge y^{\prime}=y\right) \vee \\
& \left(\exists k . k>0 \wedge x>0 \wedge x^{\prime}=x-k y \wedge x^{\prime} \leq 0 \wedge y^{\prime}=y\right)
\end{aligned}
$$

Heuristically Eliminating a Quantifier from non-PA formula

$$
\exists k . k>0 \wedge x>0 \wedge x^{\prime}=x-k y \wedge x^{\prime} \leq 0 \wedge y^{\prime}=y
$$

This implies $y>0$.

Heuristically Eliminating a Quantifier from non-PA formula

$$
\exists k . k>0 \wedge x>0 \wedge x^{\prime}=x-k y \wedge x^{\prime} \leq 0 \wedge y^{\prime}=y
$$

This implies $y>0$.

$$
\exists k . y>0 \wedge k>0 \wedge x>0 \wedge k y=x-x^{\prime} \wedge x^{\prime} \leq 0 \wedge y^{\prime}=y
$$

Heuristically Eliminating a Quantifier from non-PA formula

$$
\exists k . k>0 \wedge x>0 \wedge x^{\prime}=x-k y \wedge x^{\prime} \leq 0 \wedge y^{\prime}=y
$$

This implies $y>0$.

$$
\exists k . y>0 \wedge k>0 \wedge x>0 \wedge k y=x-x^{\prime} \wedge x^{\prime} \leq 0 \wedge y^{\prime}=y
$$

$\exists k . y>0 \wedge k>0 \wedge x>0 \wedge y \mid\left(x-x^{\prime}\right) \wedge k=\left(x-x^{\prime}\right) / y \wedge x^{\prime} \leq 0 \wedge y^{\prime}=y$

Heuristically Eliminating a Quantifier from non-PA formula

$$
\exists k . k>0 \wedge x>0 \wedge x^{\prime}=x-k y \wedge x^{\prime} \leq 0 \wedge y^{\prime}=y
$$

This implies $y>0$.

$$
\exists k . y>0 \wedge k>0 \wedge x>0 \wedge k y=x-x^{\prime} \wedge x^{\prime} \leq 0 \wedge y^{\prime}=y
$$

$\exists k . y>0 \wedge k>0 \wedge x>0 \wedge y \mid\left(x-x^{\prime}\right) \wedge k=\left(x-x^{\prime}\right) / y \wedge x^{\prime} \leq 0 \wedge y^{\prime}=y$

$$
y>0 \wedge\left(x-x^{\prime}\right) / y>0 \wedge x>0 \wedge y \mid\left(x-x^{\prime}\right) \wedge x^{\prime} \leq 0 \wedge y^{\prime}=y
$$

Heuristically Eliminating a Quantifier from non-PA formula

$$
\exists k . k>0 \wedge x>0 \wedge x^{\prime}=x-k y \wedge x^{\prime} \leq 0 \wedge y^{\prime}=y
$$

This implies $y>0$.

$$
\exists k . y>0 \wedge k>0 \wedge x>0 \wedge k y=x-x^{\prime} \wedge x^{\prime} \leq 0 \wedge y^{\prime}=y
$$

$\exists k . y>0 \wedge k>0 \wedge x>0 \wedge y \mid\left(x-x^{\prime}\right) \wedge k=\left(x-x^{\prime}\right) / y \wedge x^{\prime} \leq 0 \wedge y^{\prime}=y$

$$
\begin{gathered}
y>0 \wedge\left(x-x^{\prime}\right) / y>0 \wedge x>0 \wedge y \mid\left(x-x^{\prime}\right) \wedge x^{\prime} \leq 0 \wedge y^{\prime}=y \\
y>0 \wedge x-x^{\prime}>0 \wedge x>0 \wedge y \mid\left(x-x^{\prime}\right) \wedge x^{\prime} \leq 0 \wedge y^{\prime}=y
\end{gathered}
$$

Integer Programs with Loops

Even if loop body is in Presburger arithmetic, the semantics of a loop need not be.

Integer programs with loops are Turing complete and can compute all computable functions.

