Lecturecise 14 Abstract Interpretation - proofs of some lemmas

2013

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Problems

A Galois connection is defined by two monotonic functions $\alpha : C \to A$ and $\gamma : A \to C$ between partial orders \leq on C and \sqsubseteq on A, such that

$$\forall a, c. \quad \alpha(c) \sqsubseteq a \iff c \leq \gamma(a) \quad (*)$$

(intuitively, the condition means that c is approximated by a).

a) Show that the condition (*) is equivalent to the conjunction of these two conditions:

 $\forall c. \quad c \leq \gamma(\alpha(c))$ $\forall a. \; \alpha(\gamma(a)) \sqsubseteq a$

- b) Let α and γ satisfy the condition of a Galois connection. Show that the following three conditions are equivalent:
 - 1. $\alpha(\gamma(a)) = a$ for all a
 - 2. α is a surjective function
 - 3. γ is an injective function
- c) State the condition for c = γ(α(c)) to hold for all c. When C is the set of sets of concrete states and A is a domain of static analysis, is it more reasonable to expect that c = γ(α(c)) or α(γ(a)) = a to be satisfied, and why?

Proof - part a)

We will show the two directions separately.

 $\Rightarrow \ \text{Suppose } \forall a, c. \ \alpha(c) \sqsubseteq a \iff c \le \gamma(a). \\ \text{It trivially holds } \forall c. \ \alpha(c) \sqsubseteq \alpha(c), \text{ and from the equivalence it then holds} \\ \forall c. \ c \le \gamma(\alpha(c)). \\ \text{Similarly, it holds } \forall a. \ \gamma(a) \le \gamma(a) \text{ and hence } \forall a. \ \alpha(\gamma(a)) \sqsubseteq a. \\ \end{cases}$

 $\Leftarrow \text{ Suppose } \forall c. \ c \leq \gamma(\alpha(c)) \text{ and } \forall a. \ \alpha(\gamma(a)) \sqsubseteq a.$

$$orall a, c. \ lpha(c) \sqsubseteq a
ightarrow \ \gamma(lpha(c)) \le \gamma(a)$$

 $ightarrow \ c \le \gamma(lpha(c)) \le \gamma(a)$
 $ightarrow \ c \le \gamma(a)$

$$orall \mathbf{a}, \mathbf{c}. \ \mathbf{c} \leq \gamma(\mathbf{a})
ightarrow lpha(\mathbf{c}) \sqsubseteq lpha(\gamma(\mathbf{a})) \
ightarrow lpha(\mathbf{c}) \sqsubseteq lpha(\gamma(\mathbf{a})) \sqsubseteq \mathbf{a} \
ightarrow lpha(\mathbf{c}) \sqsubseteq \mathbf{a}$$

Proof - part b)

In order to show this equivalence, we will show the following implications hold: $1 \Rightarrow 2, 2 \Rightarrow 1, 1 \Rightarrow 3$ and $3 \Rightarrow 1$.

1 \Rightarrow 2 Suppose $\forall a. \alpha(\gamma(a)) = a$, we want to show that $\forall a. \exists c.\alpha(c) = a$. Since $\forall a. \alpha(\gamma(a)) = a$, choose $c = \gamma(a)$ and we see that such a *c* always exists.

 $2 \Rightarrow 1$ Pick an arbitrary *a*, then by surjectivity of α , there exists a *c* such that $\alpha(c) = a$.

lpha(c) = a by surjectivity $c \leq \gamma(a)$ by Galois connection $a = \alpha(c) \sqsubseteq \alpha(\gamma(a))$ by monotonicity

From the definition of Galois connection, we have $\alpha(\gamma(a)) \sqsubseteq a$, hence we get $\alpha(\gamma(a)) = a$.

1 \Rightarrow 3 Suppose $\gamma(a) = \gamma(b)$. Then $\alpha(\gamma(a)) = \alpha(\gamma(b))$. Then since $\alpha(\gamma(a)) = a$ and $\alpha(\gamma(b)) = b$ we get a = b. (Steps 1 and 3 use the two conditions of Galois connection, step 5 the injectivity.)

Proof - part b) continued

 $3 \Rightarrow 1$ Suppose γ is injective, i.e. $\forall a, b. \gamma(a) = \gamma(b) \Rightarrow a = b$. Show $\forall a. \alpha(\gamma(a)) = a$.

$$\forall a. \ \alpha(\gamma(a)) \sqsubseteq a \tag{1}$$

$$\forall a. \ \gamma(\alpha(\gamma(a))) \le \gamma(a) \tag{2}$$

$$\forall a. \ \gamma(a) \le \gamma(\alpha(\gamma(a))) \le \gamma(a) \tag{3}$$

$$\Rightarrow \gamma(\alpha(\gamma(a))) = \gamma(a) \tag{4}$$

$$\Rightarrow \alpha(\gamma(a)) = a \tag{5}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

(Steps 1 and 3 use the two conditions of Galois connection, step 5 the injectivity.)

Proof - part c)

For $c = \gamma(\alpha(c))$ to hold, γ should be surjective and α injective. If $c = \gamma(\alpha(c))$, then α is injective, and thus maps one concrete elements to exactly one abstract one. This means that we are exactly encoding the concrete domain, without doing an over-approximation, which was the point of abstract interpretation in the first place. Hence, it is more reasonable to expect $\alpha(\gamma(a)) = a$ to hold. Then we would have that for all elements in the abstract domain we would have a corresponding concrete element and the concretization function would map each abstract element to a unique set of concrete states.