THE CALCULUS OF COMPUTATION:
Decision Procedures with
Applications to Verification

by
Aaron Bradley
Zohar Manna

Springer 2007

PART [: FOUNDATIONS

o ok W=

Propositional Logic (1)

First-Order Logic (2)

First-Order Theories (1)

Induction (2)

Program Correctness: Mechanics (2)
Program Correctness: Strategies (1)

PART II: ALGORITHMIC REASONING

7. Quantified Linear Arithmetic (1)

8. Quantifier-Free Linear Arithmetic (2)

9. Quantifier-Free Equality and Data Structures (2)
10. Combining Decision Procedures (1)

11. Arrays (2)

12. Invariant Generation (1)

THE CALCULUS OF COMPUTATION:
Decision Procedures with
Applications to Verification

by
Aaron Bradley
Zohar Manna

Springer 2007

Part I: FOUNDATIONS

1. Propositional Logic(PL)

Propositional Logic(PL)

PL Syntax

Atom truth symbols T(“true”) and L(“false”)
propositional variables P, Q, R, Py, Q1, Ry, - -~
Literal atom « or its negation -«
Formula literal or application of a
logical connective to formulae F, Fy, F>

-F “not” (negation)
Fi A F2 “and” (conjunction)
Fir v Fo Por” (disjunction)
Fi — F “implies” (implication)
Fi < F, “if and only if" (iff)

Example:

formula F: (P A Q) — (T V =Q)
atoms: P,Q, T
literal: =@
subformulas: P A Q, T V =Q
abbreviation

F:PANQ — TV Q

PL Semantics (meaning)

Sentence F + Interpretation | = Truth value

(true, false)
Interpretation

I :{P + true, Q — false,--- }

Evaluation of F under [:

F |l —F

0 1 1 true
1 0

where 0 corresponds to value false

Fl‘FzHF]_/\F2‘F]_\/F2‘F1—>F2‘F1<—>F2

00 0 0 1 1

011 0 1 1 0
110 0 1 0 0
111 1 1 1 1

Example:

F:PANQ — PV —Q
I : {P — true, Q — false}

(Ple]-@[PAQ[PV -Q|F]
(tjof 1] o [1 [1]

1 = true 0 = false

F evaluates to true under /

Inductive Definition of PL's Semantics

| &= F if F evaluates to true under /
I = F false
Base Case:
I =T
I = L
I = P iff [[P]=true
I = P iff [[P]=false
Inductive Case:
I E —~F iff | = F
/):Fl/\FQ ifF/):FlandI':Fz
I):F1VF2 |fFl):F10rI):F2
I ' E R — F iffifl = Fithenl = F,
/): F1 > F2 IfF,/): Fl and / }: F2,
orl £ Frand | £ F
Note:
/ b& Fl — F2 iff / |: Fl and / Fé F2

Example:

F: PANQ — PV 2Q
I: {P — true, Q — false}

P

Q

-Q
P A Q
P Vv -Q
F

Thus, F is true under /.

TmTIT»™T

ok

since /[P] = true

since /[Q] = false

by 2 and =

by 2 and A

by 1 and VvV

by 4 and — Why?

Satisfiability and Validity

F satisfiable iff there exists an interpretation / such that /| = F.
F valid iff for all interpretations /, | | F.

| F is valid iff =F is unsatisfiable |

Method 1: Truth Tables
Example F:PANQ — PV =Q

00 0 1 1 1
01 0 0 0 1
10 0 1 1 1
11 1 0 1 1

Thus F is valid.

Example F:PVv Q — P AQ

PQRIPV Q|PANQI|F
00 0 0 1
01 1 0 0
10 1 0 0
11 1 1 1

Thus F is satisfiable, but invalid.

« satisfying /
«— falsifying /

1N

Method 2: Semantic Argument
Proof rules

I EFoG

TEFAG | T FVG T E FA-

I = F
I F
TE L

Example 1: Prove

F: PANQ — PV -Q

is valid.

Let's assume that F is not valid and that / is a falsifying
interpretation.

ok =

< > >

T T TR
v B v vl v B v

Thus F is valid.

Q — PV —Q
Q

—

Q

assumption

land —

land —

2and A

3and V

4 and 5 are contradictory

Example 2: Prove

F: (P —- Q) AN (Q — R) - (P — R) isvalid.
Let's assume that F is not valid.
1. I ¥ F assumption
2.1 E (P—-> Q) AN (Q — R) land —
3. 1 ¥~ P — R land —
4. | E P 3and —
5. 1 ¥~ R 3and —
6. I E P — Q 2 and of A
7.1 E Q —- R 2 and of A

Two cases from 6

8a. | £
9a. | E

P 6 and —
1 4 and 8a are contradictory

and
8. I E Q 6 and —

Two cases from 7

9ba. /

Ko Q 7 and —
10ba. I E L

8b and 9ba are contradictory

and

9b. | E R 7and —
10bb. | | L 5 and 9bb are contradictory

Our assumption is incorrect in all cases — F is valid.

Example 3: Is
F: PV Q — P A @@ vald?
Let's assume that F is not valid.

. I ¥ PVQ—PAQ assumption
2.1 E PVQ land —
3. I ¥ PAQ 1and —

Two options

4a. | = P 2and V 4b. | E= Q 2and Vv
5a. | ¥~ Q 3and A 5b. | [~ P 3and A

We cannot derive a contradiction. F is not valid.

Falsifying interpretation:
h: {P +— true, Q — false} L: {Q — true, P — false}

We have to derive a contradiction in both cases for F to be valid.

1 1C

Equivalence

F1 and F; are equivalent (F; < F»)
iff for all interpretations I, | = F, < F;

To prove F; < F» show F; < F is valid.

F1 impIies F2 (Fl = Fz)
iff for all interpretations I, | = F, — F;

Fi < F> and F; = F» are not formulae!

1

Normal Forms

1. Negation Normal Form (NNF)

Negations appear only in literals. (only =, A, V)

To transform F to equivalent F’ in NNF use recursively
the following template equivalences (left-to-right):

-—F & F -T & L -1l & T

ﬂ(Fl A F2) & —F VvV Ak ,
De Morgan's Law

ﬁ(:':1 \Y Fg) & F AN AR

FR— F & -V F

FR <~ L & (F1 — F2) A (F2 — Fl)
Example: Convert F: =(P — —=(P A Q)) to NNF
F':=(=P Vv =(P A Q))
F":==P A ==(P A Q)
F" P NP A Q

— to V
De Morgan's Law

/1

F"" is equivalent to F (F"” < F) and is in NNF

1=7

2. Disjunctive Normal Form (DNF)

Disjunction of conjunctions of literals
\/ /\E;J for literals E,-’j
i

To convert F into equivalent F’ in DNF,
transform F into NNF and then
use the following template equivalences (left-to-right):

(Fl V Fg) N F3 & (Fl A\ F3) V (F2 A F3) })
Ist

Fi A (F2 \Y F3) = (Fl VAN Fz) vV (Fl VAN F3)
Example: Convert

F: (Q V ==®) A (-Ri — Rp) into DNF

F': (Q1VQ2)/\(R1\/R2) in NNF
F" - (Ql/\(Rl\/Rz))\/(Qz/\(Rl\/Rg)) dist
F" . (Q]_/\R]_)\/(Q]_/\RQ)\/(QQ/\R]_)\/(Q2/\R2) dist

F"" is equivalent to F (F"” < F) and is in DNF

3. Conjunctive Normal Form (CNF)

Conjunction of disjunctions of literals
/\ \/E;J for literals giJ
g

To convert F into equivalent F’ in CNF,
transform F into NNF and then
use the following template equivalences (left-to-right):

(Fl A\ F2) vV 3 & (Fl V F3) AN (F2 V F3)
Fl V (F2 AN F3) = (Fl V Fg) A (Fl V F3)

Davis-Putnam-Logemann-Loveland (DPLL) Algorithm
Decides the satisfiability of PL formulae in CNF

In book, efficient conversion of F to F’ where

F’is in CNF and
F" and F are equisatisfiable (F is satisfiable iff F’ is satisfiable)

Decision Procedure DPLL: Given F in CNF

let rec DPLL F =
let F/ =BCP F in
if F/ =T then true
else if F/ = 1 then false
else
let P = CHOOSE vars(F’) in
(pPLL F'{P+— T}) V (DPLL F/{P+ L})

Don't CHOOSE only-positive or only-negative variables for splitting.

Boolean Constraint Propagation (BCP)

Based on unit resolution

1 C[~f] <« clause

T where £ = P or { = =P

throughout

Example:
F: ("PVQAVR)A(RQVR)A(=QV -R)A(PV-=QV —R)

Branching on @

F{Q — T}: (R) A (-R) A (P V —R)

By unit resolution
R (—R)
€

F{Q — T} = L = false

On the other branch
F{Q — L}: (=P V R)
F{Q — L,R— T,P+— 1} =T = true

F is satisfiable with satisfying interpretation

I: {P — false, Q — false, R +— true}

F

(R) A (=R) A (P V =R) (=P |v R)
R w— T
R (-R) in
* ‘ P L

I: {P +— false, Q +— false, R — true}

THE CALCULUS OF COMPUTATION:
Decision Procedures with
Applications to Verification

by
Aaron Bradley
Zohar Manna

Springer 2007

2. First-Order Logic (FOL)

First-Order Logic (FOL)

Also called Predicate Logic or Predicate Calculus

FOL Syntax
variables
constants
functions
terms

predicates
atom
literal

X,V Zy
a,b,c, -

f7 g, h7 .

variables, constants or

n-ary function applied to n terms as arguments
a,x,(2). &(x, b), F(g(x, g(b)))

p,q,r,--:

T, L, or an n-ary predicate applied to n terms
atom or its negation

p(f(x),8(x, f(x))), —p(f(x),&(x, f(x)))

Note: O-ary functions: constant
O-ary predicates: P, Q,R,...

quantifiers

existential quantifier 3Ix.F[x]
“there exists an x such that F[x]"

universal quantifier Vx.F[x]
“for all x, F[x]"

FOL formula literal, application of logical connectives
(-, V, A, —, <) to formulae,
or application of a quantifier to a formula

Example: FOL formula

Vx. p(f(x),x) — (Qy. p(f(g(x,y)),8(x,y))) N q(x,f(x))
G

The scope of Vx is F.
The scope of dy is G.
The formula reads:
“for all x,
i p(F(x), %)
then there exists a y such that

p(f(g(x,y)) &(x,y)) and q(x, f(x))"

Translations of English Sentences into FOL

» The length of one side of a triangle is less than the sum of the
lengths of the other two sides

Vx,y, z. triangle(x,y,z) — length(x) < length(y)+length(z)
» Fermat's Last Theorem.

Vn. integer(n) A n> 2
— Vx,y,z.
integer(x) A integer(y) A integer(z)
Ax>0Ay>0A2z>0
— Xn + yn # zn

FOL Semantics

An interpretation / : (D, o) consists of:
» Domain Dy
non-empty set of values or objects
cardinality |D;| finite (eg, 52 cards),
countably infinite (eg, integers), or
uncountably infinite (eg, reals)
» Assignment «;

» each variable x assigned value x; € Dy
» each n-ary function f assigned

fi: D — D

In particular, each constant a (0-ary function) assigned value
a; €Dy
» each n-ary predicate p assigned

pr: Df — {true, false}

In particular, each propositional variable P (0-ary predicate)
assigned truth value (true, false)

Example:
F: p(f(x,y),z) — ply,8(z;x))
Interpretation / : (Dy, o)
Di=72={--,-2,-1,0,1,2,---} integers
a {f = +,g— —,pr>>}
Therefore, we can write
Fi:x+y>z - y>z—x

(This is the way we'll write it in the future!)
Also
ap {x— 13,y — 42,z — 1}
Thus
Fr:134+42>1 — 42>1-13

Compute the truth value of F under /

1. I E x+y>z since 13442 >1
2. | E y>z-—x since 42 >1—13
3. | E F by 1, 2, and —

F is true under /

Semantics: Quantifiers

X variable.
x-variant of interpretation / is an interpretation J : (D, ay) such
that

> D/ = D_/
> «a;ly] = ay[y] for all symbols y, except possibly x

That is, I and J agree on everything except possibly the value of x

Denote J: [<{x — v} the x-variant of / in which ay[x] = v for
some v € D;. Then

» | = Vx. F iffforallve D), I<{x— v} E F
» | = Ix. F iffthere exists v e Dy sit. I<{x— v} E F

Example
For @, the set of rational numbers, consider

Fi:Vx.dy.2xy=x

Compute the value of F; (F under [):

Let
J1il<a{x— v} b h<{y— 3}
x-variant of / y-variant of J
for v e Q.
Then
1. L E 2xy=x since2x 5 =v

2. L F Tdy.2xy=x
3. | E Vx.dy.2xy=x since v € Q is arbitrary

Satisfiability and Validity

F is satisfiable iff there exists s.t. | | F
Fis valid iff forall I, | = F

F is valid iff =F is unsatisfiable

Example: F: (Vx. p(x)) < (—=3x. =p(x)) valid?
Suppose not. Then there is / s.t.

0. I (vx p(x)) < (23x. =p(x))

First case

1 I E Vx. p(x) assumption

2. I = —3x. —p(x) assumption

3. I E 3Ix. —p(x) 2 and —

4. Ia{x—v} E -px) 3 and 3, for some v € Dy
5. I<a{x—v} E px) 1andV

4 and 5 are contradictory.

Second case

1 I = Vx. p(x) assumption

2 I E —3x. —p(x) assumption

3. I<a{x—v} [px) 1 and V, for some v € D,
4. I B 3x. —p(x) 2 and -

5. I<a{x—v} FE -px) 4 and 3

6. I<{x—v} [px) 5and -

3 and 6 are contradictory.
Both cases end in contradictions for arbitrary I = F is valid.

Example: Prove

F: p(a) — 3Ix. p(x) is valid.

Assume otherwise.

1. I ¥~ F assumption
2. I E p(a) land —
3. I 3x. p(x) land —
4. I<a{x—aqa]} ¥ p) 3and 3

2 and 4 are contradictory. Thus, F is valid.

Example: Show
F: (¥Yx. p(x,x)) — (3x. Vy. p(x,y)) isinvalid.

Find interpretation / such that

I = =[(Vx. p(x,x)) — (3x. Vy. p(x,y))]

I = (Vx. p(x,x)) A =(3x. Vy. p(x,y))

Choose D; ={0,1}
pr ={(0,0), (1,1)} i.e. p;(0,0) and py(1,1) are true
pi1(1,0) and p;(1,0) are false

I falsifying interpretation = F is invalid.

Safe Substitution Fo

Example:

scope of vx

—
F:(vx. plxy)) — q(f(y), x)
bound by ¥x ™ free free /™ free

free(F) = {x, y}
substitution

o {x—g(x), y— f(x), q(f(y),x) — Ix. h(x,y)}

1. Rename
F X' p(x,y) — q(f(y),x)
T 7

where x’ is a fresh variable
2. Flo:Vx'. p(x',f(x)) — 3x. h(x,y)

Rename x by x':

replace x in Vx by x’ and all free x in the scope of Vx by x’.
Vx. G[x] & VX. G[X]

Same for Jdx
dx. G[x] & 3IX. G[X]

where x’ is a fresh variable

Proposition (Substitution of Equivalent Formulae)

O'Z{F1P—> Gl, cee Fn|—> Gn}
s.t. foreach i, F; & G;

If Fo a safe substitution, then F < Fo

Formula Schema

Formula
(Vx. p(x)) < (=3x. =p(x))

Formula Schema
Hy : (Vx. F) < (—=3x. =F)
T place holder

Formula Schema (with side condition)
H: (Vx. F) < F provided x ¢ free(F)

Valid Formula Schema

H is valid iff valid for any FOL formula F; obeying the side
conditions

Example: H; and H» are valid.

Substitution o of H

o:{Fi— ,...,Fh— }

mapping place holders F; of H to FOL formulae,
(obeying the side conditions of H)

Proposition (Formula Schema)

If H is valid formula schema and
o is a substitution obeying H's side conditions
then Ho is also valid.

Example:
H:(Vx. F) < F provided x ¢ free(F) is valid
o:{Fw~p(y)} obeys the side condition

Therefore Ho : Vx. p(y) < p(y) is valid

Proving Validity of Formula Schema

Example: Prove validity of
H:(vx. F) < F provided x ¢ free(F)

Proof by contradiction. Consider the two directions of « .

First case:
1. I E V¥x. F assumption
2.1 ¥~ F assumption
3. I E F 1, V, since x ¢ free(F)
4. 1 = L 2,3
Second Case:
1. I K ¥x. F assumption
2.1 E F assumption
3. I E 3x.—=F 1and -
4. | E -F 3, 3, since x & free(F)
5. 1 = L 2,4

Hence, H is a valid formula schema.

Normal Forms

1. Negation Normal Forms (NNF)
Augment the equivalence with (left-to-right)

—Vx. Flx] < 3x. =F[x]

-3x. F[x] & Vx. =F[x]

Example

G: Vx. (Jy. p(x,y) N p(x,z)) — Fw.p(x,w) .

1. Vx. (By. p(x,y) A p(x,z)) — 3w. p(x,w)
2. ¥x. =(3y. p(x,¥) A p(x,z)) vV Iw. p(x,w)

FRF— F & —-F V Rk

3. ¥x. (Vy. =(p(x,¥) A p(x,2))) V Iw. p(x,w)

-3x. F[x] & V¥x. =F[x]

4. ¥x. (Yy. =p(x,y) V =p(x,2)) vV Iw. p(x,w)

2. Prenex Normal Form (PNF)
All quantifiers appear at the beginning of the formula

Quxi -+ Quxp. Flx1, -+, xn]

where Q; € {V, 3} and F is quantifier-free.

