
Lecturecise 24: Modeling Mutable Program Heap

2013

First, a look at mutable value arrays
Simplest and easiest to reason mutable arrays are mutable value arrays:

I stored in fixed location in memory, denoted by a unique name

I the only way to read and write to it is through this name

I copying arrays can only be done through cloning (value semantics)

These are arrays supported in Leon currently.

def bubbleSort(a: Array[Int]): Array[Int] = {
var i = a.length − 1; var j = 0; val sa = a.clone
while(i > 0) {

j = 0
while(j < i) {
if(sa(j) > sa(j+1)) {
val tmp = sa(j);
sa(j) = sa(j+1);
sa(j+1) = tmp
}
j = j + 1
}; i = i − 1
}; sa
} ensuring(sorted(, 0, a.length−1))

Subtlety of Array Assignment

Rule for wp of assignment of expression E to variable x, for postcondition P:

wp(x = E ,P) =

P[x := E]

Example:
wp(x = y + 1, x > 5) = y + 1 > 5

wp of assignment to an array cell:

wp(a(i) = y + 1, a(i) > 5) = y + 1 > 5

wp(a(i) = y + 1, a(i) > 5 ∧ a(j) > 3)
= y + 1 > 5 ∧ a(j) > 3 ???
= y + 1 > 5 ∧ ((y + 1 > 3 ∧ i = j) ∨ (a(j) > 3 ∧ i 6= j))

Whether two array expressions a(i) and a(j) denote the same location
depends on whether i = j .

Subtlety of Array Assignment

Rule for wp of assignment of expression E to variable x, for postcondition P:

wp(x = E ,P) = P[x := E]

Example:
wp(x = y + 1, x > 5) =

y + 1 > 5

wp of assignment to an array cell:

wp(a(i) = y + 1, a(i) > 5) = y + 1 > 5

wp(a(i) = y + 1, a(i) > 5 ∧ a(j) > 3)
= y + 1 > 5 ∧ a(j) > 3 ???
= y + 1 > 5 ∧ ((y + 1 > 3 ∧ i = j) ∨ (a(j) > 3 ∧ i 6= j))

Whether two array expressions a(i) and a(j) denote the same location
depends on whether i = j .

Subtlety of Array Assignment

Rule for wp of assignment of expression E to variable x, for postcondition P:

wp(x = E ,P) = P[x := E]

Example:
wp(x = y + 1, x > 5) = y + 1 > 5

wp of assignment to an array cell:

wp(a(i) = y + 1, a(i) > 5) = y + 1 > 5

wp(a(i) = y + 1, a(i) > 5 ∧ a(j) > 3)
= y + 1 > 5 ∧ a(j) > 3 ???
= y + 1 > 5 ∧ ((y + 1 > 3 ∧ i = j) ∨ (a(j) > 3 ∧ i 6= j))

Whether two array expressions a(i) and a(j) denote the same location
depends on whether i = j .

Subtlety of Array Assignment

Rule for wp of assignment of expression E to variable x, for postcondition P:

wp(x = E ,P) = P[x := E]

Example:
wp(x = y + 1, x > 5) = y + 1 > 5

wp of assignment to an array cell:

wp(a(i) = y + 1, a(i) > 5) =

y + 1 > 5

wp(a(i) = y + 1, a(i) > 5 ∧ a(j) > 3)
= y + 1 > 5 ∧ a(j) > 3 ???
= y + 1 > 5 ∧ ((y + 1 > 3 ∧ i = j) ∨ (a(j) > 3 ∧ i 6= j))

Whether two array expressions a(i) and a(j) denote the same location
depends on whether i = j .

Subtlety of Array Assignment

Rule for wp of assignment of expression E to variable x, for postcondition P:

wp(x = E ,P) = P[x := E]

Example:
wp(x = y + 1, x > 5) = y + 1 > 5

wp of assignment to an array cell:

wp(a(i) = y + 1, a(i) > 5) = y + 1 > 5

wp(a(i) = y + 1, a(i) > 5 ∧ a(j) > 3)
= y + 1 > 5 ∧ a(j) > 3 ???
= y + 1 > 5 ∧ ((y + 1 > 3 ∧ i = j) ∨ (a(j) > 3 ∧ i 6= j))

Whether two array expressions a(i) and a(j) denote the same location
depends on whether i = j .