Even if we cannot find Presburger arithmetic formula, we may be able to find

- a formula in a richer logic
- a property of the meaning of the loop (e.g. formula for the superset)

To help with these tasks, we give mathematical semantics of loops Useful concept for this is transitive closure: $r^{*}=\bigcup_{n \geq 0} r^{n}$ (We may or may not have a general formula for r^{n} or r^{*})

Towards meaning of loops: unfolding

Loops can describe an infinite number of basic paths (for a larger input, program takes a longer path)
Consider loop

$$
L \equiv \operatorname{while}(F) c
$$

We would like to have

$$
\begin{aligned}
L & \equiv \text { if }(F)(c ; L) \\
& \equiv \text { if }(F)(c ; \text { if }(F)(c ; L))
\end{aligned}
$$

For $r_{L}=\rho(L), r_{c}=\rho(c), \Delta_{f}=\Delta_{S(F)}, \Delta_{n f}=\Delta_{S(\neg F)}$ we have

$$
\begin{aligned}
r_{L}= & \left(\Delta_{f} \circ r_{c} \circ r_{L}\right) \cup \Delta_{n f} \\
= & \left(\Delta_{f} \circ r_{c} \circ\left(\left(\Delta_{f} \circ r_{c} \circ r_{L}\right) \cup \Delta_{n f}\right)\right) \cup \Delta_{n f} \\
= & \Delta_{n f} \cup \\
& \left(\Delta_{f} \circ r_{c}\right) \circ \Delta_{n f} \cup \\
& \left(\Delta_{f} \circ r_{c}\right)^{2} \circ r_{L}
\end{aligned}
$$

Unfolding Loops

$$
\begin{aligned}
r_{L}= & \Delta_{n f} \cup \\
& \left(\Delta_{f} \circ r_{c}\right) \circ \Delta_{n f} \cup \\
& \left(\Delta_{f} \circ r_{c}\right)^{2} \circ \Delta_{n f} \cup \\
& \left(\Delta_{f} \circ r_{c}\right)^{3} \circ r_{L}
\end{aligned}
$$

We prove by induction that for every $n \geq 0$,

$$
\left(\Delta_{f} \circ r_{c}\right)^{n} \circ \Delta_{n f} \subseteq r_{L}
$$

So, $\left(\Delta_{f} \circ r_{c}\right)^{*} \circ \Delta_{n f} \subseteq r_{L}$.
We define r_{L} to be:

$$
r_{L}=\left(\Delta_{f} \circ r_{c}\right)^{*} \circ \Delta_{n f}
$$

THEREFORE:

$$
\rho(\text { while }(F) c)=\left(\Delta_{S(F)} \circ \rho(c)\right)^{*} \circ \Delta_{S(\neg F)}
$$

Using Loop Semantics in Example

$$
\begin{aligned}
& \rho \text { of } L: \\
& \text { while }(x>0)\{ \\
& \quad x=x-y
\end{aligned}
$$

is:

Using Loop Semantics in Example

ρ of L :
while $(x>0)$ \{

$$
x=x-y
$$

\}
is:

$$
\left(\Delta_{S(x>0)} \circ \rho(x=x-y)\right)^{*} \circ \Delta_{S(\neg(x>0))}
$$

Compute each relation:

$$
\begin{aligned}
\Delta_{S(x>0)} & =\{((x, y),(x, y)) \mid x>0\} \\
\Delta_{S(\neg(x>0))} & =\{((x, y),(x, y)) \mid x \leq 0\} \\
\rho(x=x-y) & =\{((x, y),(x-y, y)) \mid x, y \in \mathbb{Z}\} \\
\Delta_{S(x>0)} \circ \rho(x=x-y) & = \\
\left(\Delta_{S(x>0)} \circ \rho(x=x-y)\right)^{k} & = \\
\left(\Delta_{S(x>0)} \circ \rho(x=x-y)\right)^{*} & = \\
\rho(L) & =
\end{aligned}
$$

Semantics of a Program with Loop

Compute and simplify relation for this program:
$x=0$
while $(y>0)$ \{

$$
x=x+y
$$

$$
y=y-1
$$

$$
\begin{aligned}
& \rho(x=0) \circ \\
& \left(\Delta_{S(y>0)} \circ \rho(x=x+y ; y=y-1)\right)^{*} \circ \\
& \Delta_{S(y \leq 0)}
\end{aligned}
$$

Approximate Semantics of Loops

Instead of computing exact semantics, it can be sufficient to compute approximate semantics.
Observation: $r_{1} \subseteq r_{2} \rightarrow r_{1}^{*} \subseteq r_{2}^{*}$
Suppose we only wish to show that the semantics satisfies $y^{\prime} \leq y$

$$
x=0
$$

$$
x=x+y
$$

$$
y=y-1
$$

$$
\begin{aligned}
& \rho(x=0) \circ \\
& \left(\Delta_{S(y>0)} \circ \rho(x=x+y ; y=y-1)\right)^{*} \circ \\
& \Delta_{S(y \leq 0)}
\end{aligned}
$$