Every FOL formula F can be transformed to formula F’ in PNF
st. F/ & F.

Example: Find equivalent PNF of

F: Vx. =(3y. p(x,y) A p(x,2)) vV Jy. p(x,y)
T to the end of the formula

1. Write F in NNF

Fi: ¥x. (Yy. =p(x,y) V —p(x,2)) V Jy. p(x,y)

2. Rename quantified variables to fresh names

Fo: Vx. (Vy. =p(x,y) V =p(x,2)) Vv Iw. p(x,w)
Tin the scope of ¥x

3. Remove all quantifiers to produce quantifier-free formula
F3: =p(x,y) V =p(x,z) V p(x,w)
4. Add the quantifiers before F3
Fyq: Vx.Vy. 3w. =p(x,y) V —p(x,z) V p(x,w)
Alternately,
Fy: ¥x. 3w. Vy. =p(x,y) V =p(x,z) V p(x,w)

Note: In Fy, Vy is in the scope of Vx, therefore the order of
quantifiers must be ---Vx---Vy .-

Fs & Fand F; & F

Note: However G & F

G: Vy. dw. V¥x. =p(x,y) V =p(x,z) V p(x,w
Y () v p(z) Y plxw)

Decidability of FOL

» FOL is undecidable (Turing & Church)
There does not exist an algorithm for deciding if a FOL
formula F is valid, i.e. always halt and says “yes” if F is valid
or say "no” if F is invalid.

» FOL is semi-decidable
There is a procedure that always halts and says “yes" if F is
valid, but may not halt if F is invalid.

On the other hand,

» PL is decidable
There does exist an algorithm for deciding if a PL formula F
is valid, e.g. the truth-table procedure.

Similarly for satisfiability

Semantic Argument Proof

To show FOL formula F is valid, assume | [~ F and derive a
contradiction / = L in all branches

» Soundness
If every branch of a semantic argument proof reach | = L,
then F is valid

» Completeness
Each valid formula F has a semantic argument proof in which
every branch reach | = L

THE CALCULUS OF COMPUTATION:
Decision Procedures with
Applications to Verification

by
Aaron Bradley
Zohar Manna

Springer 2007

3. First-Order Theories

First-Order Theories

First-order theory T defined by

» Signature X - set of constant, function, and predicate symbols

> Set of axioms A7 - set of closed (no free variables) X-formulae

2 -formula constructed of constants, functions, and predicate
symbols from X, and variables, logical connectives, and quantifiers

The symbols of ¥ are just symbols without prior meaning — the
axioms of T provide their meaning

A X-formula F is valid in theory T (T-valid, also T = F),
if every interpretation / that satisfies the axioms of T,

i.e. | = Aforevery A€ At (T-interpretation)
also satisfies F,

ie. | = F

A X-formula F is satisfiable in T (T-satisfiable), if there is a
T-interpretation (i.e. satisfies all the axioms of T) that satisfies F

Two formulae F; and F, are equivalent in T (T-equivalent), if
T E AR < F,
i.e. if for every T-interpretation I, | = Fiff | = F

A fragment of theory T is a syntactically-restricted subset of
formulae of the theory.

Example: quantifier-free segment of theory T is the set of
quantifier-free formulae in T.

A theory T is decidable if T = F (T-validity) is decidable for
every > -formula F,
i.e., there is an algorithm that always terminate with “yes”,
if Fis T-valid, and “no”, if F is T-invalid.

A fragment of T is decidable if T |= F is decidable for every
> -formula F in the fragment.

Theory of Equality Tg

Signature

Z::{:’aabvc7"' 7f7gaha"' 7p7q7ra"'}

consists of

» =, a binary predicate, interpreted by axioms.
» all constant, function, and predicate symbols.

Axioms of Tg

1.
2
3.
4. for each positive integer n and n-ary function symbol f,

Vx. x = x (reflexivity)
VX, y.x=y — y=x (symmetry)
Vx,y,z.x=y Ny=z — x=2z (transitivity)

VX]_,... yXny Y1y Yn- /\,'Xi =Yi — f(X1a~~' aXn) - f(}’l» 7.yn)
(congruence)

for each positive integer n and n-ary predicate symbol p,

VX1 Xy Y155 Y /\,-Xi =yi — (p(x1;--,x0) < p(y1,---,¥n))
(equivalence)

Congruence and Equivalence are axiom schemata. For example,
Congruence for binary function f, for n = 2:

Vxi, xo, yi,yo. X1 =y1 N xo =ys — h(x,x) = h(y,)

TE is undecidable.

The quantifier-free fragment of Tg is decidable. Very efficient
algorithm.

Semantic argument method can be used for Tg
Example: Prove
F:a=b A b=c — g(f(a),b) =g(f(c),a) Tg-valid.
Suppose not; then there exists a Tg-interpretation / such that
I = F. Then,

1. I ¥~ F assumption

2.1 E a=bAb=c 1, —

3. I % g(f(a), b) = g(f(c),a) 1, —

4. | = a=b 2, A

5. | E b=c 2, A

6. | E a=c 4, 5, (transitivity)

7. I E f(a)=1(c) 6, (congruence)

8. I E g(f(a),b) =g(f(c),a) 4,7, (congruence), (symmetry)

3 and 8 are contradictory = F is Tg-valid

Natural Numbers and Integers

Natural numbers N ={0,1,2,---}
Integers Z={--,-2,-1,0,1,2,---}

Three variations:
» Peano arithmetic Tpa: natural numbers with addition and
multiplication
» Presburger arithmetic Ty: natural numbers with addtion

» Theory of integers Tyz: integers with +, — >

1. Peano Arithmetic Tpa (first-order arithmetic)

ZPA: {07 17 +7 y :}

The axioms:
1. Vx. 2(x+1=0)
Vx,y. x+1l=y+1 — x=y
FIO] A (¥x. FIx] — F[x+1]) — Vx. F[x]
Vx. x+0=x

o oA W

Vx.x-0=0

Vx,y. x+(y+1)=(x+y)+1 (plus successor
(times zero

7.9,y. x-(y+1)=x-y+x (times successor

Line 3 is an axiom schema.
Example: 3x + 5 = 2y can be written using > pa as

X+ x4+x+14+14+1+141=y+y

We have > and > since
3x+5>2y writteas 3z.z#0 A 3x+b=2y+~z
3x+5>2y writeas 3Jz.3x+5=2y+~z

Example:

» Pythagorean Theorem is Tpa-valid
Iy, z.x#0 AN y#0 AN z#0 A xx+yy =zz

» Fermat's Last Theorem is Tpa-invalid (Andrew Wiles, 1994)
dn.n>2 — Ix,y,zx#OQANYy ZO0Nz#OAX"+y"=2Z"

Remark (Godel's first incompleteness theorem)

Peano arithmetic Tpa does not capture true arithmetic:

There exist closed ¥ ps-formulae representing valid propositions of
number theory that are not Tpa-valid.

The reason: Tpa actually admits nonstandard interpretations

Satisfiability and validity in Tpa is undecidable.
Restricted theory — no multiplication

2. Presburger Arithmetic Ty

Yn: {0, 1, +, =} no multiplication!
Axioms Ty:
1. ¥x. 7(x+1=0) (zero)
2. Vx,y.x+1=y+1 - x=y (successor)
3. F[0] A (¥x. F[x] — F[x+1]) — Vx. F[x] (induction)
4. Vx. x+0=x (plus zero)
5. Vx,y. x+(y+1)=(x+y)+1 (plus successor)

3 is an axiom schema.

Ty-satisfiability and Ty-validity are decidable
(Presburger, 1929)

3. Theory of Integers Ty

Yz {..,=2,-1,0,1,2 ..., —3,=2, 2,3 ... +, — = >}
where
» ...,—2,—-1,0, 1, 2, ... are constants
» ...,—3.,—=2-,2., 3., ... are unary functions
(intended 2 - x is 2x)
> =

‘ Tz and Ty have the same expressiveness

e Every Tz-formula can be reduced to Y -formula.

Example: Consider the Tz-formula
Fo: Vw,x. dy,z. x+2y —z—13> -3w+5

Introduce two variables, v, and v, (range over the nonnegative
integers) for each variable v (range over the integers) of F

VWp, Wi,y Xp, Xn- 3Yps Yns Zps Zn-

Fi:
! (%p —%n) +2(¥p — ¥n) — (2p — zn) =13 > =3(wp — wp) +5

Eliminate — by moving to the other side of >

VWp» Whn, Xp, Xn- El}/pa Yns Zp; Zn-

FQZ
Xp +2yp + zp +3wWp > Xp + 2yp + 2p + 13+ 3w, +5

Eliminate >

VWp, Wi,y Xp, Xn. 3Yp,s Yns Zp, Zp. 3U.
—(u=0) A
Xp+Ypt+ Yp+ 2Zn+ wWp+ wp+ wp

=Xpn+YntyYntzZp+wh+wy+w,+u
+14+1+14+14+1+14+1+1+4+1
+14+1+1+14+1+14+1+1+1.

Fs:

which is a Ty-formula equivalent to Fg.

e Every Ty-formula can be reduced to X z-formula.

Example: To decide the Ty-validity of the Ty-formula
Vx.dy. x=y+1
decide the Tyz-validity of the Tz-formula
Vx. x>0 — dy.y >0 A x=y+1,

where t; > tr) expandsto t; =t V t1 > b

Tz-satisfiability and Ty-validity is decidable

Rationals and Reals
22{07]-7 +7 —y T Z}
» Theory of Reals Tg (with multiplication)
x2 =2 = X = :I:\/E

» Theory of Rationals Tg (no multiplication

2x =7 = X =
~~
X+Xx

NN =

Note: Strict inequality OK

Vx,y.dz. x+y >z
rewrite as

Vx,y.3z. 2(x+y=2z) AN x+y>z

1. Theory of Reals Ty

ZR: {07]-7 +7 Ty T Z}
with multiplication.
Axioms in text.

Example:
Va,b,c. b> —4ac>0 < 3Ix.ax’+bx+c=0

is Tr-valid.

Tr is decidable (Tarski, 1930)
High time complexity

2. Theory of Rationals Tg

ZQ: {07]-7 +, = = Z}
without multiplication.
Axioms in text.

Rational coefficients are simple to express in Tg
Example: Rewrite

1 n 2 -

_X pa—

as the X g-formula
3x +4y > 24

Tq is decidable
Quantifier-free fragment of Tq is efficiently decidable

Recursive Data Structures (RDS)

1. RDS theory of LISP-like lists, Tcons

Y cons : {cons, car, cdr, atom, =}

where
cons(a, b) — list constructed by concatenating a and b
car(x) — left projector of x: car(cons(a, b)) = a
cdr(x — right projector of x: cdr(cons(a, b)) = b

atom(x) - true iff x is a single-element list

Axioms:

1. The axioms of reflexivity, symmetry, and transitivity of =

2. Congruence axioms

VX1, X2, ¥1,¥2. X1 = X2 A y1=y2 — cons(xy, y1) = cons(xz, y2)
Vx,y. x =y — car(x) = car(y)
Vx,y. x =y — cdr(x) = cdr(y)

N ok

Equivalence axiom

VX»}/-XZy — (atom(x) — atom(y))

Vx,y. car(cons(x,y)) = x (left projection)
Vx,y. cdr(cons(x,y)) =y (right projection)
Vx. matom(x) — cons(car(x),cdr(x)) =x (construction)
Vx, y. —atom(cons(x, y)) (atom)

Teons is undecidable
Quantifier-free fragment of Tons is efficiently decidable

2. Lists 4 equality

T;ns - TE U 7_cons

Signature: 2E U Xcons

(this includes uninterpreted constants, functions, and predicates)

Axioms: union of the axioms of Tg and Tcons

Tions is undecidable

Quantifier-free fragment of T2

cons

is efficiently decidable

cons-formula

Example: We argue that the X
£ car(a) = car(b) A cdr(a) =cdr(b) A —atom(a) A —atom(b)
- — fla)=1(b)

is T gns-valid.

Suppose not; then there exists a T3

—ons-interpretation / such that

I £ F. Then,
1. | ¥ F assumption
2. | [car(a) =car(b) L, —, A
3. | E cdr(a) =cdr(b) 1, -, A
4. | [—atom(a) 1, -, A
5. | E —atom(b) 1, -, A
6. | [f(a)="1(b) 1, —
7. | = cons(car(a),cdr(a)) = cons(car(b),cdr(b))
2, 3, (congruence)
8. | [cons(car(a),cdr(a)) = a 4, (construction)
9. | [cons(car(b),cdr(b)) = b 5, (construction)
10. I E a=b 7, 8, 9, (transitivity)
11. I E f(a)=f(b) 10, (congruence)

Lines 6 and 11 are contradictory, so our assumption that | [~ F

must be wrong. Therefore, F is T_,.-valid.

Theory of Arrays

1. Theory of Arrays T

Signature
o AL e, =)
where
» a[i] binary function —

read array a at index i (“read(a,i)")

» a(i<v) ternary function —
write value v to index i of array a (“write(a,i,e)")

Axioms
1. the axioms of (reflexivity), (symmetry), and (transitivity) of
Te
2. Ya,i,j. i=j — a[i] = a[j] (array congruence)
3. Va,v,i,j.i=j — a(iqv)[j]=v (read-over-write 1)
4. Ya,v,i,j. i #j — a(iav)[j] = a[j] (read-over-write 2)

2.1

Note: = is only defined for array elements
F: alil=e — a(i<e)=a
not Ta-valid, but
F': alij=e — Vj. a(i<e)[j] = alj] ,

is Ta-valid.

Ta is undecidable
Quantifier-free fragment of Ty is decidable

2. Theory of Arrays T, (with extensionality)

Signature and axioms of T, are the same as Ta, with one
additional axiom

Va,b. (Vi. a[i] = b[i]) < a=b (extensionality)

Example:
F: alil=e — a(i<e)=a

is T, -valid.

T, is undecidable
Quantifier-free fragment of T, is decidable

Combination of Theories
How do we show that
1<x A x<2A f(x)#£f(1) A f(x)#T(2)

is (Te U Tyz)-unsatisfiable?

Or how do we prove properties about
an array of integers, or
a list of reals ...7

Given theories T; and T» such that
21 N X = {:}

The combined theory T; U T» has
» signature X3 U 3o

» axioms A; U A,

gff = quantifier-free fragment

Nelson & Oppen showed that

if satisfiability of qff of T is decidable,
satisfiability of gff of T, is decidable, and
certain technical simple requirements are met

then satisfiability of qff of T; U T, is decidable.

THE CALCULUS OF COMPUTATION:
Decision Procedures with
Applications to Verification

by
Aaron Bradley
Zohar Manna

Springer 2007

4. Induction

Induction

» Stepwise induction (for Tpa, Tcons)

» Complete induction (for Tpa, Tcons)

Theoretically equivalent in power to stepwise induction,
but sometimes produces more concise proof

» Well-founded induction

Generalized complete induction

» Structural induction

Over logical formulae

Stepwise Induction (Peano Arithmetic Tpa)

Axiom schema (induction)

F[O] A ... base case
(Vn. Fln] — F[n+1]) ... inductive step
— Vx. F[x] ... conclusion

for pa-formulae F[x] with one free variable x.

To prove Vx. F[x], i.e.,
F[x] is Tpa-valid for all x € N,
it suffices to show

» base case: prove F[0] is Tpa-valid.

» inductive step: For arbitrary n € N,
assume inductive hypothesis, i.e.,
F[n] is Tpa-valid,
then prove the conclusion
F[n+ 1] is Tpa-valid.

Example:

Theory T,;rA obtained from Tpa by adding the axioms:

> Vx. x0=1
> Ux,y. xY Tl =X x
> Vx,z. exp3(x,0,z) =z

> ‘v’x,y,z. eXp3(X7}/+ 172) = eXp3(X>y>X 'Z)

Prove that

VXLy‘ exp3(x,y, 1) = Xy‘

is TPA—valld.

First attempt:
Yy [Vx. exps(x,y,1) = x”]

Fly]

We chose induction on y. Why?

Base case:
F[0] : Vx. exp3(x,0,1) = x°
OK since exp;(x,0,1) = 1 (P0) and x° = 1 (EO0).

Inductive step: Failure.
For arbitrary n € N, we cannot deduce
Fln+1] : ¥x. exps(x,n+1,1) = x"*+1
from the inductive hypothesis

F[n] : ¥x. exp3(x,n,1) = x"

Second attempt: Strengthening

Strengthened property

Vx,y,z. exp3(x,y,z) =x¥- Z‘

Implies the desired property (choose z = 1)
Vx,y. expz(x,y,1) = x¥

Again, induction on y
Vy [VX>Z‘ exp3(x,y,z) =x"- Z]

Fly]

Base case:
F[0] : Vx,z. exp3(x,0,2z) =x° - z
OK since exps(x,0,z) = z (P0) and x° = 1 (E0).

Inductive step: For arbitrary n € N
Assume inductive hypothesis
Fln] : Vx,z. exp3(x,n,z) =x" -z (IH)
prove
Fln+1]: Vx,?’. exps(x,n+1,2') = x"1. 2

exps(x,n+1,2') = exps(x, n,x - Z') (P1)
:Xn-(X-Z,) IH F[n],z»—>X'Z’
— Xn+1 .7 (El)

Stepwise Induction (Lists Teons)

Axiom schema (induction)

(V atom u. Flu] A ... base case
(Vu,v. Flv] — F[cons(u,v)]) ... inductive step
— ¥x. F[x] ... conclusion

for Xeons-formulae F[x] with one free variable x.