Subtlety of Array Assignment

Rule for wp of assignment of expression E to variable x, for postcondition P:

wp(x = E ,P) = P[x := E]

Example:
wp(x = y + 1, x > 5) = y + 1 > 5

wp of assignment to an array cell:

wp(a(i) = y + 1, a(i) > 5) = y + 1 > 5

wp(a(i) = y + 1, a(i) > 5 ∧ a(j) > 3)
=

y + 1 > 5 ∧ a(j) > 3 ???
= y + 1 > 5 ∧ ((y + 1 > 3 ∧ i = j) ∨ (a(j) > 3 ∧ i 6= j))

Whether two array expressions a(i) and a(j) denote the same location
depends on whether i = j .

Subtlety of Array Assignment

Rule for wp of assignment of expression E to variable x, for postcondition P:

wp(x = E ,P) = P[x := E]

Example:
wp(x = y + 1, x > 5) = y + 1 > 5

wp of assignment to an array cell:

wp(a(i) = y + 1, a(i) > 5) = y + 1 > 5

wp(a(i) = y + 1, a(i) > 5 ∧ a(j) > 3)
= y + 1 > 5 ∧ a(j) > 3 ???

= y + 1 > 5 ∧ ((y + 1 > 3 ∧ i = j) ∨ (a(j) > 3 ∧ i 6= j))

Whether two array expressions a(i) and a(j) denote the same location
depends on whether i = j .

Subtlety of Array Assignment

Rule for wp of assignment of expression E to variable x, for postcondition P:

wp(x = E ,P) = P[x := E]

Example:
wp(x = y + 1, x > 5) = y + 1 > 5

wp of assignment to an array cell:

wp(a(i) = y + 1, a(i) > 5) = y + 1 > 5

wp(a(i) = y + 1, a(i) > 5 ∧ a(j) > 3)
= y + 1 > 5 ∧ a(j) > 3 ???
= y + 1 > 5 ∧ ((y + 1 > 3 ∧ i = j) ∨ (a(j) > 3 ∧ i 6= j))

Whether two array expressions a(i) and a(j) denote the same location
depends on whether i = j .

Function updates and translation of mutable value arrays

Function updates:
f [i := v] = f ′

where

f ′(j) =

{
f (j), if j 6= i

v , if j = i

Translate var a : Array [Int] into var a : Int ⇒ Int and then:

I x = a(i) ;

x = a(i)

I a(i) = x ; a = a[i := x]

I a = b.clone ; a = b

I a = b ; not defined as assignment

Function updates and translation of mutable value arrays

Function updates:
f [i := v] = f ′

where

f ′(j) =

{
f (j), if j 6= i

v , if j = i

Translate var a : Array [Int] into var a : Int ⇒ Int and then:

I x = a(i) ; x = a(i)

I a(i) = x ; a = a[i := x]

I a = b.clone ; a = b

I a = b ; not defined as assignment

Function updates and translation of mutable value arrays

Function updates:
f [i := v] = f ′

where

f ′(j) =

{
f (j), if j 6= i

v , if j = i

Translate var a : Array [Int] into var a : Int ⇒ Int and then:

I x = a(i) ; x = a(i)

I a(i) = x ;

a = a[i := x]

I a = b.clone ; a = b

I a = b ; not defined as assignment

Function updates and translation of mutable value arrays

Function updates:
f [i := v] = f ′

where

f ′(j) =

{
f (j), if j 6= i

v , if j = i

Translate var a : Array [Int] into var a : Int ⇒ Int and then:

I x = a(i) ; x = a(i)

I a(i) = x ; a = a[i := x]

I a = b.clone ; a = b

I a = b ; not defined as assignment

Function updates and translation of mutable value arrays

Function updates:
f [i := v] = f ′

where

f ′(j) =

{
f (j), if j 6= i

v , if j = i

Translate var a : Array [Int] into var a : Int ⇒ Int and then:

I x = a(i) ; x = a(i)

I a(i) = x ; a = a[i := x]

