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Loop-Free Programs as Relations: Summary

command c R(c) ρ(c)

(x = t) x ′ = t ∧
∧

v∈V \{x} v
′ = v

c1 ; c2 ∃z̄ . R(c1)[x̄ ′ := z̄ ] ∧ R(c2)[x̄ := z̄ ] ρ(c1) ◦ ρ(c2)
if(∗) c1 else c2 R(c1) ∨ R(c2) ρ(c1) ∪ ρ(c2)

assume(F) F ∧
∧

v∈V v ′ = v ∆S(F )

ρ(vi = t) = {((v1, . . . , vi , . . . , vn), (v1, . . . , v
′
i , . . . , vn) | v ′i = t}

S(F ) = {v̄ | F}, ∆A = {(~v , ~v) | ~v ∈ A} (diagonal relation on A)
∆ (without subscript) is identity on entire set of states (no-op)
We always have: ρ(c) = {(v̄ , v̄ ′) | R(c)}
Shorthands:

if(∗) c1 else c2 c1 c2
assume(F ) [F ]

Examples:

if (F ) c1 else c2 ≡ [F ]; c1 [¬F ]; c2
if (F ) c ≡ [F ]; c [¬F ]



Program Paths



Loop-Free Programs

c - a loop-free program whose assignments, havocs, and assumes
are c1, . . . , cn

The relation ρ(c) is of the form E (ρ(c1), . . . , ρ(cn)); it composes
meanings of c1, . . . , cn using union (∪) and composition (◦)

(if (x > 0)
x = x − 1

else
x = 0

);
(if (y > 0)

y = y − 1
else

y = x + 1
)

([x > 0]; x = x − 1

([¬(x>0)]; x = 0)
);
([y > 0]; y = y − 1

[¬(y>0)]; y = x+1
)

(
∆S(x>0) ◦ ρ(x = x − 1)
∪

∆S(¬(x>0)) ◦ ρ(x = 0))
◦(
∆S(y>0) ◦ ρ(y = y − 1)
∪

∆S(¬(y>0)) ◦ ρ(y = x + 1))
Note: ◦ binds stronger than ∪, so r ◦ s ∪ t = (r ◦ s) ∪ t



Normal Form for Loop-Free Programs

Composition distributes through union:

(r1 ∪ r2) ◦ (s1 ∪ s2) = r1 ◦ s1 ∪ r1 ◦ s2 ∪ r2 ◦ s1 ∪ r2 ◦ s2

Example corresponding to two if-else statements one after another:(
∆1 ◦ r1
∪

∆2 ◦ r2)
◦(
∆3 ◦ r3
∪

∆4 ◦ r4)
≡

∆1 ◦ r1 ◦∆3 ◦ r3 ∪
∆1 ◦ r1 ◦∆4 ◦ r4 ∪
∆2 ◦ r2 ◦∆3 ◦ r3 ∪
∆2 ◦ r2 ◦∆4 ◦ r4

Sequential composition of basic statements is called basic path.
Loop-free code describes finitely many (exponentially many) paths.



Properties of Program Contexts



Some Properties of Relations

(p1 ⊆ p2)→ (p1 ◦ p) ⊆ (p2 ◦ p)

(p1 ⊆ p2)→ (p ◦ p1) ⊆ (p ◦ p2)

(p1 ⊆ p2) ∧ (q1 ⊆ q2) → (p1 ∪ q1) ⊆ (p2 ∪ q2)

(p1 ∪ p2) ◦ q = (p1 ◦ q) ∪ (p2 ◦ q)



Monotonicity of Expressions using ∪ and ◦

For a program with k integer variables, S = Zk

Consider relations that are subsets of S × S (i.e. S2)
The set of all such relations is

C = {r | r ⊆ S2}

Let E (r) be given by any expression built from relation r and some
additional relations b1, . . . , bn, using ∪ and ◦.
Example: E (r) = (b1 ◦ r) ∪ (r ◦ b2)
E (r) is function C → C , maps relations to relations
Claim: E is monotonic function on C :

r1 ⊆ r2 → E (r1) ⊆ E (r2)

Prove of disprove.