To prove Vx. F[x], i.e.,
F[x] is Teons-valid for all lists x,
it suffices to show

> base case: prove F[u] is Tcons-valid for arbitrary atom

» inductive step: For arbitrary list v,
assume inductive hypothesis, i.e.,
Flv] is Teons-valid,
then prove the conclusion
Flcons(u, v)] is Tcons-valid for arbitrary atom u.

Example

Theory TJ, obtained from Tcons by adding the axioms for
concatenating two lists, reverse a list, and decide if a list is flat
(i.e., flat(x) is T iff every element of list x is an atom).

> V atom u. Vv. concat(u,v) = cons(u, v)

> Yu, v, x. concat(cons(u, v), x) = cons(u, concat(v, x))
> V atom u. rvs(u) = u

> Vx,y. rvs(concat(x,y)) = concat(rvs(y), rvs(x))

> V atom u. flat(u)

> Yu,v. flat(cons(u,v)) < atom(u) A flat(v)

Prove

‘Vx. flat(x) — rvs(rvs(x)) = x‘
is Th

cons

-valid.

Base case: For arbitrary atom u,
Flu] : flat(u) — rvs(rvs(u)) = u
by RO.

(Co
(C1
(RO
(R1
(FO
(F1

— — N — N —

Inductive step: For arbitrary lists u, v,
assume the inductive hypothesis
Flv]: flat(v) — rvs(rvs(v))=v (IH)

Prove
Flcons(u,v)] : flat(cons(u,v)) —
rvs(rvs(cons(u, v))) = cons(u,v) (x)

Case —atom(u)
flat(cons(u,v)) < atom(u) A flat(v) & L
by (F1). (*) holds since its antecedent is L.

Case atom(u)
flat(cons(u, v)) < atom(u) A flat(v) < flat(v)
by (F1).

rvs(rvs(cons(u, v))) = --- = cons(u, v).

Complete Induction (Peano Arithmetic Tpa)

Axiom schema (complete induction)

(Vn. (Vo'. i’ <n — F[n']) — F[n]) ... inductive step
— Vx. F[x] ... conclusion

for pa-formulae F[x] with one free variable x.

To prove ¥x. F[x], i.e.,
F[x] is Tpa-valid for all x € N,
it suffices to show

» inductive step: For arbitrary n € N,
assume inductive hypothesis, i.e.,
F[n'] is Tpa-valid for every n" € N such that n’ < n,
then prove
F[n] is Tpa-valid.

Is base case missing?
No. Base case is implicit in the structure of complete induction.
Note:

» Complete induction is theoretically equivalent in power to
stepwise induction.
» Complete induction sometimes yields more concise proofs.

Example: Integer division quot(5,3) =1 and rem(5,3) = 2
Theory Tj, obtained from Tpa by adding the axioms:

> Vx,y. x <y — quot(x,y) =0 (Q0)
» Vx,y.y >0 — quot(x+y,y) = quot(x,y) +1 (Q1)
> Vx,y. x<y — rem(x,y) = x (RO)
> Vx,y.y >0 — rem(x+y,y) = rem(x,y) (R1)
Prove

(1) Vx,y.y >0 — rem(x,y) <y
(2) Vx,y. y >0 — x =y quot(x,y) + rem(x,y)
Best proved by complete induction.

Proof of (1)
Vx. Vy.y >0 — rem(x,y) <y

Flx]
Consider an arbitrary natural number x.
Assume the inductive hypothesis
VX' X' <x — Yy .y >0 — rem(X,y') <y (IH)

F[x']
Prove F[x]:Vy.y >0 — rem(x,y) <y.
Let y be an arbitrary positive integer
Case x < y:

rem(x,y) = x by (RO)
< y case
Case =(x < y):

Then there is natural number n, n< xst. x=n+y

rem(x,y) = rem(n+y,y) x=n+y
= rem(n,y) (R1)
< vy IH (X' — n,y —y)

sincen<xandy >0

Well-founded Induction

A binary predicate < over a set S is a well-founded relation iff
there does not exist an infinite decreasing sequence

S >SS >8>
Note: where s < tiff t > s

Examples:
» < is well-founded over the natural numbers.
Any sequence of natural numbers decreasing according to < is
finite:
1023 >39>30>29>8>3>0.
» < is not well-founded over the rationals.
111
1>3>3>7>-
is an infinite decreasing sequence.

» The strict sublist relation <. is well-founded on the set of all
lists.

Well-founded Induction Principle

For theory T and well-founded relation <,
the axiom schema (well-founded induction)

(Vn. (WVn'.n" <n — F[n]) — F[n]) — Vx. F[x]
for X-formulae F[x]| with one free variable x.

To prove Vx. F[x], i.e.,
F[x] is T-valid for every x,
it suffices to show
» inductive step: For arbitrary n,
assume inductive hypothesis, i.e.,
F[n'] is T-valid for every n’, such that n' < n
then prove
F[n] is T-valid.

Complete induction in Tpp is a specific instance of well-founded
induction, where the well-founded relation < is <.

Lexicographic Relation

Given pairs of sets and well-founded relations

(51’ <1),) (Sma <m)

Construct
S=5x...,5,

Define lexicographic relation < over S as

m i—1
(51,...,5m)-<(t1,...,tm)<=> \/ S;—<,'t,'/\/\5j:tj
¢ " i=1 j=1
for s;, t; € 5;.

o If (51,<1),...,(5m, <m) are well-founded relations, so is (S, <).

Lexicographic well-founded induction principle

For theory T and well-founded lexicographic relation <,

Vni,...,Nm.
(V... n. (nh, ..o nh) < (n1,..oonm) — Fln,....n0])
— Fln1,...,nm]
— VX1, .oy Xme F[X1, .00 Xm]
for X-formula F[x,...,xm] with free variables x, ..., Xm, is
T-valid.

Same as regular well-founded induction, just

n = tuple (n,...,nm).

Example: Puzzle

Bag of red, yellow, and blue chips
If one chip remains in the bag — remove it
Otherwise, remove two chips at random:

1. If one of the two is red —
don’t put any chips in the bag

2. If both are yellow —
put one yellow and five blue chips

3. If one of the two is blue and the other not red —
put ten red chips

Does this process terminate?

Proof: Consider
» Set S : N3 of triples of natural numbers and

» Well-founded lexicographic relation <3 for such triples, e.g.

(11,13,3) #3 (11,9,104) (11,9,104) <3 (11,13,3)

Show
(y/7b/7r/) <3 (yubur)
for each possible case. Since <3 well-formed relation
= only finite decreasing sequences = process must terminate

1. If one of the two removed chips is red —
do not put any chips in the bag

(y—1,b,r—1)
(y7b_17r_1) <3(y7b7r)
(y,b,r —2)

2. If both are yellow —
put one yellow and five blue
(y_17b+57r) <3 (yabar)

3. If one is blue and the other not red —
put ten red

(y—1,b—1,r+10)
(y,bf2,r+10) <3(yabar)

Example: Ackermann function

Theory T§Ck is the theory of Presburger arithmetic Ty (for natural
numbers) augmented with

Ackermann axioms:

> Vy. ack(0,y) =y +1 (LO)
> Vx. ack(x +1,0) = ack(x, 1) (RO)
> Vx,y. ack(x + 1,y + 1) = ack(x, ack(x + 1,y)) (S)

Ackermann function grows quickly:

ack(0,0) =1

ack(1,1) =3 Y
ack(2.2) =7 ack(4,4) =2 -3
ack(3,3) =61

Let <5 be the lexicographic extension of < to pairs of natural
numbers.
(LO) Vy. ack(0,y) =y +1
does not involve recursive call
(RO) Vx. ack(x 4+ 1,0) = ack(x,1)
(x+1,0) >5 (x,1)
(S) Vx,y. ack(x+ 1,y + 1) = ack(x, ack(x + 1,y))
(x+Ly+1)>2(x+1y)
(x+1,y+1) > (x,ack(x +1,y))

No infinite recursive calls = the recursive computation of
ack(x,y) terminates for all pairs of natural numbers.

Proof of property

Use well-founded induction over <, to prove
Vx,y. ack(x,y) >y
is T3 valid.

Consider arbitrary natural numbers x, y.
Assume the inductive hypothesis

VX' y' (X)) <2 (x,y) — ack(X,y') >y
—_—

Flx".y']
Show
Flx,y] : ack(x,y) > y.

Case x =0:
ack(0,y)=y+1>y by (LO)

(1H)

Case x>0 A y=0:
ack(x,0) = ack(x — 1,1) by (RO)
Since
(‘X - 17\ 1 ,) <2 (Xv.y)

’

x! y
Then
ack(x —1,1) > 1 by (IH) (x' — x—1,y" — 1)
Thus
ack(x,0) = ack(x —1,1) >1>0

Case x>0 A y>0:
ack(x,y) = ack(x — 1, ack(x,y — 1)) by (S) (1)
Since

—1,ack -1
(\X , dCl (X7y)) <2 (Xay)
x! y!
Then
ack(x — 1,ack(x,y — 1)) > ack(x,y — 1) (2)

by (IH) (x’ — x —1,y" + ack(x,y — 1)).

Furthermore, since

(\X ,7)/—1) <2 (X’Y)
x! y
then

ack(x,y —1) >y —1 (3)

!

By (1)—(3), we have

(1) (2 (3)
ack(x,y) = ack(x —1,ack(x,y —1)) > ack(x,y —1) > y—1

Hence
ack(x,y)>(y—-1)+1=y

Structural Induction

How do we prove properties about logical formulae themselves?

Structural induction principle

To prove a desired property of FOL formulae,

inductive step: Assume the inductive hypothesis, that for
arbitrary FOL formula F, the desired property holds for every
strict subformula G of F.

Then prove that F has the property.

Since atoms do not have strict subformulae, they are treated as
base cases.

Example: Prove that

Every propositional formula F is equivalent to a propositional
formula F’ constructed with only T, V, = (and propositional

variables)

Base cases:
F: T = F T
F:1L = F =T

F:P = F': P for propositional variable P

Inductive step:

Assume as the inductive hypothesis that G, Gi, Gy are equivalent

to G', Gy, G} constructed only from T, V, = (and propositional

variables).
F:=G =
F:G N Gy =
F:G — G =

FG1<—>G2$

F:
F:
F
F/.

-G’
~(=G{ V_=G3)
ﬂG{ vV Gh

Each F' is equivalent to F and is constructed only by T, V, = by

the inductive hypothesis.

aA- D7

THE CALCULUS OF COMPUTATION:
Decision Procedures with
Applications to Verification

by
Aaron Bradley
Zohar Manna

Springer 2007

5. Program Correctness: Mechanics

Program A: LinearSearch with function specification

Qpre 0 < ¢ A u < |a
O@post rv « Ji.l<i<u A alil]=e
bool LinearSearch(int[] a, int ¢, int u, int e) {
for @ T
(inti:=4¢ i<u; i:=i+1){
if (a[i] = e) return true;

return false;

}

Function LinearSearch searches subarray of array a of integers for
specified value e.

Function specifications

» Function postcondition (@post)
It returns true iff a contains the value e in the range [/, u]

» Function precondition (@pre)
It behaves correctly only if 0 < ¢ and u < |4

for loop: initially set i to be ¢,
execute the body and increment / by 1

aslongasi<n

@ - program annotation

Program B: BinarySearch with function specification

@pre 0 < ¢ A u < |a|l A sorted(a,?, u)
O@post rv «» Ji. b <i<u A ali]=e
bool BinarySearch(int[] a, int ¢, int u, int e) {
if (¢ > u) return false;
else {
int m:= ({+ u) div 2;
if (a[m] = e) return true;
else if (a[m| < e) return BinarySearch(a,m+ 1, u, e);
else return BinarySearch(a,?,m — 1, e);

The recursive function BinarySearch searches subarray of sorted
array a of integers for specified value e.

sorted: weakly increasing order, i.e.
sorted(a,l,u) & Vi, j. £ <i<j<u — a[i] <alj]
Defined in the combined theory of integers and arrays, Tzua

Function specifications

» Function postcondition (@post)

It returns true iff a contains the value e in the range [¢, u]
» Function precondition (@pre)

It behaves correctly only if 0 < ¢ and u < |a|

Program C: BubbleSort with function specification

QOpre T
@post sorted(rv, 0, |rv| — 1)
int[] BubbleSort(int[] ap) {
int[] a := ap;
for@T
(inti:=la|—=1,i>0; i:==i—-1){
for @ T
(intj:=0; j<i; j=j+1){
if (afj] > alj +1]) {

int t = a[j];
alj] = alj + 1J;
aj+1] :=t;
}
}
}
return a,

}

Function BubbleSort sorts integer array a

a: | unsorted || sorted |

largest
by “bubbling” the largest element of the left unsorted region of a

toward the sorted region on the right.

Each iteration of the outer loop expands the sorted region by one
cell.

Sample execution of BubbleSort

2 3 4 1 2 5 6
2 4 1 2 5 6
R

9 3 ®/_\® 5 5 6

J
2 3 1 n 3 5 6
J i

I 1 2 4 5 6
PR

. s ; e
: > RS

Program Annotation

» Function Specifications

function postcondition (@post)

function precondition (@pre)

» Runtime Assertions
eg, ©0<j<|a ANO<j+1<]a

aljl == alj + 1]

» Loop Invariants
eg, QL U<i ANV UL<j<i — aj]#e

Program A: LinearSearch with runtime assertions

Q@pre T
Opost T
bool LinearSearch(int[] a, int ¢, int u, int e) {
for@T
(inti:=4¢ i<u; i:=i+1){
0<i<]|al

if (a[i] = €) return true;

}

return false;

}

Program B: BinarySearch with runtime assertions

Q@pre T

Opost T

bool BinarySearch(int[] a, int ¢, int v, int e) {
if (¢ > u) return false;

else {
©2+#£0;
int m = ({ + u) div 2;
Q0<mc<|al;
if (a[m] = e) return true;
else {
@0<m«<|a;

if (a[m] < e) return BinarySearch(a, m + 1, u, e);
else return BinarySearch(a,¢,m — 1, e);
}
}
}

Program C: BubbleSort with runtime assertions

@pre T
@post T
int[] BubbleSort(int[] ag) {
int[] a := ap;
for@ T
(intj:=|a|—-1; i>0; i:=i—1){
for @ T
(int j:=0; j<i;, j:=j+1){
Q0<j<|a ANO<Zj+1<]al;

if (afj] > aj +1]) {

int t := a[j];
alj] .= al[j +1];
alj + 1] == t;
}
}
}
return a,

}

Loop Invariants

while
@F
(cond) { (body) }

» apply (body) as long as (cond) holds

» assertion F holds at the beginning of every iteration
evaluated before (cond) is checked

for

QF
((init); (cond); (incr)) { (body) }

=

(init);
while
QF
(cond) { (body) (incr) }

Program A: LinearSearch with loop invariants

Qpre 0 < ¢ A u < |a
O@post rv « Ji.l<i<u A alil]=e
bool LinearSearch(int[] a, int ¢, int u, int e) {

for
QL: ¢<i N (Vj.l<j<i — alj]#e)
(inti:=4¢ i<wu; i:=i4+1){

if (a[i] = €) return true;

}

return false;

}

Proving Partial Correctness

A function is partially correct if
when the function's precondition is satisfied on entry,
its postcondition is satisfied when the function halts.

» A function + annotation is reduced to finite set of
verification conditions (VCs), FOL formulae

» If all VCs are valid, then the function obeys its specification
(partially correct)

Basic Paths: Loops

To handle loops, we break the function into basic paths
© <« precondition or loop invariant

sequence of instructions
(with no loop invariants)

© < loop invariant, assertion, or postcondition

Program A: LinearSearch

Basic Paths of LinearSearch

(1)
@pre 0 < /¢ A u<|a]
i=Y
OL: (<i ANVj.L<j<i — alj]#e
(2)

OL: (<i ANVj.L<j<i — alj]#e
assume / < u;

assume a[i] = e;

rv = true;

O@post rv «» Fj.0<j<u A aj]=ce

(3)
QL: (<i ANVj.L<j<i — a|j]#e
assume | < u;

assume a[i] # e;

i=1i4+1;

OL: ¢<i NVjL<j<i — a[j]#e

(4)
OL: U{<i ANVj.L<j<i — a|j]#e
assume / > u;
rv .= false;
O@post rv < Fj. L <j<u A a[j]=¢e

Visualization of basic paths of LinearSearch

(1)
0 (3
(2).(4)

Program C: BubbleSort with loop invariants

Q@pre T
@post sorted(rv,0, |rv| — 1)
int[] BubbleSort(int[] ap) {
int([] a := ap;
for
—-1<i<|a
@L; : | A partitioned(a,0,i,i+ 1,]a] — 1)
A sorted(a, i, |a| — 1)
(inti:=la|—1;i>0; i:=i—-1){

for

1<i<l|a| AO<j<i

A partitioned(a,0,i,i + 1, |a| — 1)
A partitioned(a,0,j — 1,/,)

A sorted(a, i, |a| — 1)

(intj:=0; j<i; j:=j+1){

if (a[j] > a[j +1]) {

QL :

int t := a[j];
alj] == a[j + 1];
alj +1] .= t;

¥
}
¥

return a;

Partition

partitioned(a, ¢1, uz, 2, up)
-~ Vll,j.£1§i§U1<€2§j§U2 — a[/]SaL/]
in Tz U Ta.

That is, each element of a in the range [¢1, u1] is < each element
in the range [(2, uy].