I a = b.clone ;

a = b

I a = b ; not defined as assignment

Function updates and translation of mutable value arrays

Function updates:
f [i := v] = f ′

where

f ′(j) =

{
f (j), if j 6= i

v , if j = i

Translate var a : Array [Int] into var a : Int ⇒ Int and then:

I x = a(i) ; x = a(i)

I a(i) = x ; a = a[i := x]

I a = b.clone ; a = b

I a = b ; not defined as assignment

Function updates and translation of mutable value arrays

Function updates:
f [i := v] = f ′

where

f ′(j) =

{
f (j), if j 6= i

v , if j = i

Translate var a : Array [Int] into var a : Int ⇒ Int and then:

I x = a(i) ; x = a(i)

I a(i) = x ; a = a[i := x]

I a = b.clone ; a = b

I a = b ; not defined as assignment

Applying the desugaring of value arrays for verification

wp(a(i) = y + 1, a(i) > 5 ∧ a(j) > 3)

= wp(a = a[i := y + 1], a(i) > 5 ∧ a(j) > 3)
= a[i := y + 1](i) > 5 ∧ a[i := y + 1](j) > 3
= y + 1 > 5 ∧ a[i := y + 1](j) = v ∧ v > 3
= ∃v . y + 1 > 5 ∧ ((i = j ∧ v = y + 1) ∨ (i 6= j ∧ v = a(j))) ∧ v > 3
= ∃v . y + 1 > 5 ∧ ((i = j ∧ v = y + 1 ∧ v > 3)

∨ (i 6= j ∧ v = a(j) ∧ v > 3))
= y + 1 > 5 ∧ ((y + 1 > 3 ∧ i = j) ∨ (a(j) > 3 ∧ i 6= j))

In general, we can transform array updates into if-then-else, and then into
disjunctions

Applying the desugaring of value arrays for verification

wp(a(i) = y + 1, a(i) > 5 ∧ a(j) > 3)
= wp(a = a[i := y + 1], a(i) > 5 ∧ a(j) > 3)

= a[i := y + 1](i) > 5 ∧ a[i := y + 1](j) > 3
= y + 1 > 5 ∧ a[i := y + 1](j) = v ∧ v > 3
= ∃v . y + 1 > 5 ∧ ((i = j ∧ v = y + 1) ∨ (i 6= j ∧ v = a(j))) ∧ v > 3
= ∃v . y + 1 > 5 ∧ ((i = j ∧ v = y + 1 ∧ v > 3)

∨ (i 6= j ∧ v = a(j) ∧ v > 3))
= y + 1 > 5 ∧ ((y + 1 > 3 ∧ i = j) ∨ (a(j) > 3 ∧ i 6= j))

In general, we can transform array updates into if-then-else, and then into
disjunctions

Applying the desugaring of value arrays for verification

wp(a(i) = y + 1, a(i) > 5 ∧ a(j) > 3)
= wp(a = a[i := y + 1], a(i) > 5 ∧ a(j) > 3)
= a[i := y + 1](i) > 5 ∧ a[i := y + 1](j) > 3

= y + 1 > 5 ∧ a[i := y + 1](j) = v ∧ v > 3
= ∃v . y + 1 > 5 ∧ ((i = j ∧ v = y + 1) ∨ (i 6= j ∧ v = a(j))) ∧ v > 3
= ∃v . y + 1 > 5 ∧ ((i = j ∧ v = y + 1 ∧ v > 3)

∨ (i 6= j ∧ v = a(j) ∧ v > 3))
= y + 1 > 5 ∧ ((y + 1 > 3 ∧ i = j) ∨ (a(j) > 3 ∧ i 6= j))

In general, we can transform array updates into if-then-else, and then into
disjunctions

Applying the desugaring of value arrays for verification

wp(a(i) = y + 1, a(i) > 5 ∧ a(j) > 3)
= wp(a = a[i := y + 1], a(i) > 5 ∧ a(j) > 3)
= a[i := y + 1](i) > 5 ∧ a[i := y + 1](j) > 3
= y + 1 > 5 ∧ a[i := y + 1](j) = v ∧ v > 3

= ∃v . y + 1 > 5 ∧ ((i = j ∧ v = y + 1) ∨ (i 6= j ∧ v = a(j))) ∧ v > 3
= ∃v . y + 1 > 5 ∧ ((i = j ∧ v = y + 1 ∧ v > 3)