Proof: induction on the expression tree defining E , using
monotonicity properties of ∪ and ◦
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Union-Distributivity of Expressions using ∪ and ◦

Claim: E distributes over unions, that is, if ri , i ∈ I is a family of
relations,

E (
⋃
i∈I

ri ) =
⋃
i∈I

E (ri )

Prove or disprove.

False. Take E (r) = r ◦ r and consider relations r1, r2. The claim
becomes

(r1 ∪ r2) ◦ (r1 ∪ r2) = r1 ◦ r1 ∪ r2 ◦ r2
that is,

r1◦r1 ∪ r1◦r2 ∪ r2◦r1 ∪ r2◦r2 = r1◦r1 ∪ r2◦r2
Taking, for example, r1 = {(1, 2)}, r2 = {(2, 3)} we obtain

{(1, 3)} = ∅ (false)
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Union “Distributivity” in One Direction

Lemma:
E (
⋃
i∈I

ri ) ⊇
⋃
i∈I

E (ri )

Proof. Let r =
⋃

i∈I ri . Note that, for every i , ri ⊆ r . We have
shown that E is monotonic, so E (ri ) ⊆ E (r). Since all E (ri ) are
included in E (r), so is their union, so⋃

E (ri ) ⊆ E (r)

as desired.



Union “Distributivity” in One Direction

Lemma:
E (
⋃
i∈I

ri ) ⊇
⋃
i∈I

E (ri )

Proof. Let r =
⋃

i∈I ri . Note that, for every i , ri ⊆ r . We have
shown that E is monotonic, so E (ri ) ⊆ E (r). Since all E (ri ) are
included in E (r), so is their union, so⋃

E (ri ) ⊆ E (r)

as desired.



Union-Distributivity - Refined

Does distributivity

E (
⋃
i∈I

ri ) =
⋃
i∈I

E (ri )

hold, for each of these cases

1. If E (r) is given by an expression containing r at most once?

Proof: Induction on expression for E (r). Only one branch of
the tree may contain r . Note previous counter-example uses r
twice.

2. If E (r) contains r any number of times, but I is a set of
natural numbers and ri is an increasing sequence:
r1 ⊆ r2 ⊆ r3 ⊆ . . . Induction. In the previous counter-example
the largest relation will contain all other ri ◦ rj .

3. If E (r) contains r any number of times, but ri , i ∈ I is a
directed family of relations: for each i , j there exists k such
that ri ∪ rj ⊆ rk , and I is possibly uncountably infinite.
Induction. Generalizes the previous case.
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About Strength and Weakness



Putting Conditions on Sets Makes them Smaller

Let P1 and P2 be formulas (“conditions”) whose free variables are
among x̄ . Those variables may denote program state.
When we say “condition P1 is stronger than condition P2” it
simply means

∀x̄ . (P1 → P2)

I if we know P1, we immediately get (conclude) P2

I if we know P2 we need not be able to conclude P1

Stronger condition = smaller set: if P1 is stronger than P2 then
{x̄ | P1} ⊆ {x̄ | P2}

I strongest possible condition: “false” ; smallest set: ∅
I weakest condition: “true” ; biggest set: set of all tuples



Hoare Triples



About Hoare Logic

We have seen how to translate programs into relations. We will use these

relations in a proof system called Hoare logic. Hoare logic is a way of

inserting annotations into code to make proofs about (imperative)

program behavior simpler.

Example proof:

//{0 <= y}
i = y;
//{0 <= y & i = y}
r = 0;
//{0 <= y & i = y & r = 0}
while //{r = (y−i)∗x & 0 <= i}
(i > 0) (
//{r = (y−i)∗x & 0 < i}
r = r + x;
//{r = (y−i+1)∗x & 0 < i}
i = i − 1
//{r = (y−i)∗x & 0 <= i}

)
//{r = x ∗ y}



Hoare Triple and Friends

P,Q ⊆ S r ⊆ S × S
Hoare Triple:

{P} r {Q} ⇐⇒ ∀s, s ′ ∈ S .
(
s ∈ P ∧ (s, s ′) ∈ r → s ′ ∈ Q

)
{P} does not denote a singleton set containing P but is just a
notation for an “assertion” around a command. Likewise for {Q}.
Strongest postcondition:

sp(P, r) = {s ′ | ∃s. s ∈ P ∧ (s, s ′) ∈ r}

Weakest precondition:

wp(r ,Q) = {s | ∀s ′.(s, s ′) ∈ r → s ′ ∈ Q}



Exercise: Which Hoare triples are valid?