Basic Paths of BubbleSort

(1)
Qpre T;
a = 4o,
i:=lal -1,

@L;: —1<i<|a] A partitioned(a,0,/,i+1,|a] — 1)
A sorted(a, i, |a| — 1)

(2)

@L;: —1<i<|a] A partitioned(a,0,/,i+1,|al —1)

A sorted(a, i, |a] — 1)
assume / > 0;

J =0
oL - [1<i<]a| A 0O<j<i A partitioned(a,0,i,i +1,]a| —1)]
2 | A partitioned(a,0,j —1,/,j) A sorted(a,i,|a] — 1)
: () :
1<i<l|al ANO0<j<i A partitioned(a,0,/,i +1,|a] — 1)
@L2 . o
| A partitioned(a,0,j — 1,/,j) A sorted(a,i,|a|] — 1)

assume j < /;

assume a[j] > a[j + 1];
t = a[j];

alj] := a[j +1];
alj+1] :==t;
=it

L,

J1<i<lal A 0<j<i A partitioned(a,0,i,i +1,|a] — 1)
| A partitioned(a,0,j — 1,/,/) A sorted(a,i,|a] — 1)

(4)
1<i<lal AN 0<j<i A partitioned(a,0,7,i +1,|a] — 1)
QL : L g .. .
A partitioned(a,0,j — 1,/,j) A sorted(a,i,|a] — 1)

assume j < /;
assume a[j] < a[j + 1];
J=J+1

1<i<|a] AN 0<j<i A partitioned(a,0,i,i+1,]a| — 1)
0L, : o

A partitioned(a,0,j — 1,/,j) A sorted(a,i,|a] — 1)

(5)
oL, {1 <i<la AN 0<j<i A partitioned(a,0,i,i+1,|a| — 1)}
| A partitioned(a,0,j — 1,/,j) A sorted(a,i,|al —1)
assume j > i;
i=i—-1;

@L;: —1<i<|a] A partitioned(a,0,/,i+1,|a] — 1)
A sorted(a, i, |a| — 1)

(6)

@L;: —1<i<|a| A partitioned(a,0,/,i+1,|a] —1) A
sorted(a, i, |a] — 1)

assume / < 0;

rv = a

@post sorted(rv,0, |rv| — 1)

Visualization of basic paths of BubbleSort

(1)

(6) (5) (2)

(3). (4)

Basic Paths: Function Calls

» Loops produce unbounded number of paths
loop invariants cut loops to produce
finite number of basic paths

» Reursive calls produce unbounded number of paths
function specifications cut function calls

In BinarySearch

@pre 0 < ¢ A u<|a] A sorted(a,?, u) ...Fla, ¢, u,e]

OR;: 0<m+1 A u<]|a|l A sorted(a,m+1,u) ...Fla,m+1,u,¢€]
return BinarySearch(a,m+ 1, u, €)

OR,: 0<¢{ AN m—1<|al A sorted(a,l,m—1) ...Fla,{,m—1,¢]
return BinarySearch(a,¢{,m — 1, ¢)

Program B: BinarySearch with function call assertions

@pre 0 < /¢ A u < |a|l A sorted(a,?, u)
O@post rv «» Ji. b <i<u A ali]=e
bool BinarySearch(int[] a, int ¢, int u, int e) {
if (¢ > u) return false;
else {
int m:= ({ + u) div 2;
if (a[m] = e) return true;
else if (ajm] <e) {
OR;: 0<m+1 A u<|al A sorted(a,m+ 1, u);
return BinarySearch(a,m + 1, u, e);
} else {
ORy: 0<¢ AN m—1<|a|] A sorted(a,?,m—1);
return BinarySearch(a,¢,m — 1, e);
}
}
}

Verification Conditions

» Program counter pc — holds current location of control
» State s — assignment of values to all variables

Example: Control resides at L; of BubbleSort
s: {pc — Ly, a— [2,0;1], i — 2, j — 0,
t s 2, v [}
» Weakest precondition wp(F, S)
For FOL formula F, program statement S,
If s &= wp(F, S) and if statement S is executed on state s
to produce state s, then s’ &= F

Weakest Precondition wp(F, S)

» wp(F, assume ¢) & ¢ — F

» wp(F[v], v:=¢e) & Fle]
» For 51;...;S,,

Verification Condition of basic path

O F
S1;

Sn;
@G
is
F — wp(G, S1;...;5,)
Also denoted by

Example: Basic path

(1)
QF: x>0

S1: x=x+1;

QG: x>1

The VCis
F — Wp(G, 51)
That is,
Wp(G, 51)
< wp(x > 1, x :=x+1)
& (x> 1D{x — x+1}
&S x+12>1
S x>0
Therefore the VC of path (1)
x>0 — x>0,

which is Tz-valid.

Example: Basic path (2) of LinearSearch
(2)
OL: F: U<i ANVjl<j<i — aj]#e
S1: assume / < u;

S, : assume a[i] = e;

S3: rv = true;

@post G: rv « Fj.L<j<u A aj]=e

The VC is
F — wp(G, 51;5;S3)

That is,

wp(G, S1;52; S3)

wp(wp(rv «— Fj. £<j<u A a[j] =e, rv:= true), 51;5)
wp(true <« F. L<j<u A a[j]=e, 51;5)
(EU. (<j<u A a[j] = e, 51;52)

p(wp(EIj. (<j<u A a]j] =e, assume a[i]=¢), S5)
wp(a[il=e — Fj.0<j<u A a[j]=ce, S1)
wp(a[il=e — Jj.0<j<u A a]j]=e, assume i < u)
i<u — (alil=e — Fj.0<j<u A aj]=¢)

ﬁiﬁﬁﬁﬁﬁﬁ

Therefore the VC of path (2)

C<i N (V. L<j<i — alj]#e) (1)
— (i<u — (a[il=e — F.£<j<u A a[j]=¢))

or, equivalently,

C<i N M. l<j<i — a]#e) Ni<uA ail=¢e (2)
— FjA<j<u A aj]=e

according to the equivalence
FinF, - (F3 = (F4 — Fs5)) & (RARARAF) — Fs.

This formula (2) is (Tz U Ta)-valid.

P-invariant and P-inductive

Consider program P with function f s.t.

function precondition Fy and
initial location Lg.

A P-computation is a sequence of states
S0, 51,52, - - -
such that
» so[pc] = Lo and sp = Fop, and
» for each i, sjy1 is the result of executing the instruction at
si[pc] on state s;.
where si[pc] = value of pc given by state s;

A formula F annotating location L of program P is P-invariant if
for all P-computations sy, s1, S», ... and for each index 1/,

silpcl =L = s E F

Annotations of P are P-invariant (invariant) iff each annotation of
P is P-invariant at its location.

Annotations of P are P-inductive (inductive) iff all VCs generated
from program P are T-valid

P-inductive = P-invariant

Total Correctness

Total Correctness = Partial Correctness + Termination

Given that the input satisfies the function precondition, the
function eventually halts and produces output that satisfies the
function postcondition.

Proving function termination:

» Choose set S with well-founded relation <
Usually set of n-tupules of natural numbers with the
lexicographic extension <,
» Find function § (ranking function)
mapping
program states — S
such that ¢ decreases according to < along every basic path.

Since < is well-founded, there cannot exist an infinite sequence of

program states.

Choosing well-founded relation and ranking function

Example: Ackermann function — recursive calls

Choose (N2, <3) as well-founded set

@pre x>0 AN y >0

@post rv > 0
1 (x,y) ... ranking function ¢ : (x,y)
int Ack(int x, int y) {

if (x=0) {

return y + 1;

else if (y =0) {
return Ack(x — 1,1);

}

else {
int z := Ack(x,y — 1);
return Ack(x — 1, z);

}

}

» Show 6 : (x,y) maps into N2, i.e.,
x > 0 and y > 0 are invariants

» Show § : (x,y) decreases from function entry to each
recursive call. We show this.

The basic paths are:

(1)
Opre x>0 A y>0

L (xy)

assume x # 0;

assume y = 0;

I (x—=1,1)

(2)

Opre x>0 A y>0
L (xy)

assume x # 0;
assume y # 0;

l (Xayf 1)

Opre x>0 A y>0
L (xy)

assume x # 0;
assume y # 0;
assume v; > 0;
z:=w;

| (x—1,2)

3)

Showing decrease of ranking function

For basic path with ranking function

©F
1 d[x]
Si;

5,
| w[X]

We must prove that

the value of k after executing S1;---; S,

is less than

the value of § before executing the statements
Thus, we show the verification condition

F — wp(k < d0[Xo], S1;--+:Sk){Xo — X} .

Example: Ackermann function — recursive calls
Verification conditions for the three basic paths
IL.x>0Ay>0AXx#0 A y=0 = (x—1,1) <2 (x,y)
2 x>20ANy>0AXx#0 A y#0 = (x,y—1)<a2(x,y)
3. x>20ANy>0AXx#0ANYy#0A vy >0 =
(x = 1,v1) <2 (x,¥)
Then compute
wp((x — 1,2) <2 (%0, ¥0)
, assume x # 0; assume y # 0; assume v; > 0; z ;= v;)

-~ Wp((X - 17 Vl) <2 (X07y0)
, assume x # 0; assume y # 0; assume v; > 0)
S xZOANyYy#0 A v >0 — (x—1,v) <2 (x0,)

Renaming xp and yp to x and y, respectively, gives
XZOANy#0 A vy >0 — (x—1,v1) <2 (x,y) .

Noting that path (3) begins by asserting x >0 A y >0, we
finally have

x>0ANy>0Ax#A0ANy#0Av1 >0 = (x—1,v1) <2 (x,y) .

R 41

Example: BubbleSort — loops
Choose (N?, <5) as well-founded set

Q@pre T

Opost T

int[] BubbleSort(int[] ag) {
int[] a := ap;

for
@L:i+1>0
L (i+1,i4+1) ... ranking function 47

(int i:=la]—1;, i>0; i:=i—1){

for
@L,: i+1>0 AN i—j>0
L (i+1,i—)) ... ranking function §;
(intj:=0; j<i; j=j+1){
if (alj] > alj +1]) {

int t := a[j];
alj] == a[j + 1];
aj+1] ==t

}
}
}

return g;

We have to prove
» loop invariants are inductive
» function decreases along each basic path.

The relevant basic paths

(1)
@L;: i+1>0
Iy (1+1,i+1)
assume / > 0;
Jj =0
Lo (’+17’_./)
(2).(3)

@Ly: i+1>0Ai—j>0
Lo (i+1,i—))
assume j < /;

j=it
I (i+1i—))

(4)

@L,: i+1>0ANi—j>0
L (i+1,i—)
assume j > /;

i=i—-1;

Ly (i+1,i+1)

Verification conditions
Path (1)

i+1>0Ai>0 = (i+1,i-0)<a(i+1,i+1),
Paths (2) and (3)
i+1>0ANi—j>0Aj<i = (i+1,i—(+1)) <2 (i+1,i—)),
Path (4)
i+1>0ANi—j>0Aj>i = ((i-1)41,(i—-1)41) <2 (i+1,i—)),

which are valid. Hence, BubbleSort always halts.

THE CALCULUS OF COMPUTATION:
Decision Procedures with
Applications to Verification

by
Aaron Bradley
Zohar Manna

Springer 2007

6. Program Correctness: Strategies

Developing Inductive Assertions

Some structured techniques for developing inductive annotations
for proving partial correctness. Just heuristics.

Basic Facts

Example: LinearSearch

for
QOL: (<i<u+1
(inti:=¢ i<u; i:=i+1){
if (a[i] = e) return true;

}

Example: BubbleSort

for
QL : —1<i<|4
(inti:=la| -1, i>0; i:==i—1){
for
QL: 0<i<l|al NO<j<i
(int j :=0; J<Ij__j+1){
it (ali] > alj +11) {

int t := a[j];
alj] := alj + 1];
alj +1] :=t;

}
}
}

The Precondition Method

@L: F'
e Given annotation @L : F 515
e Compute the precondition of F backward :
e Find new annotation @L': F’ S
oL : F
Example: BinarySearch
@pre H?
Q@post T

bool BinarySearch(int[] a, int ¢, int u, int e) {
if (£ > u) return false;

else {
@2 +#0; ... basic fact
int m:= ({+ u) div 2;
@0<mc<|al ... basic fact

if (a[m] = e) return true;
else if (a[m] < e) return BinarySearch(a,m+ 1, u, e);
else return BinarySearch(a,¢,m — 1, e);

()

Opre H:7?

S1: assume / < u;

So: m:= ({+u)div 2;
QF: 0<m<|a

Compute

W (F, 51;52)
wp(wp(F, m:= ({+ u) div 2), 51)
wp(F{m — ({+ u) div 2}, 5;)
wp(F{m — (¢ + u) div 2}, assume ¢ < u)
(<u — F{m — ({+u)div 2}
(<u — 0<({+u)div2 <3|
0<?¢ A u<]a

T

LR e

‘@preH: 0<? A u<\a\‘

guaranteed
0<?¢ AN u<la — wp(F, 51;52)

is Tyz-valid. The runtime assertion
0<mc<|a

holds in every execution of BinarySearch in which the precondition
Qpre 0 < /¢ A u < |a

is satisfied.

THE CALCULUS OF COMPUTATION:
Decision Procedures with
Applications to Verification

by
Aaron Bradley
Zohar Manna

Springer 2007

Part Il: Algorithm Reasoning

7. Quantified Linear Arithmetic

Quantifier Elimination (QE) — algorithm for elminiation of all
quantifiers of formula F until quantifier-free formula G that is
equivalent to F remains

Note: Could be enough F is equisatisfiable to F’, that is F is
satisfiable iff F’ is satisfiable

A theory T admits quantifier elimination if there is an algorithm
that given X-formula returns a quantifier-free ¥-formula G that is
T-equivalent

Example

For > g-formula
F: dx.2x =y,

quantifier-free Tg-equivalent X g-formula is
G: T

For X z-formula

F: dx.2x =y,
there is no quantifier-free Tyz-equivalent X z-formula.

Let Ti be Tz with divisibility predicates.
For Zz—formula
F: dx.2x=y,
a quantifier-free T5-equivalent 2--formula is

G: 2]y.

In developing a QE algorithm for theory T, we need only consider
formulae of the form

dx. F
for quantifier-free F

Example: For ¥-formula

Gi: Ix. Vy. 3z. Fx,y,Z]
S—_———_—
FZ[va]
Gy: Ix. Vy. Fa[x,y]
Gs: Ix. = 3Jy. =F[x, y]
————
F3[x]
Ga: 3x. —F3[x]
—_———

Fa
G5 . F4

Gs is quantifier-free and T-equivalent to Gy

Quantifier Elimination for T

Y20 {..,—2,-1,0,1,2 ..., =3, =22 3 ..., +, — = <}

Lemma:

Given quantifier-free Xz-formula F s.t. free(F) = {y}.
F represents the set of integers

S: {neZ : F{y — n}is Tz-valid} .
Either SNZ™ or ZT \ S is finite.
where ZT is the set of positive integers

Example: Xp-formula F: Ix. 2x =y
S: even integers
SNZT: positive even integers — infinite
71\ S: positive odd integers — infinite
Therefore, by the lemma, there is no quantifier-free Tz-formula
that is Tz-equivalent to F.
Thus, Tz does not admit QE.

Augmented theory 7‘2

fZ: Y 7 with countable number of unary divisibility predicates
k|- forkeZ"

Intended interpretations:

k | x holds iff k divides x without any remainder

Example:
x>1ANy>1A2|x+y
is satisfiable (choose x =2,y = 2).
(2] x) A 4| x
is not satisfiable.
Axioms of 7’2: axioms of Ty with additional countable set of

axioms
Vx. k| x < Jy.x=ky forkeZ"

T, admits QE (Cooper’s method)

Algorithm: Given ¥-formula 3x. F[x], where F is quantifier-free

Construct quantifier-free £z-formula that is equivalent to Ix. F[x].

Step 1

Put F[x] in NNF Fy[x], that is,

Jx. F1[x] has negations only in literals (only A, V)
and @—equivalent to Ix. F[x]

Step 2
Replace (left to right)

s=t & s<t+1 A t<s+1
(s=t) & s<tVit<s
(s<t) & t<s+1

The output Ix. Fy[x] contains only literals of form
s<t, klt, or —(k]|t),

where s, t are Tyz-terms and k € Z+.

Example:
“(x<y) A a(x=y+3)
\
y<x+1 A (x<y+3Vy+3<x)

Step 3

Collect terms containing x so that literals have the form
hx <t, t<hx, k|hx+t, or =(k|hx+t),

where t is a term and h, k € ZF. The output is the formula
Jx. F3[x], which is Tz-equivalent to Ix. F[x].
Example:

X+x+y<z+4+3z+2y—4x

4
bx <4z+y

Step 4
Let

§ =lem{h :

h is a coefficient of x in F3[x]} ,

where Icm is the least common multiple. Multiply atoms in F3[x]
by constants so that ¢’ is the coefficient of x everywhere:

hx <t

t < hx

k| hx+t
(k| hx +t)

tee e

dx < h't
ht < d'x

Wk | &x+Ht
=(h'k | §x+ h't)

where
where
where
where

Wh=4¢
Wh=4¢
Wh=2d
Wh=4¢

The result 3x. Fi[x], in which all occurrences of x in F3[x] are in

terms &'x.

Replace §'x terms in F; with a fresh variable x” to form
Fi : F{0'x — x'}

Finally, construct
I FYX] A8 X
—_——

F4[X/]

3x’.F4[x'] is equivalent to 3x. F[x] and each literal of F4[x'] has
one of the forms:

(A) X' < a
(B) b< X
(C) hlx+c
(D) =(k | X'+ d)
where a, b, c, d are terms that do not contain x, and h, k € Z™T.