∨ (i 6= j ∧ v = a(j) ∧ v > 3))
= y + 1 > 5 ∧ ((y + 1 > 3 ∧ i = j) ∨ (a(j) > 3 ∧ i 6= j))

In general, we can transform array updates into if-then-else, and then into
disjunctions

Applying the desugaring of value arrays for verification

wp(a(i) = y + 1, a(i) > 5 ∧ a(j) > 3)
= wp(a = a[i := y + 1], a(i) > 5 ∧ a(j) > 3)
= a[i := y + 1](i) > 5 ∧ a[i := y + 1](j) > 3
= y + 1 > 5 ∧ a[i := y + 1](j) = v ∧ v > 3
= ∃v . y + 1 > 5 ∧ ((i = j ∧ v = y + 1) ∨ (i 6= j ∧ v = a(j))) ∧ v > 3

= ∃v . y + 1 > 5 ∧ ((i = j ∧ v = y + 1 ∧ v > 3)
∨ (i 6= j ∧ v = a(j) ∧ v > 3))

= y + 1 > 5 ∧ ((y + 1 > 3 ∧ i = j) ∨ (a(j) > 3 ∧ i 6= j))

In general, we can transform array updates into if-then-else, and then into
disjunctions

Applying the desugaring of value arrays for verification

wp(a(i) = y + 1, a(i) > 5 ∧ a(j) > 3)
= wp(a = a[i := y + 1], a(i) > 5 ∧ a(j) > 3)
= a[i := y + 1](i) > 5 ∧ a[i := y + 1](j) > 3
= y + 1 > 5 ∧ a[i := y + 1](j) = v ∧ v > 3
= ∃v . y + 1 > 5 ∧ ((i = j ∧ v = y + 1) ∨ (i 6= j ∧ v = a(j))) ∧ v > 3
= ∃v . y + 1 > 5 ∧ ((i = j ∧ v = y + 1 ∧ v > 3)

∨ (i 6= j ∧ v = a(j) ∧ v > 3))

= y + 1 > 5 ∧ ((y + 1 > 3 ∧ i = j) ∨ (a(j) > 3 ∧ i 6= j))

In general, we can transform array updates into if-then-else, and then into
disjunctions

Applying the desugaring of value arrays for verification

wp(a(i) = y + 1, a(i) > 5 ∧ a(j) > 3)
= wp(a = a[i := y + 1], a(i) > 5 ∧ a(j) > 3)
= a[i := y + 1](i) > 5 ∧ a[i := y + 1](j) > 3
= y + 1 > 5 ∧ a[i := y + 1](j) = v ∧ v > 3
= ∃v . y + 1 > 5 ∧ ((i = j ∧ v = y + 1) ∨ (i 6= j ∧ v = a(j))) ∧ v > 3
= ∃v . y + 1 > 5 ∧ ((i = j ∧ v = y + 1 ∧ v > 3)

∨ (i 6= j ∧ v = a(j) ∧ v > 3))
= y + 1 > 5 ∧ ((y + 1 > 3 ∧ i = j) ∨ (a(j) > 3 ∧ i 6= j))

In general, we can transform array updates into if-then-else, and then into
disjunctions

Array Bounds
To account for bounds checking what assertions should we add in the
translation of:

1. x = a(i):

assert(0 ≤ i ∧ i < asize)
x = a(i)

2. a(i) = x :
assert(0 ≤ i ∧ i < asize)
a = a[i := x]

We view an array as a pair (a, asize)
Each array comes with its size. That’s a good thing.

I C-like arrays whose size cannot be determined either at compile-time
or run-time belong to the assembly language, and have been the cause
of buffer overflows

I Microsoft introduced static checking tools to check array bounds as
part of their build process, dramatically reducing such errors.

I To make this feasible, tools require each array to be passed with
arguments that store its bounds.

Array Bounds
To account for bounds checking what assertions should we add in the
translation of:

1. x = a(i):
assert(0 ≤ i ∧ i < asize)
x = a(i)

2. a(i) = x :

assert(0 ≤ i ∧ i < asize)
a = a[i := x]

We view an array as a pair (a, asize)
Each array comes with its size. That’s a good thing.