Assume all variables to be over integers.

1. {j = a} j :=j+1 {a = j + 1}

2. {i = j} i:=j+i {i > j}

3. {j = a + b} i:=b; j:=a {j = 2 ∗ a}

4. {i > j} j:=i+1; i:=j+1 {i > j}

5. {i != j} if i>j then m:=i−j else m:=j−i {m > 0}

6. {i = 3∗j} if i>j then m:=i−j else m:=j−i {m−2∗j=0}



Postconditions and Their Strength

What is the relationship between these postconditions?

{x = 5} x := x + 2 {x > 0}

{x = 5} x := x + 2 {x = 7}

I weakest conditions (predicates) correspond to largest sets

I strongest conditions (predicates) correspond to smallest sets

that satisfy a given property.

(Graphically, a stronger condition x > 0 ∧ y > 0 denotes one
quadrant in plane, whereas a weaker condition x > 0 denotes the
entire half-plane.)
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Strongest Postconditions



Strongest Postcondition

Definition: For P ⊆ S , r ⊆ S × S ,

sp(P, r) = {s ′ | ∃s.s ∈ P ∧ (s, s ′) ∈ r}

This is simply the relation image of a set.



Weakest Preconditions



Weakest Precondition

Definition: for Q ⊆ S , r ⊆ S × S ,

wp(r ,Q) = {s | ∀s ′.(s, s ′) ∈ r → s ′ ∈ Q}

Note that this is in general not the same as sp(Q, r−1) when then
relation is non-deterministic or partial.



Three Forms of Hoare Triple

Lemma: the following three conditions are equivalent:

I {P}r{Q}
I P ⊆ wp(r ,Q)

I sp(P, r) ⊆ Q

Proof. The three conditions expand into the following three
formulas

I ∀s, s ′. [(s ∈ P ∧ (s, s ′) ∈ r)→ s ′ ∈ Q]

I ∀s. [s ∈ P → (∀s ′.(s, s ′) ∈ Q)]

I ∀s ′. [(∃s. s ∈ P ∧ (s, s ′) ∈ P)→ s ′ ∈ Q]

which are easy to show equivalent using basic first-order logic
properties.
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Lemma: Characterization of sp
sp(P, r) is the the smallest set Q such that {P}r{Q}, that is:
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sp(P, r) ={s ′ | ∃s.s ∈ P ∧ (s, s ′) ∈ r}



Proof of Lemma: Characterization of sp

Apply Three Forms of Hoare triple. The two conditions then
reduce to:

I sp(P, r) ⊆ sp(P, r)

I ∀P ⊆ S . sp(P, r) ⊆ Q → sp(P, r) ⊆ Q



Lemma: Characterization of wp
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Exercise: Postcondition of inverse versus wp

Lemma:
S \ wp(r ,Q) = sp(S \ Q, r−1)

In other words, when instead of good states we look at the
completement set of “error states”, then wp corresponds to doing
sp backwards.

Note that r−1 = {(y , x) | (x , y) ∈ r} and is always defined.

Proof of the lemma: Expand both sides and apply basic first-order
logic properties.



Exercise: Postcondition of inverse versus wp

Lemma:
S \ wp(r ,Q) = sp(S \ Q, r−1)

In other words, when instead of good states we look at the
completement set of “error states”, then wp corresponds to doing
sp backwards.

Note that r−1 = {(y , x) | (x , y) ∈ r} and is always defined.

Proof of the lemma: Expand both sides and apply basic first-order
logic properties.