Example: :I'\Z—formula
Ix. 3x+1>y A 2x—6<z A 4|5x+1

Fix]
after step 3
Ix. 2x<z+6 AN y—1<3x A 4|5x+1

Fs[x]
Collecting coefficients of x (step 4),
8 =lem(2,3,5) = 30
Multiply when necessary
dx. 30x < 152490 A 10y —10 < 30x A 24 | 30x +6
Replacing 30x with fresh x’

Ix. X' < 152490 A 10y —10<x" A 24| x' +6 A 30| X

F4 [X’]

Ax’. F4[x'] is equivalent to Ix. F[x]

Step 5 (trickiest part):
Construct

left infinite projection F_.o[x']
of F4[x'] by
(A) replacing literals x’ < aby T
(B) replacing literals b < x” by L

idea: very small numbers satisfy (A) literals but not (B) literals

Let
h of (C) literals h | X" + ¢
0 =lcm . ,
k of (D) literals =(k | x' + d)

and B be the set of b terms appearing in (B) literals. Construct

6

§
Fs: \/ Fosclil v \/ \/ Falb+]].
j=1

j=1beB

Fs is quantifier-free and @-equivalent to F.

Intuition

Property (Periodicity)
if k|9
then k | niff k | n+ Ao forall A e Z
That is, k |- cannot distinguish between k | n and k | n+ Ad.

By the choice of § (Icm of the h's and k's) — no | literal in Fg5 can
distinguish between n and n+ 6.

\/ Fooli] V \/ \/ Falb+J]

j=1beB
left disjunct \/j:1 F_oolf] :

Contains only | literals
Asserts: no least n € Z s.t. F[n].

For if there exists n satisfying F_,
then every n — \d, for A € Z*, also satisfies F_.,

right disjunct \/5-5:1 Vies Falb+J] :
Asserts: There is least n € Z s.t. F[n].

For let b* be the largest b in (B).
If n€Ziss.t. Fln],
then
J(1 <j<o). b +j<n A F[b*+]]
In other words,
if there is a solution,
then one must appear in ¢ interval to the right of b*

Example (cont):

Ix. 3x+1>y AN 2x—6<z A 4|bx+1

Flx]
4
Ix. X' <152490 A 10y —10<x" A 24| x' +6 A 30| X

F4 [X/]

By step 5,
Fooolx]: TALA24|X+6A30]|X,
which simplifies to 1.. Compute
d =1cm{24,30} =120 and B = {10y — 10} .

Then replacing x” by 10y — 10 + j in F4[x'] produces
- 1\2/0 10y — 10+ < 152+ 90 A 10y — 10 < 10y — 10 +
> (L A 24]10y —10+,+6 A 30|10y — 10+

J:
which simplifies to

120 . .
£ \/ 10y +j < 15z4100 A 0 <
> A 24|10y +j—4 A 30|10y —10+

Fs is quantifier-free and Tyz-equivalent to F.

|

Example:

Ix. Bx+1<10 V7x—6>7) A 2| x
Fix]

Isolate x terms
Ix. Bx <9 VvV 13<7x) A 2] x,

so
§ =lem{3,7} =21 .

After multiplying coefficients by proper constants,
dx. (21x <63 V 39 < 21x) A 42| 21x,

we replace 21x by x':

Ix'. (X' <63 vV 39<x)A42|x A21|X .

Fa[x']

Then
FooolX]: (T V L) Ad2|x A21|X,

or, simplifying,
FooolX]: 42X A 21X .
Finally,
d =1ecm{21,42} =42 and B = {39},
so
42
\V@2jn2alj) v
F5Z j:142
\V((39+,j <63 Vv 39<39+)) A 42]39+, A 21]39+))
j=1

Since 42 \ 42 and 21 | 42, the left main disjunct simplifies to T, so
that F is TZ—equwaIent to T. Thus, Fis TZ—valld

Example:

dx. 2x =y
——
Flx]
Rewriting
dx. y—1<2x A 2x<y—+1
F3[x]
Then
§ =lem{2,2} =2,
so by Step 4

I, y—1<xX AX<y+1 A2|X

Fa[x"]

F_oo produces 1.

However,

d=Ilecm{2} =2 and B={y-1},

SO
2
Fs: \/(y—1<y—1+4jAy—1+4j<y+1A2]y—1+))
j=1
Simplifying,
2
Fs: \[(0<j Aj<2A2]y—1+))
j=1
and then

F5: 2’y7

which is quantifier-free and ﬁ—equivalent to F.

Two Improvements:

A. Symmetric Elimination

In step 5, if there are fewer
(A) literals x' < a
than
(B) literals b < x'.

Construct the right infinite projection Fi[x'] from F4[x'] by
replacing

each (A) literal x’ < a by L
and

each (B) literal b < x" by T.

Then right elimination.

\/F+oo[—j] v \/ \/ Fala—J].

j=1acA

B. Eliminating Blocks of Quantifiers

Ixq. o Ixg. Fx1, ..., Xn)

where F quantifier-free.
Eliminating x, (left elimination) produces

1)
Gi: dxq. o 3Ixp_1. \/ F—oo[Xla- .. ,X,,_l,j] V
j=1
6
\/ \/ Fa[x1, ... Xn—1, b+]
j=1beB

which is equivalent to

é
Go: \/3X1. o A1 FooolXt, ooy Xn-1,4] V
j=1

0
\/ \/ dxq. oo Ixp_q. F4[X1, ey Xn—1, b—l—_j]
j=1beB
Treat j as a free variable and examine only 1 + |B| formulae
> Ein. s HXn_l. F—oo[Xh e ,Xn_l,j]

> dxg. -+ 3Ixp_1. Falx1,. .., Xp—1, b+ j] for.each b € B

Example:
F:dy.I3x. x< -2 AN 1-by<x A 1+4+y<13x
Since ¢/ = lem{1,13} =13
Jy. 3Ix. 13x < =26 A 13 —65y < 13x A 14y < 13x
Then
Jy. Ix'. X' < =26 A 13-65y <x' A 1+y<x A 13| X

There is one (A) literal x' < ... and two (B) literals ... < x/, we
use right elimination.
Fio=1 6={13}=13 A={-26}

. {; 26— j< 26 A 13— 65y < —26 — |
y',l Alty<-26-j A13| —26—
J:

Commute
13

G: \/3y.j>0NA394j<65y Ay<-—27—j A 13| —26—
j=1

7. 92

Apply QE (treating j as free variable)
H: 3y.j>0 A39+,<65y N y<-27T—j A 13| —26—

Simplify

65
H : \/(k<—1794—66j A 13| —26—j A 65|39+)+ k)
k=1

Replace H with H in G

13 65

\/ V (k< —-1794—66j A 13| —26—j A 65|39+, +k)
j=1k=1

This formula is ﬁ-equivalent to F.

Quantifier Elimination over Rationals

z@: {Oa 1’ +, = = Z}
we use > instead of >, as

X2y & x>y V x=y x>y & x>y AN (x=y).

Ferrante and Rackoff's Method
Given a Xg-formula 3x. F[x], where F[x] is quantifier-free
Generate quantifier-free formula Fj (four steps) s.t.

Fa4 is Lg-equivalent to Ix. F[x].

Step 1: Put F[x] in NNF. The result is 3x. F1[x].
Step 2: Replace literals (left to right)

—(s<t) & t<sVit=s
(s=t) & t<sVit>s

The result Ix. F;[x] does not contain negations.

Step 3: Solve for x in each atom of F,[x], e.g.,

t
t < cx = - <X
c

where ¢ € Z — {0}.

All atoms in the result 3x. F3[x] have form
(A) x<a
(B) b<x
(C) x=c

where a, b, ¢ are terms that do not contain x.

Step 4: Construct from F3[x]

» left infinite projection F_, by replacing

(A) atoms x <aby T
(B) atoms b < x by L
(C) atoms x = c by L

» right infinite projection F, . by replacing
(A) atoms x < a by L
(B) atoms b < x by T
(C) atoms x =c by L

Let S be the set of a, b, ¢ terms from (A), (B), (C) atoms.
Construct the final

t
Fai Foo V Froo vV \/ F3|:S—£] :
s,tesS

which is Tg-equivalent to 3x. F[x].

» F_ captures the case when small n € Q satisfy F3[n]
» F~ captures the case when large n € Q satisfy F3[n]
» last disjunct: for s,t € S

if s = t, check whether s € S satisfies F4[s]

if s # t, =5t represents the whole interval (s, t), so check
i

Intuition
Step 4 says that four cases are possible:

1. There is a left open interval s.t. all elements satisfy F(x).

—)

2. There is a right open interval s.t. all elements satisfy F(x).

—

3. Some aj, b;, or ¢; satisfies F(x).

by a a

4. There is an open interval between two a;, b;, or ¢; terms s.t.

every element satisfies F(x).

(<)
by b1 T a
bl;a2

Example: ¥ g-formula

dx. 3x+1<10 A 7x—6>7

Flx]

Solving for x
13
dx. x <3 A x> -

F3[x]

Stepd: x<3in(A) = F. =1
x>17—3in(B) = Fio=1

t t
Fa: \/(S;L <3/\s—£ >

s,tes

13
7

)

Fa[=H]

RIZE| =1 R =1
2 2
13 13 13
2430 24 2+3 13
Fs |- § 3N L =
2 2 7

simplifies to T.

Thus, F4 : T is Tg-equivalent to 3x. F[x],
so dx. F[x] is Tg-valid.

THE CALCULUS OF COMPUTATION:
Decision Procedures with
Applications to Verification

by
Aaron Bradley
Zohar Manna

Springer 2007

8. Quantifier-Free Linear Arithmetic

Decision Procedures for Quantifier-free Fragments

For theory T with signature ¥ and axioms X-formulae of form

VX1, ..y Xn. Fx1,. .., Xa]
Decide if
Flx1,...,xn] or 3x1,...,%n. F[x1,...,x,] is T-satisfiable
Decide if
Flx1,...,xn] of VX1,...,Xn. F[x1,...,x,] is T-valid
where F is quantifier-free and free(F) = {x1,...,xn}

Note: no quantifier alternations

We consider only conjunctive quantifier-free 2-formulae, i.e.,
conjunctions of X-literals (X-atoms or negations of X-atoms).
For given arbitrary quantifier-free X -formula F, convert it into
DNF X-formula

FL VvV ...V F
where each F; conjunctive.
F is T-satisfiable iff at least one F; is T-satisfiable.

THE CALCULUS OF COMPUTATION:
Decision Procedures with
Applications to Verification

by
Aaron Bradley
Zohar Manna

Springer 2007

9. Quantifier-free Equality and Data Structures

The Theory of Equality Tg

Ye:{=,a b,c, ..., f, g, hp, q,r, ...}
uninterpreted symbols:
e constants a,b,c,...
e functions f,g,h,...
e predicates p,q,r,...

Example:

x=y N f(x)#f(y) Te-unsatisfiable
f(x)="Ff(y) N x#y Te-unsatisfiable
FF(F@)) =2 A FF(F(F(F@))) = a A F(3) #a

Te-unsatisfiable

Axioms of Tg

1. Vx. x =x (reflexivity)
2. VX, y.x=y — y=x (symmetry)
3.V, y,z.x=y Ny=2z — x=12z (transitivity)

define = to be an equivalence relation.

Axiom schema
4. for each positive integer n and n-ary function symbol f,

vxl?"'vxn?yl?‘”)yn‘ /\;Xi:)/i
— f(x1,...,xn) = f(y1,...,¥n) (congruence)

For example,

Vx,y. x =y — f(x)="f(y)

Then
x=g(y,z) — f(x)="f(gly,2))
is Tg-valid.

Axiom schema

5. for each positive integer n and n-ary predicate symbol p,

VXL X Y1 Y \Xi =y —
i

(p(x1,y ..y xn) < P(V1y---y¥n)) (equivalence)

Thus,
x=y — (p(x) < p(y))

is Tg-valid.

We discuss Tg-formulae without predicates

For example, for ¥ g-formula

F:p(x) A alx,y) A aly,z) — —a(x,2)

introduce fresh constant e and fresh functions f, and f;, and
transform F to

G: fo(x) =0 A fo(x,y) =0 A fo(y,z) =0 — fo(x,z) #e.

Equivalence and Congruence Relations: Basics

Binary relation R over set S

e is an equivalence relation if

> reflexive: Vs € S. sRs;

» symmetric: Vs;,5 € S. 51Rs, — syRsy;

> transitive: Vsi, 55,53 € S. 51Rso A s5Rs3 — s1Rs3.
Example:
Define the binary relation =5 over the set Z of integers

m =5 n iff (m mod 2) = (n mod 2)

That is, m,n € Z are related iff they are both even or both odd.
=5, is an equivalence relation

e is a congruence relation if in addition

Vst /\ siRti — F(S)RF(E) .
i=1

Classes

equivalence
For{ q

relation R over set S,
congruence

equivalence .
The { cquivalence } class of s € S under R is
congruence B

def

[slk = {s'€S : sRs'} .

Example:

The equivalence class of 3 under =5 over Z is

Blz,={n€Z : nisodd}.

Partitions
A partition P of S is a set of subsets of S that is

> total (US’):S

S'eP
> disjoint V51,5 €P. 5 NS = 0

Quotient

equivalence

The quotient S/R of S by { congruence

equivalence
classes
congruence

}relation R is the set of

S/R = {[s]g : s€S}.
It is a partition

Example: The quotient Z/ =5 is a partition of Z. The set of
equivalence classes

{{n€Z : nisodd}, {n€Z : niseven}}

Note duality between relations and classes

Refinements

Two binary relations Ry and R» over set S.
Ry is refinement of Ry, Ry < Ry, if

Vs1,5 € S. 51R1sp — s1Rasy .

Ry refines R».

Examples:

» For S = {a, b},
Rl . {aRlb} R2 . {aRgb, bR2b}
Then Ry < Ry
» For set S,
R; induced by the partition Py : {{s}
R, induced by the partition P, : {S}
Then Ry < R».
» For set Z
Ri : {xRiy : x mod 2 =y mod 2}
Ry : {xRpy : x mod 4 =y mod 4}
Then Ry < Ry.

. s€ S}

Closures
Given binary relation R over S.
The equivalence closure RE of R is the equivalence relation s.t.
» R refines RE, i.e. R < RE;
» for all other equivalence relations R’ s.t. R < R/,
either R" = RE or RE < R
That is, RE is the “smallest” equivalence relation that “covers’ R.

Example: If S ={a, b,c,d} and R = {aRb, bRc, dRd}, then
e aRb,bRc,dRd € RF since R C RE;
e aRa, bRb,cRc € RE by reflexivity;

e bRa,cRb € RE by symmetry;

e aRc € RE by transitivity;

e cRac RE by symmetry.
Hence,

RE = {aRb, bRa, aRa, bRb, bRc, cRb, cRc, aRc, cRa, dRd} .

Similarly, the congruence closure R of R is the “smallest”
congruence relation that “covers” R.

Congruence Closure Algorithm
Given Y g-formula
F:si=t1 A -+ AN Sm=tm A Spmr1 Z tme1 A -+ A Sp# ty
decide if F is X g-satisfiable.

Definition: For > g-formula F,
the subterm set S of F is the set that contains precisely

the subterms of F.

Example: The subterm set of

F: f(a,b)=a A f(f(a,b),b) # a

Sk ={a, b, f(a,b), f(f(a,b),b)} .

The Algorithm
Given Y g-formula F
F:s1=t1 A AN Sn=1tm A Smi1F tme1 N -+ N sy # t,

with subterm set Sk, F is Tg-satisfiable iff there exists a
congruence relation ~ over Sg such that

» foreach i€ {1,...,m}, si ~ t;;
» foreach i€ {m+1,...,n}, s; % t;.

Such congruence relation ~ defines Tg-interpretation / : (Dy, ay)
of F. Dj consists of |Sg/ ~ | elements, one for each congruence
class of Sg under ~.

Instead of writing | = F for this Tg-interpretation, we abbreviate

~E F

The goal of the algorithm is to construct the congruence relation
of Sf, or to prove that no congruence relation exists.

F:si=t1 A - AN Sm=tm N Sme1 F tme1 N -+ A SpF£ ty

generate congruence closure search for contradiction

The algorithm performs the following steps:

1. Construct the congruence closure ~ of
{51 =t1,...,5m = tm}
over the subterm set Sg. Then
N): S;=t AN - N Sp=tny.

2. Ifforany i € {m+1,...,n}, s; ~ t;, return unsatisfiable.
3. Otherwise, ~|= F, so return satisfiable.

How do we actually construct the congruence closure in Step 17

Initially, begin with the finest congruence relation ~q given by the
partition

{{s} : s€Sr}.
That is, let each term of Sk be its own congruence class.
Then, for each i € {1,..., m}, impose s; = t; by merging the
congruence classes

[Si]Nf—l and [t"]Nifl

to form a new congruence relation ~;. To accomplish this
merging,

» form the union of [s;]~. , and [ti]~,_,

» propagate any new congruences that arise within this union.

The new relation ~; is a congruence relation in which s; ~ t;.

Example: Given X g-formula

F: f(a,b)=a A f(f(a,b),b) # a
Construct initial partition by letting each member of the subterm
set S¢ be its own class:

1. {{a}, {b}, {f(a,b)}, {f(f(a,b),b)}}
According to the first literal f(a, b) = a, merge
{f(a,b)} and {a}
to form partition
2. {{a,f(a,b)}, {b}, {f(f(a b),b)}}
According to the (congruence) axiom,
f(a,b) ~a, b~ b implies f(f(a,b),b)~ f(a,b),
resulting in the new partition
3. {{a,f(a,b),f(f(a, 0),b)}, {b}}
This partition represents the congruence closure of Sg. Now, is
it the case that
4. {{a,f(a,b),f(f(a b),b)}, {b}} = F7
No, as f(f(a, b), b) ~ a but F asserts that f(f(a, b),b) # a
Hence, F is Tg-unsatisfiable.