Recursion

Example of Recursion

For simplicity assume no parameters
(we can simulate them using global variables)

$$
\begin{aligned}
& E\left(r_{f}\right)= \\
& \Delta_{S(x>0)} \circ(\\
& \left(\Delta_{x \% 2=0}\right. \\
& \rho(x=x / 2) \circ \\
& r_{f} \circ \\
& \rho(y=y * 2)) \\
& \cup \\
& \left(\Delta_{x \% 2 \neq 0^{\circ}}\right. \\
& \rho(x=x-1) \circ \\
& \rho(y=y+x) \circ \\
& \left.r_{f}\right) \\
&) \Delta_{S(x \leq 0)}
\end{aligned}
$$

Assume recursive function call denotes some relation r_{f} Need to find relation r_{f} such that $r_{f}=E\left(r_{f}\right)$

Simpler Example of Recursion

$$
\begin{array}{cc}
\text { def } f= & \\
\text { if }(x>0)\{ & E\left(r_{f}\right)= \\
\mathrm{x}=\mathrm{x}-1 & \left(\Delta_{S(x>0)} \circ(\right. \\
\mathrm{f} & \rho(x=x-1) \circ \\
\mathrm{y}=\mathrm{y}+2 & r_{f} \circ \\
\} & \rho(y=y+2)) \\
&) \cup \Delta_{S(x \leq 0)}
\end{array}
$$

Simpler Example of Recursion

$$
\begin{array}{cc}
\text { def } f= & \\
\text { if }(x>0)\{ & E\left(r_{f}\right)=\left(\Delta_{S(x>0)} \circ(\right. \\
x=x-1 & \rho(x=x-1) \circ \\
\mathrm{f} & r_{f} \circ \\
\mathrm{y}=\mathrm{y}+2 & \rho(y=y+2)) \\
\} &) \cup \Delta_{S(x \leq 0)}
\end{array}
$$

What is $E(\emptyset)$?

Simpler Example of Recursion

$$
\begin{array}{cc}
\text { def } \mathrm{f}= & \\
\text { if }(\mathrm{x}>0)\{ & E\left(r_{f}\right)=\left(\Delta_{S(x>0)} \circ(\right. \\
\mathrm{x}=\mathrm{x}-1 & \rho(x=x-1) \circ \\
\mathrm{f} & r_{f} \circ \\
\mathrm{y}=\mathrm{y}+2 & \rho(y=y+2)) \\
\} &) \cup \Delta_{S(x \leq 0)}
\end{array}
$$

What is $E(\emptyset)$?
What is $E(E(\emptyset))$?

Simpler Example of Recursion

$$
\begin{aligned}
& \operatorname{def} f= \\
& \text { if }(x>0)\{ \\
& x=x-1 \\
& f \\
& y=y+2
\end{aligned}
$$

$$
\begin{aligned}
& E\left(r_{f}\right)=\left(\Delta_{S(x>0)} \circ(\right. \\
& \rho(x=x-1) \circ \\
& r_{f} \circ \\
&\rho(y=y+2)) \\
&) \cup \Delta_{S(x \leq 0)}
\end{aligned}
$$

What is $E(\emptyset)$?
What is $E(E(\emptyset))$?
$E^{k}(\emptyset)$?

Sequence of Bounded Recursions

Consider the sequence of relations $r_{0}=\emptyset, r_{k}=E^{k}(\emptyset)$. What is the relationship between r_{k} and r_{k+1} ?

Sequence of Bounded Recursions

Consider the sequence of relations $r_{0}=\emptyset, r_{k}=E^{k}(\emptyset)$.
What is the relationship between r_{k} and r_{k+1} ?
Define

$$
s=\bigcup_{k \geq 0} r_{k}
$$

Then

$$
E(s)=E\left(\bigcup_{k \geq 0} r_{k}\right) \stackrel{?}{=} \bigcup_{k \geq 0} E\left(r_{k}\right)=\bigcup_{k \geq 0} r_{k+1}=\bigcup_{k \geq 1} r_{k}=\emptyset \cup \bigcup_{k \geq 1} r_{k}=s
$$