I C-like arrays whose size cannot be determined either at compile-time
or run-time belong to the assembly language, and have been the cause
of buffer overflows

I Microsoft introduced static checking tools to check array bounds as
part of their build process, dramatically reducing such errors.

I To make this feasible, tools require each array to be passed with
arguments that store its bounds.

Array Bounds
To account for bounds checking what assertions should we add in the
translation of:

1. x = a(i):
assert(0 ≤ i ∧ i < asize)
x = a(i)

2. a(i) = x :
assert(0 ≤ i ∧ i < asize)
a = a[i := x]

We view an array as a pair (a, asize)

Each array comes with its size. That’s a good thing.

I C-like arrays whose size cannot be determined either at compile-time
or run-time belong to the assembly language, and have been the cause
of buffer overflows

I Microsoft introduced static checking tools to check array bounds as
part of their build process, dramatically reducing such errors.

I To make this feasible, tools require each array to be passed with
arguments that store its bounds.

Array Bounds
To account for bounds checking what assertions should we add in the
translation of:

1. x = a(i):
assert(0 ≤ i ∧ i < asize)
x = a(i)

2. a(i) = x :
assert(0 ≤ i ∧ i < asize)
a = a[i := x]

We view an array as a pair (a, asize)
Each array comes with its size. That’s a good thing.

I C-like arrays whose size cannot be determined either at compile-time
or run-time belong to the assembly language, and have been the cause
of buffer overflows

I Microsoft introduced static checking tools to check array bounds as
part of their build process, dramatically reducing such errors.

I To make this feasible, tools require each array to be passed with
arguments that store its bounds.

Exercise

Translate into checks and updates:

if (a(i) > 0) {
b(a(k))= b(k) + a(a(i))
}

Mutable Value Maps

Everything we said about mutable arrays holds for mutable value maps, and
for ’var’-s storing any other immutable data structure

Imperative update to a component is a global update with functional
update on the right-hand side

m(key) = value ; m = m[key := value]

After this transformation, we can treat maps just as we treat integers

This does not work for data structures whose internal components can be
accessed and changed from outside.

Linked List Insertion

o1 o2 o3 o4

n

next

prev

next

prev

next

prev

first

if (first == null)
first = n;

else {
n.next = first;
first.prev = n;
first = n;
}

- insert(first,n):

o1 o2 o3 o4

n

next

prev

next

prev

next

prev

first

next prev

How to verify such code?

Modeling Linked Structures using Relations

o1 o2 o3 o4

n

next

prev

next

prev

next

prev

first

if (first == null)
first = n;

else {
n.next = first;
first.prev = n;
first = n;
}

next = {(o1, o2), (o2, o3), (o3, o4)}
prev = {(o2, o1), (o3, o2), (o4, o3)}
- -

o1 o2 o3 o4

n

next

prev

next

prev

next

prev

first

next prev

next ′ = {(o1, o2), (o2, o3), (o3, o4), (n, o1)}
prev ′ = {(o2, o1), (o3, o2), (o4, o3), (o1, n)}

Change of relations
(partial functions):

next ′ = next ∪ {(n, o1)}
prev ′ = prev ∪ {(o1, n)}

using assignments:
next = next[n:=first]
prev = prev[first:=n]

Reading Fields
Statement

y = x .next

computes the value of y simply as

y = next(x)

We should not de-reference null, so we add this check.
y = x .next translates into

assert(x 6= null);
y = next(y)

We assume that the type system ensures that if x is not null then the value
next(y) is defined. Otherwise, we could add the corresponding check:

assert(x ∈ dom(next));
y = next(y)

where dom(r) = {x |∃y . (x , y) ∈ r}

Writing Fields

We represent each field using a global partial function
Statement

x .next = y

changes heap according to this update:

next ′ = next[x := y]

which is a notation that expands to:

next ′ = {(u, v)|(u = x ∧ v = y) ∨ (u 6= v ∧ (u, v) ∈ next)}

We should not assign fields of ’null’, so we also add this check.
x .next = y can translate into an imperative language with global maps:

assert(x 6= null);
next = next[x := y] shorthand assignment : next(x) = y

Why we need functions
Say we have x .f and y .f in the program.
Why not replace them simply with fresh variables xf and yf ?
Does this assertion hold for two distinct values p, q?

var xf = ...
var yf = ...
xf = p
yf = q
assert(xf == p)

Yes. The value of xf is still p
Does this assertion hold?