Example: Given X g-formula
F: f(f(f(a)=a AN f(f(f(f(f(a)))))=a A f(a)#a
From the subterm set Sg, the initial partition is
L {{a}, {f(a)}, {f?(a)}, {F3(a)}. {F(a)}, {F°(a)}}
where, for example, f3(a) abbreviates f(f(f(a))).
According to the literal £3(a) = a, merge
{f3(a)} and {a}.
From the union,
2. {{a,£(a)}, {f(a)}, {F*(a)}, {FH(a)}, {F(a)}}
deduce the following congruence propagations:
23(3) ~a = f(f3(a)) ~f(a) ie f*a)~ f(a)
an
f4a) ~ f(a) = f(f*a)) ~ f(f(a)) ie f>(a)~ F2(a)
Thus, the final partition for this iteration is the following:

3. {{a,F3(a)}, {f(a), f*(a)}, {F*(a).F(a)}} -

3. {{a,f*(a)}, {f(a),f*(a)}. {f3(a).f>(a)}} .
From the second literal, f>(a) = a, merge

{f*(a),f*(a)} and {a,f(a)}
to form the partition

4. {{a,f%(a),f*(a),f>(a)}, {f(a),f*(a)}} .
Propagating the congruence

f3(a) ~ f2(a) = f(f3(a)) ~ f(f3(a)) i.e. fH(a) ~ F3(a)
yields the partition

5. {{a,f(a), f?(a),f>(a), f*(a), F>(a)}} ,
which represents the congruence closure in which all of Sg are
equal. Now,

6. {{a,f(a),f?(a),f>(a), f*(a). *(a)}} = F?
No, as f(a) ~ a, but F asserts that f(a) # a. Hence, F is
Te-unsatisfiable.

Example: Given X g-formula
F: f(x)=f(y) N x#y.

The subterm set Sg induces the following initial partition:

L A{{x}, {vh, {FCI) {F)3) -

Then f(x) = f(y) indicates to merge

{f(x)} and {f(y)} .
The union {f(x),f(y)} does not yield any new congruences, so the
final partition is

2. {{x} vk {F() F¥)H

Does

3. {{X}v {y}v {f(x),f(y)}}): F?

Yes, as x 4 y, agreeing with x # y. Hence, F is Tg-satisfiable.

Directed Acyclic Graph (DAG)

For X g-formula F, graph-based data structure for representing the
subterms of Sg (and congruence relation between them).

Efficient way for computing the congruence closure algorithm.

Te-Satisfiability (Summary of idea)

f(a,b)=a A f(f(a,b),b) # a

Initial DAG f(a,b)=a = f(a,b)~a, b~b =
MERGE f(a, b) a f(f(a,b),b) ~ f(a,b)
MERGE f(f(a, b), b)
f(a, b)
___ explicit equation by congruence
FIND f(f(a, b),b) = a=FIND a

f(f(a, b), b) # } = Unsatisfiable

DAG representation

type node = {
id

fn
args
mutable find

mutable ccpar

id

node's unique identification number
string

constant or function name

id list

list of function arguments

id

the representative of the congruence class
id set

if the node is the representative for its
congruence class, then its ccpar
(congruence closure parents) are all
parents of nodes in its congruence class

DAG Representation of node 2

type node = {
id
fn
args
mutable find
mutable ccpar

id 2
string ... f
idlist ... [3,4]
id 3
idset 0

DAG Representation of node 3

type node = {
id
fn
args
mutable find
mutable ccpar

id
string
idlist
id
idset

-
.3
{1,2}

The Implementation

FIND function

returns the representative of node's congruence class

let rec FIND | =
let n = NODE / in
if n.find =/ then i/ else FIND n.find

-
1
4

v

Example: FIND 2 =3
FIND 3 =3
3 is the representative of 2.

UNION function

let UNION i1 Ip =
let n; = NODE (FIND /1) in
let n, = NODE (FIND ip) in
ny.find <« ny.find;
ny.ccpar <« nj.ccpar U np.ccpar;
ni.ccpar «— ()

ny is the representative of the union class

Example

UNION 1 2 nm=1
l.find « 3
3.ccpar «+ {1,2}
l.ccpar «)

n2:3

CCPAR function

Returns parents of all nodes in i's congruence class

let CCPAR | =
(NODE (FIND /)).ccpar

CONGRUENT predicate

Test whether /; and iy are congruent

let CONGRUENT /1 ip =
let ny = NODE /1 in
let np = NODE i» in
n.fn = ny.fn
A |ni.args| = |np.args|
AVYie{l,...,|n.args|}. FIND nj.args[i] = FIND np.args|i]

Example:

Are 1 and 2 congruent?

fn fields — both f

of arguments — same

left arguments f(a, b) and a — both congruent to 3
right arguments b and b — both 4 (congruent)

Therefore 1 and 2 are congruent.

MERGE function

let rec MERGE iy b =
if FIND i1 # FIND i then begin
let P; = CCPAR /i in
let P, = CCPAR fp in
UNION 11 ip;
foreach t1,tp € Py x P, do
if FIND t; # FIND t, A CONGRUENT tj tp
then MERGE t; i
done
end

P, and P;, store the current values of CCPAR i1 and CCPAR .

Decision Procedure: Tg-satisfiability

Given Y g-formula
F:si=t1 A -« AN sSp=tm A 5m+17étm+1 AN oo N SspFEty,

with subterm set Sg, perform the following steps:
1. Construct the initial DAG for the subterm set Sg.
2. For i € {1,..., m}, MERGE s; t;.
3. If FIND s; = FIND t; for some i € {m+1,..., n}, return
unsatisfiable.
4. Otherwise (if FIND s; # FIND t; for all i € {m+1,..., n})
return satisfiable.

Example 1: Tg-Satisfiability

f(a,b)=a A f(f(a,b),b) # a

—~
N
~—

(1)

7

Initial DAG MERGE 2 3 MERGE 1 2
UNION 2 3 UNION 1 2
P, = {1} P ={}
'D3:{2} 'D2:{172}

CONGRUENT 1 2
FIND f(f(a, b), b) = a = FIND a = Unsatisfiable

Given Y g-formula

F: f(a,b)=a A f(f(a,b),b)#a.
The subterm set is

Sk ={a, b, f(a,b), f(f(a,b),b)},
resulting in the initial partition

(1) {{a}, {b}, {f(a,b)}, {f(f(a,b),b)}}

in which each term is its own congruence class. Fig (1).

Final partition

(2) {{a,f(a,b),f(f(a, b), b)}, {b}}
Note: dash edge ____ merge dictated by equalities in F
dotted edge deduced merge

Does

(3) {{a,f(a, b),f(f(a,), b)}, {b}} = F7
No, as f(f(a, b), b) ~ a, but F asserts that f(f(a, b), b) # a.
Hence, F is Tge-unsatisfiable.

Example 2: Tg-Satisfiability
f(f(f(a))) = a n F(F(f(f(f(a))))) =a A f(a) # a

G~ D~G D@D~ D~)

Initial DAG

@- @

(f(a))) =a = MERGE30 P3={4} Py={1}
= MERGE41 P,={5} P;=1{2}
= MERGEH52 Ps={} P,={3}

Example 2: Tg-Satisfiability

f(f(f(f(f(a)))))=a = MERGELHO0 Ps={3} Py={1,4}
= MERGE 31 STOP. Why?
FIND f(a) = f(a) = FIND a = Unsatisfiable

Given Y g-formula

F: £(f(f(a))) = a A f(f(f(f(f(a)))) =a A fla) #a,

which induces the initial partition

L {{a}, {f(a)}, {2}, {£(a)} {F()} {F°(a)}}

The equality £3(a) = a induces the partition

2. {{a, £2(a)}, {f(a), FH(a)}, {f3(a), F(a)}} .

The equality f°(a) = a induces the partition
3. {{a, f(a), f(a), £3(a), *(a), °(a)}} .
Now, does
{{a. f(a), f*(a), F(a), f*(a), f°(a)}} = F7?

No, as f(a) ~ a, but F asserts that f(a) # a. Hence, F is
TEe-unsatisfiable.

Theorem (Sound and Complete)

Quantifier-free conjunctive X g-formula F is Tg-satisfiable iff the
congruence closure algorithm returns satisfiable.

Recursive Data Structures

Quantifier-free Theory of Lists Teons

Y cons : {cons, car,
e constructor cons
e left projector car

e right projector cdr :

e atom

cdr, atom, =}

: cons(a, b) list constructed by

prepending a to b

: car(cons(a, b)) = a

cdr(cons(a, b)) = b

: unary predicate

Axioms of Teons

» reflexivity, symmetry, transitivity

» congruence axioms:

VX1, X2, ¥1,¥2. X1 = X2 A y1=y2 — cons(xy, y1) = cons(xz, y2)
Vx,y. x =y — car(x) = car(y)
Vx,y. x =y — cdr(x) = cdr(y)

> equivalence axiom:

Vx,y.x =y — (atom(x) < atom(y))

(A1) V¥x,y. car(cons(x,y)) = x (left projection)
(A2) Vx,y. cdr(cons(x,y)) =y (right projection)
(A3) ¥x. matom(x) — cons(car(x), cdr(x)) = x (construction)
(A4) Vx, y. —atom(cons(x, y)) (atom)

Simplifications

» Consider only quantifier-free conjunctive ¥ .ons-formulae.
Convert non-conjunctive formula to DNF and check each
disjunct.

» —atom(u;) literals are removed:

replace —atom(u;) with u; = cons(u}, u?)

by the (construnction) axiom.

» Because of similarity to g, we sometimes combine
Zcons) ZE-

Algorithm: Tons-Satisfiability (the idea)

F: si=t1 N -+ N Spy=1In

generate congruence closure
A Sm—&—l?’étm+1 A e A Sn#tn

search for contradiction
A atom(uy) A --- A atom(up)

search for contradiction

where s;, t;, and u; are Tcons-terms

Algorithm: Tons-Satisfiability

1. Construct the initial DAG for Sg
2. for each node n with n.fn = cons

» add car(n) and MERGE car(n) n.args[1]
» add cdr(n) and MERGE cdr(n) n.args[2]

by axioms (A1), (A2)
3. for 1 < i< m, MERGE s; t;

o

4. for m+1 < i <n, if FIND s; = FIND t;, return unsatisfiable

5 for1 <</, if dv. FIND v = FIND u; A v.fn = cons,
return unsatisfiable

6. Otherwise, return satisfiable

Example:
Given (Xcons U Xg)-formula
car(x) = car(y) A cdr(x) = cdr(y)
A —atom(x) A —atom(y) A f(x) # f(y)
where the function symbol f is in g

F:

~—

car(x) = car(y
cdr(x) = cdr(y
F': x=cons(u;,vs
y = cons(uz, va

F(x) # f(y)

Recall the projection axioms:

~—

A
A
A
A

~— —

(A1) Vx,y. car(cons(x,y)) = x
(A2) Vx,y. cdr(cons(x,y)) =y

Example(cont): Initial DAG

axioms (A1), (A2)

Example(cont): MERGE

__ explicit equation
... by congruence

1 : MERGE car(x) car(y)
2 : MERGE cdr(x) cdr(y)

3 : MERGE x cons(ui, v1)

¢

Example(cont): Propagation

Congruent:

car(x) car(cons(uy, v1))
FIND car(x) = car(y)
FIND car(cons(...)) =y

Congruent:

cdr(x) cdr(cons(u, v1))
FIND cdr(x) = cdr(y)
FIND cdr(cons(...)) = v

Example(cont): MERGE

4 : MERGE y cons(uy, v2)
I

Congruent:

car(y) car(cons(uz, v2))

FIND car(y) = 1y

FIND car(cons(...)) = w2

Congruent:

cdr(y) cdr(cons(uz, v2))
FIND cdr(y) = v

FIND cdr(cons(...)) = v

Example(cont): CONGRUENCE

Congruent:
cons(uy, v1) cons(uz, v2)

Congruent: f(x) f(y)

F is unsatisfiable

Arrays

(1) Quantifier-free Fragment of Tp

ac L] (<) =)
where
» a[i] is a binary function representing
read of array a at index i;
» a(i<v) is a ternary function representing
write of value v to index /i of array a;
» = is a binary predicate.
Axioms of Tx:
1. axioms of (reflexivity), (symmetry), and (transitivity) of Tg

2. Va,i,j.i=j — a[i] = a[j] (array congruence)
3. Va,v,i,j.i=j — a(iav)[j]=v (read-over-write 1)
4. Ya,v,i,j.i#j — a(i<v)[j] = alj] (read-over-write 2)

Note: a may itself be a write term, e.g., a(i’ <v'). Then
(a(i" av)){i<v)
means: first write the value v/ to index i’ of a
then write the value v to index i of a

The Decision Procedure

Given quantifier-free conjunctive ¥ p-formula F.
To decide the Ta-satisfiability of F:

Step 1

If F does not contain any write terms a(i < v), then

1. associate array variables a with fresh function symbol f;, and
replace read terms a[i] with f,(i);

2. decide the Tg-satisfiability of the resulting formula.

Step 2
Select some read-over-write term a(i < v)[j] (note that a may itself
be a write term) and split on two cases:

1. According to (read-over-write 1), replace
Fla(i<awv)[j]] with Fi: F[v] A i=j,

and recurse on Fy. If Fy is found to be Ta-satisfiable, return
satisfiable.

2. According to (read-over-write 2), replace
Fla(i<v)[j]] with Fo: Fla[j]] A i#],

and recurse on F». If F> is found to be Ta-satisfiable, return
satisfiable.
If both F; and F, are found to be Ta-unsatisfiable, return
unsatisfiable.

Example: Consider ¥ p-formula
F:ih=j N ih#hkh A alj]=wvi A alh<vi)(h<w)]j] # alj] -
F contains a write term,
a(ip <vi) (i aw)[j] # alj] -

According to (read-over-write 1), assume iz = j and recurse on

Fi: h=j ANih=j AN ih#h A aj]=v1i A vn#a]j].
F1 does not contain any write terms, so rewrite it to

Fi: b=j ANi1r=j AN ih#ih A KLJH=v A wv#h(j).

The first two literals imply that i; = i», contradicting the third
literal, so F] is Tg-unsatisfiable.

Returning, we try the second case:
according to (read-over-write 2), assume i» # j and recurse on

Forip#j Niv=j N ia#i Aalj]=wv A alhav)[]# al] .

F> contains a write term. According to (read-over-write 1), assume
i1 = j and recurse on

Fs: iin=j ANb#jNih=jNi#i Naj]=vi A vi#a[].

Contradiction because of the final two terms. Thus, according to
(read-over-write 2), assume i1 # j and recurse on

Fy: i17éj/\i27éj/\i1:j/\i17£i2/\a[j]:v1/\a[/'];éa[j].

Two contradictions: the first and third literals contradict each
other, and the final literal is contradictory. As all branches have
been tried, F is Ta-unsatisfiable.

Suppose instead that F does not contain the literal i1 # i>. Is this

new formula Ta-satisfiable?
0. R

THE CALCULUS OF COMPUTATION:

Decision Procedures with
Applications to Verification

by
Aaron Bradley
Zohar Manna

Springer 2007

10. Combining Decision Procedures

Combining Decision Procedures: Nelson-Oppen Method

Given
Theories T; over signatures % ;
(constants, functions, predicates)
with corresponding decision procedures P; for T;-satisfiability.

Goal
Decide satisfiability of a sentence in theory U; T;.

Example: How do we show that
F:1<x Ax<2A f(x)#f(1) N f(x)#f(2)

is (Tg U Tz)-unsatisfiable?

Combining Decision Procedures

Y 1-theory Ty 3 »>-theory T,
for Ti-satisfiability E for To-satisfiability

~, 7

. for (T1 U Ty)-satisfiability

Problem:
Decision procedures are domain specific.
How do we combine them?

Nelson-Oppen Combination Method (N-O Method)

Zl N 22 = @
3 1-theory Ty 3 »>-theory T
stably infinite stably infinite
for Ti-satisfiability for T,-satisfiability
of quantifier-free ¥ ;-formulae of quantifier-free ¥ >-formulae

~

for (T U T,)-satisfiability
of quantifier-free (X1 U Xp)-formulae

Nelson-Oppen: Limitations

Given formula F in theory T; U To.
1. F must be quantifier-free.

2. Signatures ¥ ; of the combined theory only share =, i.e.,
Zl N 22 = {:}

3. Theories must be stably infinite.

Note:

» Algorithm can be extended to combine arbitrary number of
theories T; — combine two, then combine with another, and
so on.

» We restrict F to be conjunctive formula — otherwise convert
to DNF and check each disjunct.

Stably Infinite Theories

A Y-theory T is stably infinite iff
for every quantifier-free -formula F:
if Fis T-satisfiable
then there exists some T-interpretation that satisfies F.

Example: >-theory T
T : {ab,=}
Axiom
Vx.x=aV x=5b

For every T-interpretation /, |D;| < 2 (at most two elements).
Hence, T is not stably infinite.

All the other theories mentioned so far are stably infinite.

Example: Theory of partial orders
> -theory T<
< {x, =)
where < is a binary predicate.
Axioms
1. Vx. x < x
2.9,y. X2y AN y=2x — x=y
3.V, v,z xy Ny=z —- x=Xz

(= reflexivity)
(=2 antisymmetry)
(= transitivity)

We prove T is stably infinite.