If $E(s)=s$ we say s is a fixed point (fixpoint) of function E

Exercise with Fixpoints of Real Functions

1. Find all fixpoints of function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined as

$$
f(x)=x^{2}-x-3
$$

Exercise with Fixpoints of Real Functions

1. Find all fixpoints of function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined as

$$
f(x)=x^{2}-x-3
$$

2. Compute the fixpoint that is smaller than all other fixpoints

Union of Finite Unfoldings is Least Fixpoint

C - a collection (set) of sets (e.g. sets of pairs, i.e. relations)
$E: C \rightarrow C$ such that for $r_{0} \subseteq r_{1} \subseteq r_{2} \ldots$
we have

$$
E\left(\bigcup_{i} r_{i}\right)=\bigcup_{i} E\left(r_{i}\right)
$$

Then $s=\bigcup_{i} E^{i}(\emptyset)$ is such that

1. $E(s)=s$ (we have shown this)
2. if r is such that $E(r) \subseteq r$ (special case: if $E(r)=r$), then $s \subseteq r$
Prove this theorem.

Least Fixpoint

$$
s=\bigcup_{i} E^{i}(\emptyset)
$$

Suppose $E(r) \subseteq r$.
Showing $s \subseteq r$

$$
\bigcup_{i} E^{i}(\emptyset) \subseteq r
$$

Consequence of s being smallest

$$
\begin{aligned}
& \operatorname{def} f= \\
& \text { if }(x>0)\{ \\
& x=x-1 \\
& f \\
& y=y+2
\end{aligned}
$$

$$
E\left(r_{f}\right)=\left(\Delta_{S(x>0)} \circ\right.
$$

$$
\rho(x=x-1)
$$

$$
r_{f} \circ
$$

$$
\rho(y=y+2))
$$

$$
\text {) } \cup \Delta_{S(x \leq 0)}
$$

What does it mean that $E(r) \subseteq r$?

Consequence of s being smallest

$$
\begin{aligned}
& \text { def } f= \\
& \text { if }(x>0)\{ \\
& x=x-1 \\
& f \\
& y=y+2
\end{aligned}
$$

$$
\begin{aligned}
& E\left(r_{f}\right)=\left(\Delta_{S(x>0)} \circ(\right. \\
& \rho(x=x-1) \circ \\
& r_{f} \circ \\
&\rho(y=y+2)) \\
&) \cup \Delta_{S(x \leq 0)}
\end{aligned}
$$

What does it mean that $E(r) \subseteq r$?
Plugging r instead of the recursive call results in something that conforms to r

Justifies modular reasoning for recursive functions
To prove that recursive procedure with body E satisfies specification r, show

- $E(r) \subseteq r$
- then because procedure meaning s is least, $s \subseteq r$

Proving that recursive function meets specification

Prove that if s is the relation denoting the recursive function below, then

$$
\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right) \in s \rightarrow y^{\prime} \geq y
$$

$$
\begin{aligned}
& \operatorname{def} f= \\
& \text { if }(x>0)\{ \\
& x=x-1 \\
& f \\
& y=y+2
\end{aligned}
$$

$$
\begin{aligned}
& E\left(r_{f}\right)=\left(\Delta_{S(x>0)} \circ(\right. \\
& \rho(x=x-1) \circ \\
& r_{f} \circ \\
&\rho(y=y+2)) \\
&) \cup \Delta_{S(x \leq 0)}
\end{aligned}
$$

Multiple Procedures

Two mutually recursive procedures $r_{1}=E_{1}\left(r_{1}\right), \quad r_{2}=E_{2}\left(r_{2}\right)$
Extend the approach to work on pairs of relations:

$$
\left(r_{1}, r_{2}\right)=\left(E_{1}\left(r_{1}\right), E_{2}\left(r_{2}\right)\right)
$$

Define $\bar{E}\left(r_{1}, r_{2}\right)=\left(E_{1}\left(r_{1}\right), E_{2}\left(r_{2}\right)\right)$, let $\bar{r}=\left(r_{1}, r_{2}\right)$

$$
\bar{E}(\bar{r}) \sqsubseteq \bar{r}
$$

where $\left(r_{1}, r_{2}\right) \sqsubseteq\left(r_{1}^{\prime}, r_{2}^{\prime}\right)$ iff $r_{1} \subseteq r_{1}^{\prime}$ and $r_{2} \subseteq r_{2}^{\prime}$
Even though pairs of relations are not sets, we can analogously define set-like operations on them. Most theorems still hold.

Generalizing: the entire theory works when we have certain ordering relation

Lattices as a generalization of families of sets