...
x .f = p
y .f = q
assert(x .f == p)

Depends.

Why we need functions
Say we have x .f and y .f in the program.
Why not replace them simply with fresh variables xf and yf ?
Does this assertion hold for two distinct values p, q?

var xf = ...
var yf = ...
xf = p
yf = q
assert(xf == p)

Yes. The value of xf is still p

Does this assertion hold?

...
x .f = p
y .f = q
assert(x .f == p)

Depends.

Why we need functions
Say we have x .f and y .f in the program.
Why not replace them simply with fresh variables xf and yf ?
Does this assertion hold for two distinct values p, q?

var xf = ...
var yf = ...
xf = p
yf = q
assert(xf == p)

Yes. The value of xf is still p
Does this assertion hold?

...
x .f = p
y .f = q
assert(x .f == p)

Depends.

Why we need functions
Say we have x .f and y .f in the program.
Why not replace them simply with fresh variables xf and yf ?
Does this assertion hold for two distinct values p, q?

var xf = ...
var yf = ...
xf = p
yf = q
assert(xf == p)

Yes. The value of xf is still p
Does this assertion hold?

...
x .f = p
y .f = q
assert(x .f == p)

Depends.

Aliasing
Does the assertion hold in this case:

x = y
x .f = p
y .f = q
assert(x .f == p)

x y

o1

p q

f
f

No! y and x are aliased references, denote the same object
Even though left hand sides x .f and y .f look different, they interfere
Does it hold in this case:

assume(x 6= y)
x .f = p
y .f = q
assert(x .f == p)

x y

o1 o2

p q

f f

Yes.

Aliasing
Does the assertion hold in this case:

x = y
x .f = p
y .f = q
assert(x .f == p)

x y

o1

p q

f
f

No! y and x are aliased references, denote the same object
Even though left hand sides x .f and y .f look different, they interfere

Does it hold in this case:

assume(x 6= y)
x .f = p
y .f = q
assert(x .f == p)

x y

o1 o2

p q

f f

Yes.

Aliasing
Does the assertion hold in this case:

x = y
x .f = p
y .f = q
assert(x .f == p)

x y

o1

p q

f
f

No! y and x are aliased references, denote the same object
Even though left hand sides x .f and y .f look different, they interfere
Does it hold in this case:

assume(x 6= y)
x .f = p
y .f = q
assert(x .f == p)

x y

o1 o2

p q

f f

Yes.

Aliasing
Does the assertion hold in this case:

x = y
x .f = p
y .f = q
assert(x .f == p)

x y

o1

p q

f
f

No! y and x are aliased references, denote the same object
Even though left hand sides x .f and y .f look different, they interfere
Does it hold in this case:

assume(x 6= y)
x .f = p
y .f = q
assert(x .f == p)

x y

o1 o2

p q

f f

Yes.

Fields as functions demystify aliasing
Does the assertion hold in this case:

x = y
x .f = p
y .f = q
assert(x .f == p)

x y

o1

p q

f
f

x = y
f (x) = p
f (y) = q
assert(f (x) == p)

Does not hold. Indices x , y are the same
Does it hold in this case:

assume(x 6= y)
x .f = p
y .f = q
assert(x .f == p)

x y

o1 o2

p q

f f

assume(x 6= y)
f (x) = p
f (y) = q
assert(f (x) == p)

Holds. Indices are distinct

Example weakest precondition computation
Recall wp(v = e,P) = P[v := e] (substitution)
Ignoring null checks, we have the following:

wp(x .f = p; y .f = q, x .f == p) =
wp(f = f [x := p]; f = f [y := q], f (x) == p) =
wp(f = f [x := p], (f [y := q])(x) = p) =
((f [x := p])[y := q])(x) = p

If h is a function then

h[a := b](u) = v ⇔ (u = a ∧ v = b) ∨ (u 6= a ∧ v = h(u))

Thus

((f [x := p])[y := q])(x) = p
⇔ (x = y ∧ p = q) ∨ (x 6= y ∧ p = (f [x := p])(x))
⇔ (x = y ∧ p = q) ∨ (x 6= y ∧ p = p)
⇔ (x = y ∧ p = q) ∨ x 6= y

Characterizes precisely the weakest condition under which assertion holds

Exercise: translate into checks and function updates

class C {var f : C}

Statement:
x.f.f= z.f + y.f.f.f

Exponentially many cases in aliasing

Note that each write introduces an update, which later creates case
analysis.