Consider T<-satisfiable quantifier-free X <-formula F.
Consider arBitrary satisfying Tj—interpret_ation 1:(Dy,ay),
where a; maps < to <.
> Let A be any infinite set disjoint from D,
» Construct new interpretation J : (D, ay)

» D;)=D/UA
» ay={=+— <,}, where for a,b e Dy,
def a<;b if a,b e D
asyb = {a—b otherwise

J is T<-interpretation satisfying F with infinite domain.
Hence, T< is stably infinite.

Example: Consider quantifier-free conjunctive (Xg U Xz)-formula
F:1<x Ax<2A f(x)#f(1) N f(x)#f(2).

The signatures of Tg and Tz only share =. Also, both theories are
stably infinite. Hence, the NO combination of the decision
procedures for Tg and Ty decides the (Tg U Tz)-satisfiability of F.

Intuitively, F is (Tg U Tz)-unsatisfiable.

For the first two literals imply x =1 V x = 2 so that
f(x)=1f(1) v f(x)=f(2).

Contradict last two literals.

Hence, F is (Tg U Tz)-unsatisfiable.

10- 10

N-O Overview
Phase 1: Variable Abstraction
» Given conjunction I in theory T7 U T».

» Convert to conjunction 'y U5 s.t.

» [;in theory T;
» [Ul satisfiable iff [satisfiable.

Phase 2: Check

» If there is some set S of equalities and disequalities between
the shared variables of ['{ and '
shared(I'1,) = free(I'1) N free(2)
s.t. SUT; are T;-satisfiable for all 7,
then [is satisfiable.

» Otherwise, unsatisfiable.

10- 11

Nelson-Oppen Method: Overview
Consider quantifier-free conjunctive (X1 U X»)-formula F.

Two versions:
» nondeterministic — simple to present, but high complexity

» deterministic — efficient

Nelson-Oppen (N-O) method proceeds in two steps:

» Phase 1 (variable abstraction)
— same for both versions

» Phase 2
nondeterministic: guess equalities/disequalities and check
deterministic: generate equalities/disequalities by equality
propagation

10- 12

Phase 1: Variable abstraction

Given quantifier-free conjunctive (X; U Xp)-formula F.
Transform F into two quantifier-free conjunctive formulae

> 1-formula F; and > »-formula F>

s.t. Fis (T1 U Ty)-satisfiable iff F; A Fyis (T1 U Ty)-satisfiable
F1 and F> are linked via a set of shared variables.

For term t, let hd(t) be the root symbol, e.g. hd(f(x)) = f.

10- 1R

Generation of F; and F;

For i,j € {1,2} and i # j, repeat the transformations
(1) if function f € ¥; and hd(t) € ¥},

Flf(te,... t,...,t))] = F[f(tr,...,w,...,t))] AN w=1t
(2) if predicate p € ¥; and hd(t) € ¥},

Flp(t,...,t,...,ta)] = Flp(ts,...,w,...,ty))] A\ w=1t
(3) if hd(s) € X; and hd(t) € ¥},

Fls=t] = F[T]Aw=s A w=t
(4) if hd(s) € X; and hd(t) € ¥},
Fls#t] = Fwm#w] AN wi=s A wa=t

where w, wy, and w» are fresh variables.

10- 14

Example: Consider (Xg U Xz)-formula
F:1<x Ax<2A f(x)#f(1) N f(x)#f(2).

According to transformation 1, since f € g and 1 € ¥z, replace
f(1) by f(wi) and add wy = 1. Similarly, replace f(2) by f(w»)
and add wp, = 2.

Now, the literals

Mz: {1<x, x<2, wy =1, wp =2}
are Ty-literals, while the literals

Fe s {f(x) # f(w), f(x) # f(n2)}
are Tg-literals. Hence, construct the ¥ z-formula

F:1<xAXx<2Aw=1A wp=2

and the ¥ g-formula

Fa: f(x) # f(w1) A f(x) # f(we) .
F1 and F; share the variables {x, wi, ws}.

Fi1 A Fyis (Tg U Tz)-equisatisfiable to F.

10- 15

Example: Consider (Xg U Xz)-formula
F: f(x)=x+y Ax<y+zAx+z<yANy=1Af(x)#r(2).

In the first literal, hd(f(x)) = f € g and hd(x + y) = + € Xz;
thus, by (3), replace the literal with

wi =Ff(x) A v =x+y.
In the final literal, f € g but 2 € X7, so by (1), replace it with
f(x)# f(wa) A wp=2.

Now, separating the literals results in two formulae:

Fiomm=x4+y A x<y+zAx+z<y Ay=1A wp=2
is a Xy-formula, and
Fo: wy =1f(x) A f(x)# f(w)
is a X g-formula.
The conjunction F; A Fyis (Tg U Tz)-equisatisfiable to F.

10- 16

Nondeterministic Version

Phase 2: Guess and Check

» Phase 1 separated (X; U X)-formula F into two formulae:

Y 1-formula F; and X,-formula F;

» F; and F> are linked by a set of shared variables:
V' = shared(Fy, Fp) = free(F1) N free(F?)
» Let E be an equivalence relation over V.

» The arrangement a(V/, E) of V induced by E is:
a(V,E): /\ u=v A /\ u#v

u,v € V. uEv u,v € V. =(uEv)

—

hen,
the original formula F is (T U T,)-satisfiable iff
there exists an equivalence relation E of V s.t.
(1) 1 AN a(V,E) is Ty-satisfiable, and
(2) F2 A a(V,E) is Ty-satisfiable.
Otherwise, F is (T; U T,)-unsatisfiable.

10- 17

Example: Consider (Xg U Xz)-formula

F:1<x Ax<2A f(x)#f(1) N f(x)#f(2)
Phase 1 separates this formula into the Xz-formula

Fi: 1<xAXx<2Aw=1A wp=2
and the ¥ g-formula

Fo: f(x)# f(w1) A f(x) # f(ws)
with

V= shared(Fl, F2) = {X, wi, Wz}
There are 5 equivalence relations to consider, which we list by
stating the partitions:

10- 18

L {{x,wi,wa}}, ie, x=wy = wy:

x =w and f(x) # f(w1) = F2 A «(V,E)is Tg-unsatisfiable.
2. {{x,mi}, {wa}}, ie, x = w1, x # wo:

x=wp and f(x) # f(w1) = F» A a(V,E)is Tg-unsatisfiable.
3. {{x,wa},{m1}}, i.e., x =wp, x # wy:

x =wp and f(x) # f(wz2) = F» A a(V,E)is Tg-unsatisfiable.
4. {{x},{wi,m}}, ie, x # wi, wi = wa:

wi=wrand wy =1 A wp =2

= F1 A oV, E)is Tz-unsatisfiable.
5. {{x} {wi},{wa}}, ie, x # w1, x # wa, w1 # wo:

X#Fwi A x#Zwandx=w; =1V x=wp, =2

(since 1 < x <2 impliesthat x=1 V x=2in Tz)

= F1 N oV, E) is Tz-unsatisfiable.

Hence, F is (Tg U Tz)-unsatisfiable.

10- 10

Example: Consider the (Xcons U X7)-formula
F : car(x)+car(y) =z A cons(x,z) # cons(y, z) .

After two applications of (1), Phase 1 separates F into the
Y cons-formula
Fi: wy =car(x) A wy =car(y) A cons(x,z) # cons(y, z)
and the Xz-formula
Foi vi4+w =2z,
with
V = shared(Fl, F2) = {Z, wi, W2} .
Consider the equivalence relation E given by the partition
H{z} {m} {wa}} .
The arrangement
ao(V,E): z£w N zF£wa AN wi #wsy
satisfies both F; and Fo: F1 A aV, E) is Teons-satisfiable, and
F» N a(V,E)is Tz-satisfiable.
Hence, F is (Teons U Tz)-satisfiable.

10- 20

Practical Efficiency

Phase 2 was formulated as “guess and check”:
First, guess an equivalence relation E,
then check the induced arrangement.

The number of equivalence relations grows super-exponentially
with the # of shared variables. It is given by Bell numbers.

e.g., 12 shared variables = over four million equivalence relations.

Solution: Deterministic Version

10- 21

Deterministic Version

Phase 1 as before
Phase 2 asks the decision procedures P; and P, to propagate new
equalities.

Example 1:

Real linear arithmethic Ty Theory of equality Tg

F: f(f)—f(y)#f(z2) N x<y Ny+z<x AN0<z
(Tr U Tg)-unsatisfiable

Intuitively,
last 3 conjuncts = x=y A z=0
contradicts 1st conjunct

10- 22

Phase 1: Variable Abstraction

F: f(f(x)—f(y))#f(z) N x<y Ny+z<x AN0<z

flx) =u fly) =v uv—v=w

Fre: {f(w)#f(2), u="~f(x), v="~(y)} ... Tg-formula
lR: {x<y,y+z<x,0<z, w=u—v} ...Tg-formula

shared(l'r,Me) = {x,y,z,u, v, w}

Nondeterministic version — over 200 Es!
Let's try the deterministic version.

10- 2R

Phase 2: Equality Propagation

5 (e, Te, ()
R Ex=y
si: (M, Te, {x=y})
lEU{x=y}EFu=v
s (Mr,Te, {x=y,u=v})
rRU{u=viEz=w
s3: (Mp, T, {x=y,u=v,z=w})

Ne U{z =w} [=false

sy : false

Contradiction. Thus, F is (Tg U Tg)-unsatisfiable.
If there were no contradiction, F would be (Tr U Tg)-satisfiable.

10- 24

Convex Theories

Claim:

Equality propagation is a decision procedure for convex theories.

Def. A Y-theory T is convex iff
for every quantifier-free conjunction X-formula F
n

and for every disjunction \/(u,- =v)

i=1
an):\/

then F): u, =v;, forsomeie€{l,...,n}

10- 2K

Convex Theories

» Te, Tr, Tg, Tcons are convex

» Ty, Ta are not convex

Example: Tz is not convex

Consider quantifier-free conjunctive

F: 1<z Az<2ANu=1ANv=2

Then
FlEz=uvz=v
but
FEz=u
FEz=v

10- 26

Example:

The theory of arrays Ta is not convex.
Consider the quantifier-free conjunctive ¥ a-formula

F:a(iav)[j]=v.
Then
F=i=jValjl=v,
but
Fobi=]
F#aj]l=v.

10- 27

What if T is Not Convex?

Case split when:

but

MEui=v foralli=1,...,n

» For each i =1,...,n, construct a branch on which
u; = v; is assumed.

» If all branches are contradictory, then unsatisfiable.

Otherwise, satisfiable.

u=w

10- P28

Example 2: Non-Convex Theory

Tz not convex! TE convex
1<x x <2
r: N - in T, UT,
{ F(x) # (1), f(x)#F(2) } Lo

» Replace f(1) by f(wy), and add w; = 1.
» Replace f(2) by f(ws), and add wy = 2.

Result:
1 <x,
_ x < 27 _ f(X) 7& f(W1)>
=Y w=1, (M TES { F(x) # F(wa)
wy =2

shared('z, M) = {x, w1, wa}

10- 20

Example 2: Non-Convex Theory

}ZLFQ{D
X =w = wy
s1:(Tz, Te, Ax=w}) s3:(Tz, T, {x=wz})
MeU{x=w} kL MeUfx=m} = L
Sl sp 1 L

x: TzEXx=wm V x=w

All leaves are labeled with L. = T is (Tz U Tg)-unsatisfiable.

10- 20

Example 3: Non-Convex Theory

1<x, x<3

r:{am¢a)f() ()(U#ﬂ%}

in T, UTEg

» Replace f(1) by f(wy), and add w; = 1.
» Replace f(2) by f(ws), and add wy = 2.
» Replace (3) by f(w3), and add w3 = 3.

Result: .
x<3, F(x) # F(wm),
M7 = wy =1, and g = { f(x) # f(ws), }
Wy = 2, f(Wl) ;ﬁ f(Wz)
w3 =3

shared(I'z,Tg) = {x, wi, wo, w3}

10- 21

Example 3: Non-Convex Theory

so: (2. Te, {})

%
X =W X = Wo X = w3

si: (Mg, Te, {x=wm}) s3:(I7, FE|, {x=wo}) s5:(Tz,TE,{x=ws3})
rEU{X:W;l}’:J_ rEU{X:W3}):J_
s L Se . L

x: zEXx=wm V xX=wm V x=w3

No more equations on middle leaf = I is (Tz U Tg)-satisfiable.

10- 3?2

THE CALCULUS OF COMPUTATION:

Decision Procedures with
Applications to Verification

by
Aaron Bradley
Zohar Manna

Springer 2007

11. Arrays

(2) Array Property Fragment of Tp

Decidable fragment of Tp that includes V quantifiers

Array property
3 a-formula of form
Yi. Fli] — G[i],
where i is a list of variables.
» index guard F[i]:

iguard — iguard A iguard | iguard V iguard | atom
atom — var =var | evar # var | var #Zevar | T
var — evar | uvar

where uvar is any universally quantified index variable,
and evar is any constant or unquantified variable.

» value constraint G[i]: a universally quantified index can occur
in a value constraint G[i] only in a read a[i], where a is an
array term. The read cannot be nested; for example, a[b[/]] is
not allowed.

11-

Array Property Fragment of Tx

Boolean combinations of quantifier-free Ta-formulae and array
properties

Example: X a-formulae
F: Vi.i#alk] — a[i] = alk]

The antecedent is not a legal index guard since a[k] is not a
variable (neither a uvar nor an evar); however, by simple
manipulation

F': v=alk] A Vi.i#v — a[i] = a[k]

Here, i # v is a legal index guard, and a[i] = a[k] is a legal value
constraint. F and F’ are equisatisfiable.
However, no manipulation works for:

G: Vi.i#ali] — a[il=alk].

Thus, G is not in the array property fragment.

Remark: Array property fragment allows expressing equality
between arrays (extensionality): two arrays are equal precisely
when their corresponding elements are equal.

For given formula
F: - Na=bA -
with array terms a and b, rewrite F as
F'oowoo A(Vi. T — alil=bli]) A -+ .

F and F' are equisatisfiable.

Decision Procedure for Array Property Fragment

The idea of the decision procedure for the array property fragment
is to reduce universal quantification to finite conjunction. That is,
it constructs a finite set of index terms s.t. examining only these
positions of the arrays is sufficient.

Example: Consider
F: a(iav)y=a A a[i] #v,
which expands to
F' o V. a(i<av)[j]=alj] A a[i]# v .
Intuitively, to determine that F’ is Ta-unsatisfiable requires merely
examining index i:

F'o | N\ atiav)lil=al]| A alil#v,
JE{i}
or simply
a(i<v)[i] =a[i] N a[i] #v.
Simplifying,
v=alil A ali]#v,
it is clear that this formula, and thus F, is Ta-unsatisfiable.

The Algorithm

Given array property formula F, decide its Ta-satisfiability by the

following steps:

Step 1

Put F in NNF.

Step 2

Apply the following rule exhaustively to remove writes:
Fla(i<v)]

Flal A dlil=v A (Vj.j#i — alj]=2a[j])
After an application of the rule, the resulting formula contains at least
one fewer write terms than the given formula.

Step 3
Apply the following rule exhaustively to remove existential
quantification:
F[3i. G[]]
FIG[]]
Existential quantification can arise during Step 1 if the given formula
has a negated array property.

for fresh &’ (write)

for fresh j (exists)

Steps 4-6 accomplish the reduction of universal quantification to finite
conjunction.

Main idea: select a set of symbolic index terms on which to instantiate
all universal quantifiers. The set is sufficient for correctness.

Step 4
From the output F3 of Step 3, construct the index set Z:

{A}
Z = U {t : -[t] € F3 such that t is not a universally quantified variable}
U {t : t occurs as an evar in the parsing of index guards}

This index set is the finite set of indices that need to be examined. It
includes

> all terms t that occur in some read a[t] anywhere in F (unless it
is a universally quantified variable)

» all terms t (constant or unquantified variable) that are compared
to a universally quantified variable in some index guard.

>) is a fresh constant that represents all other index positions that
are not explicitly in Z.

Step 5 (Key step)
Apply the following rule exhaustively to remove universal
quantification:

HIVi. Fli] — G[il] (forall)
H| A (FIl — G[i)
i€ezn

where n is the size of the list of quantified variables i.
Step 6
From the output Fs of Step 5, construct
Fe: F5 A /\ N£ .

i€ I\{\}
The new conjuncts assert that the variable A introduced in Step 4
is indeed unique.
Step 7

Decide the Ta-satisfiability of Fg using the decision procedure for

the quantifier-free fragment.
11- O

Example: Consider array property formula
F: a(lav)[k] = b[k] A b[k] # v AN alkl=v A (Vi.i# L — a[i] = b|i])
array property

Index guard is i # ¢ and the value constraint is a[i] = b[i]. It is
already in NNF. By Step 2, rewrite F as

a'[k] = b[k] A blk]#v A alkl=v A (Vi.i#{ — a[i] = b[i])
N A =v AN V. j#L — a)j] =3]])
F> does not contain any existential quantifiers. Its index set is

T = {\} U {k} U {&}
= {\Kk ().