This creates either exponentially many cases

To handle array updates efficiently, SMT solver support theory of functions
with updates, which are called theories of arrays.

Array theories (or simply disjunctions) allow verification conditions to
remain polynomial

Simple theories of arrays can be eliminated using if-then-else, which reduces
to fresh variables and disjunctions

Modeling dynamic allocation (new, fresh objects)

Now can we prove this:
x = new C ()
y = new C ()
assert(x 6= y)

Can we introduce global variables and assumptions that correctly describe
fresh objects?
Global set alloc denotes objects allocated so far

x = new C ()

denotes (for now):
havoc(x)
assume(x /∈ alloc)
alloc = alloc ∪ {x}

Modeling dynamic allocation (new, fresh objects)

Now can we prove this:
x = new C ()
y = new C ()
assert(x 6= y)

Can we introduce global variables and assumptions that correctly describe
fresh objects?

Global set alloc denotes objects allocated so far

x = new C ()

denotes (for now):
havoc(x)
assume(x /∈ alloc)
alloc = alloc ∪ {x}

Modeling dynamic allocation (new, fresh objects)

Now can we prove this:
x = new C ()
y = new C ()
assert(x 6= y)

Can we introduce global variables and assumptions that correctly describe
fresh objects?
Global set alloc denotes objects allocated so far

x = new C ()

denotes (for now):
havoc(x)
assume(x /∈ alloc)
alloc = alloc ∪ {x}

How allocated set models fresh objects

Original program

x = new C ()
y = new C ()
assert(x 6= y)

becomes

havoc(x)
assume(x /∈ alloc)
alloc = alloc ∪ {x}
havoc(y)
assume(y /∈ alloc)
alloc = alloc ∪ {y}
assert(x 6= y)

Renaming variables we obtain:

havoc(x)
assume(x /∈ alloc)
alloc1 = alloc ∪ {x}
havoc(y)
assume(y /∈ alloc1)
alloc2 = alloc1 ∪ {y}
assert(x 6= y)

Assertion holds because

alloc1 = alloc∪{x} ∧ y /∈ alloc1 ⇒ x 6= y

How allocated set models fresh objects

Original program

x = new C ()
y = new C ()
assert(x 6= y)

becomes

havoc(x)
assume(x /∈ alloc)
alloc = alloc ∪ {x}
havoc(y)
assume(y /∈ alloc)
alloc = alloc ∪ {y}
assert(x 6= y)

Renaming variables we obtain:

havoc(x)
assume(x /∈ alloc)
alloc1 = alloc ∪ {x}
havoc(y)
assume(y /∈ alloc1)
alloc2 = alloc1 ∪ {y}
assert(x 6= y)

Assertion holds because

alloc1 = alloc∪{x} ∧ y /∈ alloc1 ⇒ x 6= y

How allocated set models fresh objects

Original program

x = new C ()
y = new C ()
assert(x 6= y)

becomes

havoc(x)
assume(x /∈ alloc)
alloc = alloc ∪ {x}
havoc(y)
assume(y /∈ alloc)
alloc = alloc ∪ {y}
assert(x 6= y)

Renaming variables we obtain:

havoc(x)
assume(x /∈ alloc)
alloc1 = alloc ∪ {x}
havoc(y)
assume(y /∈ alloc1)
alloc2 = alloc1 ∪ {y}
assert(x 6= y)

Assertion holds because

alloc1 = alloc∪{x} ∧ y /∈ alloc1 ⇒ x 6= y

Find loop invariant and prove assertion

assume(N > 0 ∧ p > 0 ∧ q > 0 ∧ p 6= q)
a = new Array[Object](N)
i = 0
while (i < N) {

a(i) = new Object()
i = i + 1
}
assert(a(p) != a(q))