F

Thus, by Step 5, replace universal quantification:

[k =blk] A BKI#v A alkl=v A N\ (i# £ ali] = bi])
. ie’l
BN A= n N GAC — el = aT)
jezr

11- 10

Akl =blk] A blKI#v A alkl=v A\ (i#¢— ai] = b]i])
. i€l
BNl = n N GAC — el =)

RSA
Expanding produces
Akl =b[k] AN blk]#v N alkl=v A (A#L — a[A\] = b[}])
N (k#L€ — alk] =blk]) A (¢ #L — a[f] = b[{])

Adll=v A (A£L — al\] = 2[\])
A(k#EC— alkl=a[K) A (C£ L — alf] = 2[H])

Fé:

Simplifying produces

J[k] = blK] A bk £ v A alkl=v A (AN£L — a[\] = b[N])
A (k#0 — alk] = b[k])

Adl=v A (N£L — al\] = a[N])

A (k#0 — alk] = J[K])

",
Fs :

11- 11

Step 6 distinguishes A\ from other members of Z:

[kl = blk] A blk]# v A alkl=v A (A#£L — a[\] = b[A])
A (k#0 — a[k] = b[k])
Fo: N d[l=v AN (AN£0 — a[\]=2d[)\])
A (k# € — alk] = a'[K])
ANXEKk AANEL
Simplifying,
a'lk] = blk] N blk] # v A alk]=v
A a[\] = b[A] A (k#£ ¢ — a[k] = b[k])
N a[=v AN al\|=a [N AN (k#L0 — alk] = a'[k])
NXFEKk NAN#EL

Fé:

There are two cases to consider.
» If k =/, then d'[¢] = v and a'[k] = b[k] imply b[k] = v, yet
b[k] # v.
> If k # ¢, then a[k] = v and a[k] = b[k] imply b[k] = v, but
again b[k] # v.
Hence, Fé is Ta-unsatisfiable, indicating that F is Ta-unsatisfiable.

11- 12

(3) Theory of Integer-Indexed Arrays TZ

< enables reasoning about subarrays and properties such as
subarray is sorted or partitioned.

signature of TAZ: YE =Y UYXy

axioms of Tf: both axioms of Tp and Ty

11- 1R

Array property: Z%—formula of the form
Vi. F[i] — GJ[i],
where i is a list of integer variables.
» F[i] index guard:

iguard — iguard A iguard | iguard V iguard | atom
atom — expr < expr | expr = expr

expr — uvar | pexpr
pexpr — pexpr’

pexpr’ — Z | Z - evar | pexpr’ + pexpr’
where wuvar is any universally quantified integer variable,
and evar is any existentially quantified or free integer variable.
» G[i] value constraint:
Any occurrence of a quantified index variable / must be as a
read into an array, a[i], for array term a. Array reads may not
be nested; e.g., a[b[i]] is not allowed.

Array property fragment of T/% consists of formulae that are

Boolean combinations of quantifier-free Z%—formulae and array
properties.

11- 14

A Decision Procedure

The idea again is to reduce universal quantification to finite
conjunction.

Given F from the array property fragment of TAZ, decide its
TZ-satisfiability as follows:

Step 1
Put F in NNF.

Step 2
Apply the following rule exhaustively to remove writes:
Fla(i<e)]
Fla] A dlil=e A (Vji.j#i — alj]=3a[])
To meet the syntactic requirements on an index guard, rewrite the
third conjunct as

for fresh a’ (write)

Vi.j<i—1Vi+1<j — a}j]=4]].

11- 15

Step 3
Apply the following rule exhaustively to remove existential
quantification:

FIST. G[7]
FIGU]]

Existential quantification can arise during Step 1 if the given
formula has a negated array property.

for fresh j (exists)

Step 4
From the output of Step 3, F3, construct the index set Z:

I {t : -[t] € F3 such that t is not a universally quantified variable}
~ U {t : toccurs as a pexpr in the parsing of index guards}

If Z =0, then let Z = {0}. The index set contains all relevant
symbolic indices that occur in F3.

11- 16

Step 5
Apply the following rule exhaustively to remove universal
quantification:

H[Vi. F[i] — G[i]] (forall)
H A (FI1 = 6[i])
iezn

n is the size of the block of universal quantifiers over i.

Step 6
Fs is quantifier-free in the combination theory Ta U T7z. Decide
the (Ta U Tz)-satisfiability of the resulting formula.

11- 17

Example: Z%—formula:

(Vi. 0 <i<u — ali] = b[i])

N Wi t<i<u+1 — alu+1ablu+1]i] = bli])

In NNF, we have

(Vi.t<i<u — a[i]=bi])

Foo o) (Fi.0<i<u+1 A alu+1<b[u+1])[i] # b[i])

Step 2 produces

(Vi.6<i<u — a[i] = b[i])

AN @Fit<i<u+1 A d[i]#bli])

A du+1] = blu+1]
ANM.j<u+1-1Vu+1+1<j — afj]=2]])

FQZ

11- 18

Step 3 removes the existential quantifier by introducing a fresh
constant k:

(Vi. £ <i<u — ai] = bi])
ANl<k<u+1 A a[k]# b[K]

Fsi N Sut 1] = blu+1]
NN j<u+1-1Vu+l14+1<j — alj]=2l]])
Simplifying,

(Vi. 0<i<u — ali] = b]i])
ANE<k<u+1 A d[k] # blk]

A a'lu+1] = blu+1]

ANWLj<uV ut2<j — alj] =a])

Fj

The index set is
IT={ku+1} U {{,u,u+2},

which includes the read terms k and u + 1 and the terms ¢, u, and

u + 2 that occur as pexprs in the index guards.
11- 10

Step 5 rewrites universal quantification to finite conjunction over
this set:

((<i<u — a[il=b[])

’ <k<u+1 A J[k] # blK]

l

au+1] = blu+1]

G<uvut2<j — a =)
T

=

i

F5Z

> > >m

m

J
Expanding the conjunctions according to the index set Z and

simplifying according to trivially true or false antecedents (e.g.,
{ < u+1< usimplifies to 1, while u < u V u+ 2 < u simplifies

to T) produces:

11- 20

(¢ < k<u — alk] = b[k]) (1)
N(<u — a=b[] A alu] = b)) (2)
NE<k<u+1 (3)
o A Ak BlK (4)
> A du+1]=blu+1] (5)
AN(k<uV u+2<k — alk]=2lk]) (6)
ANMU<uVu+2<l — all]=4a]) (7)
A alu] = a'[u] N alu+2]=a[u+2] (8)

(Ta U Tz)-unsatisfiability of this quantifier-free (Xa U Xz)-formula
can be decided using the techniques of Combination of Theories.
Informally, ¢ < k < u+1(3)
> If k € [¢, u] then a[k] = b[k] (1). Since k < u then
alk] = a'[k] (6), contradicting a'[k] # b[k] (4).
> if k=u+1, a'[k] # blk] = blu+ 1] = a'[u+ 1] = d'[K] by
(4) and (5), a contradiction.

Hence, F is T/%—unsatisfiable.

11- 21

Application: array property fragments
» Array equality a= b in Tx:

vi. ali] = b[i]
» Bounded array equality beq(a, b, £, u) in TZ:
Vil<i<u — afi] = bl
» Universal properties F[x] in Ta:
vi. Flali]
» Bounded universal properties F[x] in TZ:
Vi.l<i<u — Fla[i]

» Bounded and unbounded sorted arrays sorted(a, ¢, u) in
TEUTgzor TEU Ty

Vi,jt<i<j<u — a[i] <alj]

» Partitioned arrays partitioned(a, £1, u1, £2, u2) in TZU Tz or
TEU Ty

Vij, 4 <i<uwuy <l <j<uwu — ali<al]

11- 292

THE CALCULUS OF COMPUTATION:

Decision Procedures with
Applications to Verification

by
Aaron Bradley
Zohar Manna

Springer 2007

12. Invariant Generation

Invariant Generation

Discover inductive assertions of programs
e General procedure
e Concrete analysis

» interval analysis
invariants of form
c<vorv<c
for program variable v and constant ¢

» Karr's analysis
invariants of form
o+axi+-+cpxp=0
for program variables x; and constants ¢;

Other invariant generation algorithms in literature:

» linear inequalities
C0+C1X1+---+Can§0
» polynomial equalities and inequalities

12-

Background

Weakest Precondition

For FOL formula F and program statement S, the
weakest precondition wp(F, S) is a FOL formula s.t. if for state s

s | wp(F,)
and if statement S is executed on state s to produce state s’, then

s E F.

12- A4

In other words, the weakest precondition moves a formula
backwards over a series of statements:
for F to hold after executing Si;...;S,,

wp(F, S1;...;Sn) must hold before executing the statements.

For assume and assignment statements
» wp(F, assume ¢) < ¢ — F, and
» wp(F[v], v:=¢€) < Fle];

and on sequences of statements Sy;...;S,:

wp(F, S1;...:5,) < wp(wp(F, Sp), S1;...;Sn-1) -

Strongest Postcondition

For FOL formula F and program statement S, the

strongest postcondition sp(F, S) is a FOL formula s.t.

if s is the current state and
s = sp(F, S)
then statement S was executed from a state sy s.t.

So)ZF.

» On assume statements,
sp(F, assume c) < ¢ A F,

for if program control makes it past the statement, then ¢
must hold.

» Unlike in the case of wp, there is no simple definition of sp on
assignments:

sp(F[v], vi=e[v]) & I v=¢e[V] A F[V9].
» On a sequence of statements Si;...;S,:

sp(F, S1;...;Sn) < sp(sp(F, S1), S2;...:5n) .

Example: Compute

sp(i > n, i =i+ k)
e W i=+kAi®>n
S i—k>n
since i =i — k.

Example: Compute

sp(i > n, assume k > 0; i := i+ k)

< sp(sp(i > n, assume k > 0), i := i+ k)
< sp(k>0 A i>n, i:=i+k)

& 3% i=+k A k>0Ai">n

S k>0 AN iP—k>n

Verification Condition

VCs in terms of wp:

(FYS1;...:S{G}: F = wp(G, Si;...;Sn) .

VCs in terms of sp:

{F}S1;...;

Static Analysis: basic definition

» Program P with locations £ (Ly — initial location)
» Cutset of £
each path from one cutpoint (location in the cutset) to the
next cutpoint is basic path (does not cross loops)
» Assertion map
u: L — FOL
(map from L to first-order assertions).
It is inductive (inductive map) if for each basic path

()

Li: @ u(Ly)
Si;
S;;
Lj: @ p(L)
for Lj, L; € L, the verification condition
{u(Li)}Sii- - Si{n(L))} (VQO)

is valid. o

Invariant Generation

Find inductive assertion maps p s.t. the u(L;) satisfies (VC) for all
basic paths.

Method: Symbolic execution (formward propagation)

» Initial map upo:

1(Lo) == Fore , and
w(l) == L for Le L\ {Lo}.

» Maintain set S C L of locations that still need processing.
Initially, let S = {Lo}. Terminate when S = (.

» lIteration i: We have so far constructed p;. Choose some
L; € S to process and remove it from S.

12- 11

For each basic path (starting at L;)

()
L @ p(Ly)
S;;
Si
Li: © p(L)

compute and set
w(le) < p(le) Vv osp(u(Lj), Sji-..; Sk)

that is, if sp does not represent new states not already represented
in pi(Lk), then pit1(Lg) < pi(Lg) (nothing new is learned)

Otherwise add L, to S.
For all other locations Ly € £, ni+1(Le) < pi(Le)

When S = () (say iteration i*), then pu;- is an inductive map.

12- 12

The algorithm

let FORWARDPROPAGATE P Fye £ =
S:={L};
M(LO) = Fpre;
p(l) .= L for Le L\ {Lo};
while S # () do
let L; = CHOOSE S in
> =MbY L (L) i fL
k € succ(L;) is a successor of L;
foreach Ly & suce(L;) do if there is anasic path from L; toj Ly
let F = sp(u(L)), Sji...;Sk) in
if F# p(Lk)
then p(Ly) := p(Lyx) V F;
S=5uU {Lk};
done;
done;

7

12- 1

Problem: algorithm may not terminate

Example: Consider loop with integer variables i and n:

Q@lg:i=0 AN n>0;
while
@Lli?
(i <n{
=i+ 1;
}

There are two basic paths:

(1)

@lg: i=0 A n>0;
QL;:7

and

(2)

@l. - ?-

12- 14

» Initially,

wlo) & i=0An>0
p(ly) < L

» Following path (1) results in setting
u(ly) == p(L) V (i=0 A n>0)
w(L1) was L, so that it becomes
(L) & i=0An>0.]|
» On the next iteration, following path (2) yields

(L) == p(Ly) V sp(p(L1), assume i < n; i :=i+1).
Currently pu(L1) < i=0 A n>0, so
F:sp(i=0A n>0, assume i < n; i :=i+1)
< spli<nANi=0An>0,i:=i+1)
& 3% i=i"+1 A i%<nAi®=0An>0
< i=1An>0

12- 1%

Since the implication
i=1 ANn>0= i=0A n>0

F

is invalid,

p(L)

u(ly) <

(i=0An>0)V (i=1An>0)

p(L1) F

at the end of the iteration.

» At the end of the next iteration,

u(ly) <

(i=0An>0)V (i=1 A n>0)

w(Ly)
V(i=2An>1)

F

12- 16

» At the end of the kth iteration,

(i=0An>0)V (i=1An>1)
Mh) < 5y Uy =k A > k)

It is never the case that the implication

i=k n>k

| \/

VAN
J
(i=0An>0)V(i=1 DV--V(i=k—1An>k—1)

is valid, so the main loop of while never finishes.

» However, it is obvious that
0<i<n

is an inductive annotation of the loop.

12- 17

Solution: Abstraction

A state s is reachable for program P if it appears in some
computation of P.

The problem is that FORWARDPROPAGATE computes the exact
set of reachable states.

Inductive annotations usually over-approximate the set of reachable
states: every reachable state s satisfies the annotation, but other
unreachable states can also satisfy the annotation.

Abstract interpretation cleverly over-approximate the reachable
state set to guarantee termination.

Abstract interpretation is constructed in 6 steps.

12- 18

Step 1: Choose an abstract domain D.

The abstract domain D is a syntactic class of X-formulae of some

theory T.

» interval abstract domain D, consists of conjunctions of
Y g-literals of the forms

c<v and v<c,

for constant ¢ and program variable v.

» Karr’s abstract domain Dy consist of conjunctions of
> @-literals of the form

CO+C1X1+"'+Can:07

for constants ¢y, c1,. .., Cy, and variables xi, ..., x,.

12- 10

Step 2: Construct a map from FOL formulae to D.

Define
vp : FOL — D

to map a FOL formula F to element vp(F) of D, with the
property that for any F,

F = I/D(F) .

Example:
F:i=0An>0

at Lo of the loop can be represented in the interval abstract
domain by
vp(F): 0<i A i<0 A0<n

and in Karr's abstract domain by
vp (F): i=0

with some loss of information.

12- 20

Step 3: Define an abstract sp.

Define an abstract strongest postcondition Spy for assumption
and assignment statements such that

sp(F, S) = spp(F, S) and Spp(F, S)e D
for statement S and F € D.
> statement assume c:
sp(F, assume ¢) < ¢ A F.

Conjunction A is used.
Define abstract conjunction Mp, such that

FiNF, = FRNp F, and F Mp F, €D
for Fi,F, € D. Then if F € D,
Spp(F, assume ¢) < vp(c) Mp F.

If the abstract domain D consists of conjunctions of literals,
Mp is just A. For example, in the interval domain,

spp,(F, assume ¢) < vp(c) A F .

12- 21

> assignment statements:
More complex, for suppose that we use the standard definition

sp(F[v], v = e[v]) & IO, v:e[‘\io] A FIVO]

G

which requires existential quantification. Then, later, when we
compute the validity of

G = p(L), ie, Vb.G — p(L),

w(L) can contain existential quantification, resulting in a
quantifier alternation. Most decision procedures, apply only to
quantifier-free formulae. Therefore, introducing existential
quantification in sp is undesirable.

12- 29

Step 4: Define abstract disjunction.

Disjunction is applied in FORWARDPROPAGATE
w(Li) == F v p(Ly)
Define abstract disjunction Lip for this purpose, such that
FirvF, = F Up F, and F Up FbeD

for F1, > € D.
Unlike conjunction, exact disjunction is usually not represented in
the domain D.
Step 5: Define abstract implication checking.
On each iteration of the inner loop of FORWARDPROPAGATE,
validity of the implication

F = p(Lk)

is checked to determine whether 1(Lx) has changed. A proper
selection of D ensures that this validity check is decidable.

Step 6: Define widening.

Defining an abstraction is not sufficient to guarantee termination
in general. Thus, abstractions that do not guarantee termination
are equipped with a widening operator v/ p.
A widening operator Y/p is a binary function
VD : DxD—D
such that
FiVF, = FRyp b
for F1, Fo € D. It obeys the following property. Let 1, Fo, F3, ...
be an infinite sequence of elements F; € D such that for each i,
Fi = F,'+1 .
Define the sequence
Gi=F and Gjt1=G;Vp Fiy1 -
For some i* and for all i > i*,
G,' =4 G,'+1 .
That is, the sequence G; converges even if the sequence F; does
not converge. A proper strategy of applying widening guarantees

that the forward propagation procedure terminates.
12- 24

let ABSTRACTFORWARDPROPAGATE P Fpe £ =
S:={L};
/’L(LO) = VD(Fpre);
(L) :== L for Le L\ {Lo};
while S # () do
let L; = CHOOSE S in
5= 5\ {L};
foreach Ly € succ(L;) do
let F = spp(p(Lj), Sj;i...;Sk) in
if F 7 p(L)
then if WIDEN()
then p(Ly) == p(Le) Vo (1(Lk) Up F);
else u(Ly) := p(Lx) Up F;
S$=5U {Lk};
done;
done;

7

12- 72K

